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ABSTRACT 

Depth perception is one of the most important characteristics which separate 3D videos from traditional 2D videos. 

In this work, a feature based no-reference perceptual depth assessment model has been proposed for symmetric and 

asymmetric coded stereoscopic videos. This model extracts disparity and temporal features to evaluate the perceived 

depth of mobile 3D videos. The disparity feature is estimated by using block based structural similarity index 

between the corresponding blocks of left and right view and for temporal feature the jerkiness is estimated between 

the consecutive frames for both left and right view. The estimated features are then combined to give a single 

predicted score. The performance of the model is verified by subjective experiment data. The result indicates that the 

prediction performance of the proposed model is satisfactory. 

Keywords: No-reference, stereoscopic 3D video, Deptl, Symmetric, Asymmetric.   

 

1. Introduction 

With the development of stereoscopic image and video 

technology, there is no doubt that all conventional 2D 
media are soon going to be replaced by 3D media to 

improve the quality of experience for all media applications 
from broadcasting [1] to more specialized applications such 

as remote education [2], robotic navigation [3], medical 
applications [4] and many more. 3D video is gaining a 

world-wide popularity both in cinema and broadcasting 

industries as it is a technology that will extensively enhance 
the user's visual experience. One of the major concerns of 

such technology is to provide sufficient visual quality, 
especially if 3D video is to be transmitted over a limited 

bandwidth. In case of 3D videos, depth perception is one of 

the most important characteristics which separate them 
from 2D videos as depth perception enables us to detect 

distance between different objects/structural contents in the 
video. Therefore, the necessity to define appropriate 

methods to assess the perceived depth of the processed 
stereoscopic images and videos is becoming more evident. 

Assessing 3D video is a challenging issue because it is 

affected by video quality, depth perception and visual 
comfort. It is particularly challenging to evaluate the depth 

when the stereoscopic image consists of two views with 
different quality. In [5], a depth perception assessment 

index is proposed for stereoscopic images using a phase-

shift model. They used Gabor filter to compute the 
responses of left and right images respectively, and 

proposed a phase-shift model for computing disparity maps 
based on phase gradient and phase difference information. 

In [6], a source of information for absolute depth estimation 
was proposed based on the whole scene structure that does 

not rely on specific objects. It was demonstrated that by 

recognizing the properties of the structures present in the 
image, the scale of the scene can be estimated and therefore 

its absolute mean depth. Hwang et al. [7] proposed a visual 
attention and depth assisted stereo image quality assessment 

model which consists of stereo attention predictor, depth 

variation and stereo distortion predictor. Faria et al. [8] 

proposed a stereoscopic depth perception approach inspired 

by the primary visual cortex using the stimulus response of 
the receptive field profiles of binocular cells for disparity 

computation. Lebreton et al. [9] characterized depth 
information provided by the source sequences as an 

important factor because it validates whether the content is 

suitable for 3D video services. Boev et al. [10] combined 
monoscopic and stereoscopic quality components from the 

„Cyclopean‟ image and disparity map respectively for 
stereo-video evaluation. In [11], a subjective experiment is 

presented to study the relation between blur/sharpness and 

depth. It extended the concept of just noticeable blur (JNB) 
at different depths for 2D videos to 3D videos. In [12], a 3D 

visual attention model is proposed for stereoscopic image 
quality assessment based on 2D saliency model, center bias, 

depth cue. The perceptual depth can be assessed either 
through subjective tests or through objective metrics. 

Subjective assessment refers to the process of collecting the 

opinions of a large number of viewers in the form of 
opinion scores that rate the visual perception of a video. 

These scores are then averaged to get mean-opinion-score 
(MOS).  Even though it is the most accurate way to assess a 

video, it is not suitable for real time applications. Therefore, 

objective evaluation is becoming an ever increasing 
requirement to monitor the visual perception in real time. 

Consequently, no-reference evaluation method is highly 
desired at end user terminals as the pristine reference video 

will not be always available. In this work, a feature based 
no-reference perceptual depth assessment model is 

proposed for symmetric and asymmetric coded stereoscopic 

videos. This model extracts disparity and temporal features 
to evaluate the perceptual depth. The disparity feature is 

extracted to measure the perceived depth of the stereo 
video. Finally, video jerkiness is estimated as the temporal 

feature. The outline of this paper is as follows: Section 2 

describes the details of the proposed model. The 
experimental results and performance evaluation with 

subjective experiment data are given in Section 3. Finally, 
conclusions are drawn in Section 4. 
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2. Proposed No-Reference Model 

The block diagram of the proposed no-reference (NR) 

perceptual depth assessment model is shown in Figure 1. 

The model extracts the following features: 

 Disparity Feature 

 Temporal Feature  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Proposed depth assessment model 

2.1 Disparity Feature 

In this work, disparity is estimated by considering the 

structural similarity [13] between the corresponding blocks 

of left and right view [14]. In case of stereoscopic videos, a 

frame consists of two views i.e. left view and right view. 

During disparity estimation, each pixel in left image is 

matched with their corresponding pixels in the right image 

so that the corresponding pixels are the projections of the 

same 3D position. In case of standard stereo setup, we can 

consider that the camera movement is only along the 

horizontal direction.  As a result, the displacement between 

the left and right view is considered to be in the horizontal 

direction only. Therefore, the corresponding pixels are 

constrained to lie on the same row.  

(a) Left View (b) Right View 

(c) 8×8 Block (d) Stereo correspondence 

search 

Fig. 2: (a) Left view; (b) Right view; (c)-(d) Expanded view of (a) 

and (b); For a 8×8 block in the left image (c) a stereo 

correspondence search is conducted in the right image along ±64 

pixels in the horizontal direction (d). 

In order to measure the disparity feature, the left image is 

segmented into non-overlapping 8×8 blocks. For each 8×8 

block of the left image, the corresponding block search in 

the right image is conducted up to ±64 pixels using the 

Structural Similarity index (SSIM) measure which is shown 

in Figure 2. The SSIM index is defined as 
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And,    (   )
         (   )

    are two constants to 

stabilize the division with weak denominator where    is the 

dynamic range of the pixel-values, and        ,    
      by default. 

The resultant SSIM index is a decimal value between -1 and 

1. The value 1 is achieved if and only if       for all i= 1, 

2,...,64. For each 8×8 block of the left image, disparity 

index (DI) is found by searching the position of maximum 

quality index up to ±64 pixels of the right image. 
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In this way, the disparity map can be found for each pixel in 

a stereo view. Eventually, this disparity estimation process 

is conducted for each frame of the stereoscopic video. 

Subsequently, a depth map of the stereo frame of Balloon 

sequence is shown in Figure 3. 

Finally, after obtaining the depth map, the histogram of the 

disparity frames is estimated. The lower, middle and higher 

parts of the histogram are considered and then these values 

are normalized considering the highest disparity value. 

Subsequently, these three normalized disparity features are 

considered to measure depth in this method. 

(a) Balloon Left View (b) Balloon Right View 

 

 

 

 

(c) Depth Map 

Fig. 3: Depth map of the Balloon sequence. 

We consider, 

 Lower disparity:  ( )  ( )  ( )  
where  ( )  ( )  ( ) indicate number of disparity pixels 

with pixel‟s displacement 0, 1 and 2 respectively. 

 Middle disparity:  (
 

 
  )   (

 

 
)   (

 

 
  ) 

 Higher disparity:  (   )  (   )  ( ) 
where   is the maximum pixel disparity. 

   is the variance of the disparity frames. 

For normalized disparity, 
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where    ( )    ( ) and    ( ) are respectively 

lower, middle and higher disparity features of a stereo 

frame pair. 

We consider 8 frames per temporal segment. The lower 

disparity feature for a temporal segment, s is calculated as: 

 

   ( )  
 

 
∑   ( )

 

   

 (11) 

Similarly, the middle and higher disparity features for a 

temporal segment can be calculated as:    

 

   ( )  
 

 
∑   ( )

 

   

 (12) 

 

   ( )  
 

 
∑   ( )

 

   

 (13) 

Finally, the total lower, middle and higher disparity features 

are calculated by taking the average of    ( )    ( ) 

 and    ( ) for all the 15 segments as the sequences were 

8 seconds long with 15 fps (i.e. 120 frames in total). Lastly, 

all three disparity features are combined by some weighting 

factors to estimate the overall disparity feature. 

      ( )      ( )      ( )   (14) 

where   ,     and    are the weighting factors. 

2.2. Temporal Feature 

To compute the temporal feature, maximum jerkiness 

between the consecutive frames is estimated for both left 

and right view frames. Jerkiness of any stereoscopic video 

depends on the motion and scene contents of the video. In 

temporal domain jerkiness is really annoying for human 

eye. To measure video jerkiness as a temporal feature, the 

luminance intensity variation of pixels between the 

consecutive frames is used. The temporal feature extraction 

is shown for left view frames in Figure 4.  
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Figure 4: Temporal feature extraction is shown for left 

view frames. 

Firstly, the temporal information, TI i.e. the absolute 

luminance difference between consecutive frames is 

estimated separately for left and right views.  

For left view:    

   (     )  |  (       )    (     )| (15) 

where     and            are the selected frame 

numbers. 

Secondly, the deviation of the temporal information is 

calculated: 
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Thirdly, the root mean square is estimated: 
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Similarly,        ( )  is estimated for right view frames. 

Now considering 8 frames per temporal segment, three 

temporal features are calculated for each temporal segment 

from       ( ) and       ( ) separately. 

For left view: 

First temporal feature is computed by:  
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where t = 1, 9, 17, … 

Second temporal feature is computed by: 

 

      ( )  
 

 
∑      ( )

 

   

 (19) 

Third temporal feature is computed by: 
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Similarly, these three temporal features are calculated for 

right view as,       ( )       ( ),and       ( ) 

respectively.  

Now these three temporal features are calculated for all the 

segments of a video sequence for left view by:  
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where F = 15 which is the total number of temporal 

segments. 

Similarly, for right view the temporal features for all the 

segments are calculated as,               and       . 

Finally, three temporal features are calculated by taking the 

maximum temporal feature between the two views using 

the following equations. 

              (             ) (24) 
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              (             ) (26) 

Lastly, all three temporal features are combined by some 

weighting factors to estimate the overall temporal feature. 

            
            

            
   (27) 

where       and    are the weighting factors. 

2.3 Features Combination 

To constitute a stereoscopic depth prediction model, 

following features combination equation is considered to 

integrate the disparity and temporal features. 

      (  )  (  ) (28) 

where   and   are the model parameters and       

represent the overall temporal and disparity features.  

A logistic function is used as the non-linearity property 

between the human perception and the physical features 

[15]. Finally, the MOS prediction score (MOSp) is derived 

by: 
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The model parameters and weighting factors are estimated 

by an optimization algorithm with the subjective test data. 

Here, Particle Swarm Optimization (PSO) algorithm is used 

for optimization [16]. 

3. Performance Evaluation 

In this work, subjective experiment data are used to 

evaluate the performance of the proposed model. All 

subjects participating in the subjective experiment were 

students of University of Dhaka. The experiments were 

performed to estimate the mean opinion score (MOS) for 

perceptual depth of the stereo video sequences. These 

perceptual depth scores are used to train and test the 

proposed model.  

Table 1: Subjective test conditions and parameters 

Method DSQS 

Coder H.264 

Bit Rates 
4 kinds (100, 150, 250 and 400 

Kbps) 

Stereo Video Clips 6 

Video Resolution 
480×800 pixels (24 bit/pixel, 

RGB) 

Each clip length, and 

frame rate 
8 sec, and 15 fps 

Subjects 31 (Non expert, Students) 

Display 
4.3-inch, LCD 3D Auto-

stereoscopic 

Display Resolution 480×800 pixels 

Viewing Distance Adjustable viewing distance 

Room Illumination Dark 
 

The subjective experiment was conducted by using Double 

Stimulus Quality Scale (DSQS) method. Sixteen test 

sequences were created from each of the reference 

sequences [17] by symmetric and asymmetric combinations 

of four bit rates - 100, 150, 250 and 400 Kbps for left view 

and right view. The resolution of each video sequence was 

480×800 pixels. The duration of each sequence was 8 

seconds with 15 frames per second. The subjective test 

conditions and parameters are summarized in Table 1. Each 

subject was shown 96 test videos in a random order. In each 

sequence, two versions of the same video clip were shown 

in succession. First one was the reference and the second 

one was the test sequence which was rated on a discrete 

five point scale. The five point „perceptual depth‟ scales are 

Not perceptible at all = 1, Slightly perceptible = 2, Fairly 

perceptible = 3, Easily perceptible = 4, and Strongly 

perceptible = 5. Note that the numerical values attached to 

each category were only used for data analysis and were not 

shown to the subjects. Mean opinion scores (MOSs) were 

then computed for each stereo sequence after post-

experimental screening according to ITU-R BT 500-11 

recommendation [18]. The effect of bit rates on depth 

perception was examined by analyzing MOS at different bit 

rate combinations for the six sequences used in our 

experiment. Out of six sequences, four sequences are 

selected in this work based on the content of the videos 

which comprised of indoor and outdoor scenes that ranges 

from low to medium motion, where the scenes were filmed 

at both close and faraway distances. The sequences are 

divided into two parts for training and testing. The training 

dataset consists of two sequences Balloon and Newspaper 

and the testing dataset consists of two other sequences 

Poznan Street and Lovebird.  

3.1 Training Result 

The model parameters and weighting factors estimated by 

the Particle Swarm Optimization (PSO) algorithm with the 

training dataset are shown in Table 2. In order to provide 

quantitative measures on the performance of our proposed 

NR depth prediction model, we followed the standard 

performance evaluation procedures employed in the video 

quality experts group (VQEG) FR-TV Phase II test [19], 

where mainly four evaluation metrics, correlation 

coefficient (CC), Spearman rank order correlation 

coefficient (SROC), average error (AVE), and root mean 

square error (RMSE) between MOS and MOS prediction 

(MOSp) were used. The CC, SROC, AVE (calculated on the 

scale of 5), RMSE of the training dataset are shown in 

Table 3. 

Table 2: Model parameters and weighting factors 

                      

  
          

  
          

            

  
          

                        

 

Table 3: Evaluation results for training dataset 

CC SROC AVE RMSE 

0.87 0.85 0.23 0.295 

 

Fig. 5: MOS and MOSp scores of Balloon sequence 

Figure 5 shows the comparison between MOS and MOSp 

scores for the Balloon sequence. The MOS scores are 

shown with 95% confidence interval. The figure indicates 
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that the MOSp scores are within 95% confidence interval 

for almost all the bit rate combinations except at (100-400) 

Kbps and (250-250) Kbps where the deviations are 

noticeable. Both MOS and MOSp scores exhibit lowest 

depth perception scores at (100-100) Kbps, i.e. 2.04 and 

2.64 respectively. The highest depth perception scores are 

achieved at (400-400) Kbps for both subjective and 

objective assessments. At (400-400) Kbps, the MOS and 

MOSp scores are 4.38 and 4.19 respectively. The 

asymmetric bit rate combinations (250-400) Kbps and (400-

250) Kbps exhibit consistency between the subjective and 

the objective scores. At (250-400) Kbps, the MOS score is 

3.86 and MOSp score is 3.91 and at (400-250) Kbps, the 

MOS score is 3.81 and MOSp score is 3.98. Moreover, we 

see that there is a noticeable variation between the MOS 

and MOSp scores at the bit rate combination (250-250) 

Kbps. The MOS score is 4.28 while the MOSp score is 3.82. 

In addition, the bit rate combinations (100-400) Kbps and 

(400-100) Kbps show poor MOS and MOSp scores when 

compared with (250-250) Kbps even though the total bit 

rate of (250-250) Kbps, (100-400) Kbps and (400-100) 

Kbps are the same. So it can be said that if the difference 

between left view and right view bit rate is greater, then the 

symmetric combination gives somewhat better prediction 

result than the asymmetric combinations. 

The analysis shown in Figure 6 represents the comparison 

between MOS and MOSp scores for the Newspaper 

sequence.  

 

Fig. 6: MOS and MOSp scores of Newspaper sequence 

Here, we can see that almost all the MOSp scores are within 

95% confidence interval except at (100-100) Kbps and 

(150-400) Kbps where the deviations are noticeable. Both 

the MOS and MOSp scores are above 3 for all bit rate 

combinations. The bit rate combination (400-400) Kbps 

exhibits highest depth perception scores for both subjective 

and objective scores. At (400-400) Kbps, MOS and MOSp 

scores are 4.62 and 4.23, respectively. In addition, same as 

the Balloon sequence, the bit rate combinations (250-400) 

Kbps and (400-250) Kbps show consistency between the 

subjective and objective scores. Moreover, the scores of 

(250-400) Kbps and (400-250) Kbps are comparable to 

(400-400) Kbps. Moderate results are obtained for (250-

250) Kbps bit rate combination for both subjective and 

objective scores. At (250-250) Kbps, MOS score is 4.3 and 

MOSp score is 4.1. The bit rate combinations (100-400) 

Kbps and (400-100) Kbps show consistency between MOS 

and MOSp scores but the scores are not as good as (250-

250) Kbps. Therefore, the same assessment as Balloon 

sequence holds true for the Newspaper sequence. 

3.2 Testing Result 

The model parameters and weighting factors, that are 

estimated using the training dataset, are applied on the 

testing dataset to evaluate the performance of our proposed 

model. The evaluation result for the testing dataset is shown 

in Table 4.  

Table 4: Evaluation results for testing dataset 

CC SROC AVE RMSE 

0.77 0.74 0.39 0.51 

 

Fig. 7: MOS and MOSp scores of Poznan Street sequence 

Figure 7 shows the comparison between MOS and MOSp 

scores for the Poznan Street sequence. Here, when the 

MOSp scores are compared with the MOS scores, 

noticeable deviations are observed at the low bit rate 

combinations i.e. the MOSp scores are lower than the MOS 

scores. The Poznan Street sequence has high motion i.e. the 

video content change between adjacent frames is high.  

Even though at low bit rate combinations where the quality 

is low, the subject can easily identify the depth of the video. 

Whereas the model tries to quantify the highest degradation 

between the two views and therefore at low bit rate 

combinations it cannot predict the depth of the video and 

gives the prediction scores lower than the subjective scores. 

However, in case of high bit rate combinations, the MOSp 

scores show consistency with the MOS scores. The highest 

MOS score is obtained at (400-250) Kbps which is 4.14 and 

its corresponding MOSp score is 4.3 which shows 

consistency. In addition, (250-400) Kbps bit rate 

combination shows consistency between the MOS and 

MOSp scores which are 4 and 4.01 respectively. The bit rate 

combination (250-250) Kbps shows comparable results. 

However, the bit rate combinations (100-400) Kbps and 

(400-100) Kbps show poor and inconsistent MOS and 

MOSp scores when compared with (250-250) Kbps even 

though the total bit rate of (250-250) Kbps, (100-400) Kbps 

and (400-100) Kbps are the same.  
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Fig. 8: MOS and MOSp scores of Lovebird sequence 

Figure 8 shows the comparative analysis between MOS and 

MOSp score for the Lovebird sequence. Same as the Poznan 

Street sequence when the MOSp scores are compared with 

the MOS scores, noticeable deviations are observed at the 

low bit rate combinations i.e. the MOSp scores are lower 

than the MOS scores. Lovebird sequence has medium 

motion content. The two objects in the video clip are the 

central objects and they slowly walks towards the camera. 

Just like the Poznan Street sequence, even at low bit rate 

combinations the subject could easily detect the depth of 

the video but the model could not determine the depth of 

the video accurately and gives the score lower than the 

subjective scores. On the other hand, in case of high bit rate 

combinations, the MOSp scores show consistency with the 

MOS scores. The highest MOS score is obtained at (400-

400) Kbps which is 4.14 and its corresponding MOSp score 

is 4.2 which shows consistency. In case of the bit rate 

combination (400-250) Kbps there is a variation between 

the MOS and MOSp scores. The MOS score is 3.8 whereas 

the MOSp score is 4.2. However, the bit rate combination 

(250-400) Kbps shows consistency between the MOS and 

MOSp scores. The bit rate combination (250-250) Kbps 

shows comparable and consistent results. However, same as 

before the asymmetric bit rate combinations (100-400) 

Kbps and (400-100) Kbps show poor and inconsistent 

results when compared with (250-250) Kbps. As far as we 

know there is no NR model for depth evaluation for mobile 

stereoscopic 3D videos. Therefore, it is clear from Figures 

5, 6, 7, and 8 and also from Tables 3 and 4, that our 

proposed model performances are sufficient. 

4. Conclusion 

In this work, a no-reference perceptual depth assessment 

model is proposed based on disparity and temporal features 

for stereoscopic 3D videos for mobile applications. The 

performance of the proposed model has been evaluated by 

using the subjective experiments data. The high value of 

correlation coefficient and low value of average error, and 

root mean square error between MOS and MOSp indicate 

sufficient accuracy of our proposed model. It is observed 

from the experimental results that the proposed model can 

achieve much higher accuracy and consistency with 

subjective experiment data if we incorporate human visual 

system (HVS) characteristics properly. In future, the 

research can be extended to incorporate properly the HVS 

system characteristics to the model to extract the disparity 

and temporal features.  
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