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ABSTRACT 

In this paper, a classifier has been designed using Support Vector Machine (SVM) to classify Electromyography 

(EMG) signals. Given the EMG signals, the SVM-based classifier aims to classify ten individual and combined 

fingers motion command into one of the predefined set of movements. Prior to classification, EMG data is segmented 

with a sliding window technique and time domain features such as Mean Absolute Value (MAV),  Root Mean Square 

(RMS), Integrated Average Value (IAV), Waveform Length (WL) and autoregressive model (4th order) are 

extracted for each window and combined to a feature set. Extracted features are used as inputs to the classification 

system. A linear SVM (one-against-one method) is used for the multiclass classification of EMG signals. Several 

window sizes that affect the classification performance have been reported. The best feature set that ensures 

maximum discrimination between the finger movements has also been reported. Validation shows that support 

vector machine can classify EMG signals correctly with a higher classification rate suitable for designing prosthetic 

and assistive devices. 
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1. Introduction 

Electromyography (EMG) signals are the measure of 

electrical activity in the muscle. The physiological 

variations across the muscle fiber membranes are 

responsible for creating electrical signals also known as 

myoelectric signals. These signals are produced by the 

exchange of ions across fiber membranes. The electrical 

potential that is produced on the muscle fibers is called 

action potential. An EMG signal is the summation of these 

action potentials of the muscle fibers. EMG signals can be 

determined by placing electrodes (both needle and surface 

type) on the skin. 

The purpose of electromyography is to evaluate this 

electrical activity produced by the muscles. The electrical 

activity of a motor unit provides information for estimating 

neuromuscular disorders [1]. Other applications are motor 

control diseases, rehabilitation engineering, human machine 

interaction [2] etc. EMG signal classification gains an 

immense attention in the field of medical science, 

biomedical engineering, robotics etc. The classification of 

EMG signals has been widely used as the command signal 

to identify individual motions for controlling prosthetic and 

assistive devices. For achieving this purpose it is necessary 

to distinguish individual movements from the patterns of 

available EMG signals. Typically a pattern recognition 

system could be used to classify the acquired EMG signals 

into one of the predefined set of movements [3].  

In recent years, significant works on EMG signal 

classification have been carried out. Many studies suggest 

that by classifying EMG signals it is possible to identify 

muscle diseases like neuromuscular disorder [4]. In most of 

the cases, the diseases have been identified as myopathy 

and neuropathy. Some other studies analyze the relative 

performance of SVM and neural network of EMG signal 

classification obtained from normal, myopathy, and 

neuropathy subjects [5]. A novel PSO-SVM model has 

been proposed that combines the particle swarm 

optimization and SVM to improve the EMG signal 

classification accuracy for diagnosis of neuromuscular 

disorders. Other studies that use EMG signals are human 

computer interfaces [2], a powered wheel chair controller, 

gait generation, interactive computer gaming etc [6]. For 

controlling peripheral equipments, hand gestures are often 

used. It is mainly done by capturing surface 

electromyography signals from the muscles. 

In the recent past, myoelectric interfaces have attracted 

more attention for its application in the field of 

rehabilitation engineering, prosthesis devices, robotics etc. 

By the identification of EMG signals a myoelectric control 

system can be designed. It is mainly done into two parts. 

First part concerns the classification of EMG signals and 

second part covered the estimation of operator’s joint 

angles. To classify a multi-channel surface 

electromyography signals with the aim of controlling 

myoelectric prostheses a support vector machine (SVM) 

approach has been applied. It is argued that this method is 

suitable for real-time application [7]. Recent attempts have 

been made to achieve more dexterous individual finger 

control. For classifying nine classes of individual finger 

movements 16-channels have been used and achieved 96% 

accuracy [8]. A pattern recognition system has been 

developed that can classify 10 classes of movements (five 

individual finger, four combined finger movement, and 

hand close) [9]. The features are time domain features and 

Support Vector Machine (SVM) for classification and 

Bayesian vote for post-processing have been employed with 

a classification accuracy is 92 % [9].  

Feature extraction and classification have been considered 

as two key issues to design prosthetic/assistive devices or 

any useful application based on EMG [10]. Feature 

extraction is to define a feature vector from the original 

EMG signals, while classifier is to discriminate these 
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feature vectors and group them into different classes. One 

of the main challenges in feature extraction and 

classification of EMG signals is its low quality. It is not 

always strictly repeatable, and may sometimes even be 

contradictory since it may be modified by many factors 

such as muscular fatigue, electrode shift, sweat, changing in 

thickness of skins, tissues. Sometimes it is difficult to 

extract useful features from the residual muscles of an 

amputee or disabled. Another challenge is to develop an 

EMG based myoelectric control system that can 

simultaneously allow movement of multiple degrees of 

freedom (DOFs). A number of EMG recognition methods, 

including feature extraction and classification have been 

proposed over time to time to achieve high recognition 

accuracy. But still a lot of research efforts are needed. To 

achieve more dexterity especially when controlling multiple 

DOFs, a pattern recognition system to discriminate multiple 

patterns has shown great promise.  

Fig 1 shows a typical pattern recognition framework.  The 

performance of better discrimination between individual 

movements largely depends on the proper presentation of 

the EMG signals. It is done mainly in the pre-processing 

stage. Features can be extracted both in time domain and 

time-frequency domain. Many time domain features such as 

root mean square (RMS) value, slope sign change (SSC), 

zero crossing (ZC), waveform length (WL), willison 

amplitude, auto regressive (AR) model etc. and time-

frequency domain features such as wavelet transform (WT), 

fast fourier transform (FFT) show good performance [11]. 

 

Fig. 1: A typical pattern recognition framework for EMG signal 

classification 

The identification methods of individual movements fall 

into two categories. Supervised learning methods includes 

support vector machine (SVM), artificial neural networks 

(ANN) [12], k-nearest neighbor (KNN) etc. and 

unsupervised learning methods are K-means Clustering, 

Hidden Markov Models, Self Organizing Map etc. Some of 

the features are extracted from raw EMG data and 

recognition of individual movements can be carried out by 

using one of above learning methods. 

In this research work a pattern classification system using 

support vector machine (SVM) has been designed and 

developed that can classify electromyography signals. The 

classifier can discriminate ten individual and combined 

finger movements.  

2. Materials and Methods 

2.1 Data Collection 

The EMG signal dataset of ten classes of individual and 

combined finger movement has been collected from the 

work conducted by Dr. Rami Khushaba and his group of 

University of Technology Sydney [9].  

The data was acquired by a data acquisition system from 

eight able bodied subjects (two females, six males). The 

collection of 2-channel EMG data was conducted by two 

Delsys DE 2.x series EMG sensors. Channel-1 signals 

mainly captured from the Extensor Carpi ulnaris and 

Extensor digitiminimi muscles while channel-2 from the 

Flexor digitorum superficials and Palmaris longus muscles.  

 
Fig. 2: Electrode Placements [9].  

Fig. 2 shows the placement of electrodes for collecting two 

channels EMG data [9]. Ten classes of individual finger 

movements including Thumb (T) finger, Index (I) finger, 

Little (L) finger, Ring (R) finger, Middle (M) finger and 

combined finger movements including Thumb–Index (T–I) 

fingers, Thumb–Middle (T–M) fingers, Thumb–Ring (T–R) 

fingers, Thumb–Little (T–L) fingers, and Hand Close (HC) 

were performed on that experiment. Fig. 3 shows the 

individual and combined finger movements with their 

considered classes in this study.  

The EMG data were provided in digitized format. For each 

class of movements there are six samples. Each number of 

samples includes two channel data. And each channel has 

20,000 sampling points after digitization. 

 

Fig. 3: Finger movement classes [9]. 
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2.2 Segmentation/Windowing 

The method of EMG signal classification using SVM can 

be visualized in Fig. 4. To successfully classify EMG signal 

it is necessary to represent data in an efficient manner. 

Classification accuracy largely depends on the productive 

representation of data. Pattern recognition of EMG signal 

starts with the segmentation of that signal. EMG signals are 

segmented with a suitable window size. Then features are 

computed from that particular window or segment of data. 

This approach is known as  windowing approach [13]. 

There are two kinds of windowing approach exist. 

a) Overlapping windowing,  

b) Disjoint windowing [3]. 

It has been suggested that overlapping windowing 

technique gives better classification accuracy than disjoint 

windowing method [3]. The segmentation of raw EMG data 

is mainly performed by sliding window technique. The 

EMG data is windowed and feature is extracted from that 

particular window. 

 

Fig. 4: Step-by-step procedure of EMG pattern recognition 

using SVM. 

Then the window slides away to create another window of 

data that can be adjusted by window increment size. 

Classification accuracy differs significantly with window 

sizes (Section IV). 

2.3 Feature Extraction 

Successful EMG pattern classification to identify individual 

and combined motion commands depends on the correct 

feature extraction techniques. To separate the desired output 

classes a feature set (i.e. feature parameters) must be chosen 

wisely. One feature parameter can not represent the EMG 

signals to a motion command perfectly. To uniquely 

identify several motion commands various feature 

parameters are extracted and combined to form a large 

feature set. In this study, various time domain features such 

as Mean Absolute Value (MAV), Root Mean Square 

(RMS) value, Integrated Average Value (IAV), Waveform 

Length (WL), and Autoregressive Model (AR) with 4
th

 

order have been used to extract useful information.  

The mathematics involved in the above time domain 

features are presented in the following:  

a) Mean Absolute Value: 

Mean absolute value of a surface EMG signal is calculated 

by taking the average of the absolute value of that signal. It 

is an estimation of the mean absolute value of the signal 

  in a segment  that is N samples in length. 

    
 

 
∑ 

 

   

                     

 

(1) 

b) Root Mean Square Value:  

Root Mean Square (RMS) is related to standard deviation 

by the following manner- 
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Where, N is the length of the signal and    represents the 

EMG signal in a segment.  

c) Integrated Average Value: 

The summation of the absolute signal value amplitude is 

known as integrated absolute value (IAV) of that signal. It 

is written as- 
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Where, the length of the signal is N and    represents the 

EMG signal in a segment.  

d) Waveform Length: 

The summation of the length of the waveform over the time 

segment is known as Waveform Length (WL). It is given 

by- 

    ∑            

   

   

 

(4) 

e) Autoregressive Model: 

Because of non-linearity and non-stationary nature of the 

EMG signal it is difficult to successfully examine the 

signal. But if the time interval is short then EMG signal can 

be represented as a stationary Gaussian random process. 

Each sample of the time series EMG signal is modeled as a 

linear combination of previous samples which is denoted 

by- 
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     ∑          

 

   

 
 

(5) 

Where    is AR co-efficient, n is AR order and     is white 

noise.  

Fourth order AR model is widely used but other orders are 

also employed occasionally. The main advantage of AR 

model is that EMG signal can be modeled as a list of 

parameters. Instead of using original EMG data model, 

parameters can be fed to the classification algorithm for 

recognition purposes which reduces computational burden.  

2.4 Dimensionality Reduction 

The higher dimensional data representation describes an 

action or gesture clearly but it is not computationally 

efficient since a large amount of time is required to process 

the data. Feature extraction is not enough for reducing the 

size of the data. A dimensionality reduction technique could 

be used. Principle component analysis (PCA) has been used 

to reduce the dimension of the features extracted from 

EMG data for classification purposes. The classification 

performance varies with the number of PCA reduced 

features. Since reduction of the number of features 

describes data poorly, an optimum reduced feature size 

should be chosen carefully. 

2.5 Classification and Post Processing 

The EMG data after processing in a signal processing stage 

is ready for classification. The extracted features after PCA 

reduction are classified by a SVM based classifier. 

The data classification using SVM is performed by the 

construction of the best possible hyper plane that separates 

all data points from one class of the other class. The best 

hyper plane for an SVM means the one with the largest 

margin between the two classes. The maximal width of the 

slab parallel to the hyper plane that has no interior data 

points is called Margin. Data points that are closest to the 

separating hyper plane are called support vectors. These 

points lie on the boundary of the slab. These definitions are 

illustrated in Fig. 5 with filled small circles indicating data 

points of class 1 and blank small circles indicating data 

points of class 2. For two class problem consider the 

training sample dataset, {     }, where i=1, 2,…, n, 

and       represents feature vector. And    are labels 

with       for one class and       for another class 

simply putting,    {     }. As choosing optimal hyper 

plane another aim of SVM is to maximize the margin to 

distinguish data. A hyper plane can be defined as follows- 

              (6) 

 

 

Fig. 5: Support Vector Machine 

Where,           , can be regarded as a decision function. 

And   is normal to the hyper plane (Fig. 6) also 
   

‖ ‖
 is the 

perpendicular distance from the hyperplane to the origin. 

Now let us define    and    be the shortest distance from 

the separating hyperplane to the closest examples. So the 

margin of a separating hyperplane would be   +  .The 

solution of the largest margin can be formulated as follows: 

 

Fig. 6: Separating hyperplanes with support vectors [14]. 

All the training data satisfy the following constraints- 

                                (7) 

                               (8) 

These form the following inequalities- 

                      (9) 

Now considering the points satisfying equation (7) and (8) 

and lying on the two hyper plane say         , the shortest 

distance can be found as   =  = 
 

‖ ‖
 . So, the margin is 

simply 
 

‖ ‖
. The Lagrangian formulation can be written as 

follows, 
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(10) 

Where   is a positive lagrangian multipliers. 

Here    is need to be minimized with respect to   and  . It 

also requires that gradient of    with respect to    vanishes 

such that     .  
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3. Implementation  

3.1 Window Size Selection 

The collected EMG data is windowed with suitable window 

size and features are extracted within each window. All of 

the extracted features are then concatenated to form a larger 

feature set. To select the best window size several sliding 

windows are chosen as 128 ms, 256 ms, 384 ms,  512 ms, 

640 ms, 768 ms, 896 ms, 1024 ms window and their 

performance on EMG signal classification accuracy have 

been evaluated respectively. Window increment has been 

considered as 128 ms for all the cases. For each subject, the 

classification rate of finger movements has been estimated 

five times with each of the window sizes. Then the average 

classification rate has been computed. Next, the average of 

all subject’s data for each of the window has been 

calculated. The results are presented in results and 

discussion (Section IV).  

3.2 Feature Parameters Selection 

The choice of feature parameters affects the classification 

accuracy. To assess this, time domain features are 

organized into eight feature sets for performance evaluation 

as shown in TABLE I. For each feature set the average 

classification rate of ten individual and combined finger 

movements is calculated. The process is repeated for each 

(five) subjects. Then the total average classification rate is 

determined across all subjects for that particular feature set. 

The process is repeated for eight feature sets and the total 

average classification rate or error rate for each of the eight 

feature sets is calculated (Section IV).  

3.3 Feature Vector Calculation 

The classification of EMG signals depends upon the finding 

of right feature vectors that are unique for them. By 

considering different feature parameters (i.e. RMS, MAV, 

IAV, WL and autoregressive model), features are extracted 

from EMG data within each window. In this study, the 

collected EMG signal consists of 2-channel (ch1 & ch2) 

EMG data. So features are calculated from each of the 

EMG data channel by using these feature parameters. At 

first a window of data is selected and feature parameters 

considered above for example are estimated for that 

particular window. 

Then the window slides away (i.e. by a window increment) 

to consider a new window of data and the calculation for 

feature values for each feature parameters is repeated.  

TABLE II and TABLE III show the calculated features 

from one class of EMG data (i.e. ‘Hand Close ‘) only for 1
st
 

window, 50
th

 window, 100
th

 window and 150
th

 window as 

an example. The calculated feature values are then 

concatenated to form a large feature vector.  

 

Table 1. Feature Sets 

Feature Set Feature Parameters 

Set 1 WL, AR Model (Order 4) 

Set 2 RMS, MAV, AR Model (Order 4) 

Set 3 RMS, WL, AR Model (Order 4) 

Set 4 MAV, WL, AR Model (Order 4) 

Set 5 RMS, IAV, WL, AR Model (Order 4) 

Set 6 RMS, MAV, ,WL, AR Model 

Set 7 RMS, IAV, WL,MAV 

Set 8 RMS, IAV, WL, MAV, AR Model 

Table 2. Calculation of Feature parameter values for 1
st
 

window and 50
th

 window 

Feature 

Para-

meter 

1st Window 50th Window 

 
ch1 ch2 ch1 ch2 

RMS 0.000369 0.000556 0.000325 0.000465 

MAV 0.000286 0.000433 0.000261 0.000342 

IAV 0.146196 0.221547 0.133595 0.174854 

WL 0.013255 0.018492 0.010951 0.013865 

AR 

Model 

(4
th

 

order) 

-1.45421 -1.8524 -1.87688 -2.76986 

 
0.302385 0.732129 0.787649 2.816215 

 
0.244419 0.415169 0.355063 -1.17604 

 
-0.02654 -0.25907 -0.23435 0.140626 

 

Table 3. Calculation of Feature parameter values for 100
th
 

window and 150
th

 window 

Feature 

Para-

meter 

100th window 150th window 

ch1 ch2 ch1 ch2 

RMS 0.000414 0.000326 0.000292 0.000259 

MAV 0.000323 0.000256 0.000223 0.000215 

IAV 0.165423 0.13101 0.113938 0.110195 

WL 0.009497 0.007148 0.008074 0.006482 

AR 

Model 

(4
th

 

order) 

-2.65778 -1.9543 -1.79114 -2.853 

 
2.50027 0.882446 0.665951 3.080835 

 
-0.89712 0.335687 0.315306 -1.47939 

 
0.061697 -0.2467 -0.15997 0.259955 
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Table 4. Concatenation of Feature values (Feature values of 

ch2 below Feature values ch1) 

Feature 

parameters 

1st Window 

RMS 0.000369  -1.45421 

 

0.000556  0.302385 

MAV 0.000286  0.244419 

 

0.000433 

AR Model 

(4
th

 order) -0.02654 

IAV 0.146196  -1.8524 

 

0.221547  0.732129 

WL 0.013255  0.415169 

 

0.018492  -0.25907 

At first for each feature parameter, the calculated feature 

values of channel 1 and channel 2 are concatenated one 

below another. TABLE IV shows the concatenation of 

feature values of 2-channel for 1
st
 window. 

Then all of the combined feature values for all feature 

parameters are concatenated one below another to form the 

feature vector. TABLE V shows the feature vectors for all 4 

windows as example: 

Table 5. Feature Vectors for 1
st
 window, 50

th
 window, 100

th
 

window and 150
th

 window 

1
st
 

Window 

50
th

 

Window 

100
th

 

Window 

150
th

 

Window 

0.000369 0.000325 0.000414 0.000292 

0.000556 0.000465 0.000326 0.000259 

0.000286 0.000261 0.000323 0.000223 

0.000433 0.000342 0.000256 0.000215 

0.146196 0.133595 0.165423 0.113938 

0.221547 0.174854 0.13101 0.110195 

0.013255 0.010951 0.009497 0.008074 

0.018492 0.013865 0.007148 0.006482 

-1.45421 -1.87688 -2.65778 -1.79114 

0.302385 0.787649 2.50027 0.665951 

0.244419 0.355063 -0.89712 0.315306 

-0.02654 -0.23435 0.061697 -0.15997 

-1.8524 -2.76986 -1.9543 -2.853 

0.732129 2.816215 0.882446 3.080835 

0.415169 -1.17604 0.335687 -1.47939 

-0.25907 0.140626 -0.2467 0.259955 

3.4 Classification Algorithm 

Support vector machine is a linear classifier that classifies 

data that poses only two classes. It can be extended to 

multiclass classification. Among two popular approaches, 

one-against-one method has been used in this study. A 

majority voting strategy has been used as a post processing 

stages after all the classifiers are trained with samples of all 

classes. The new sample is assigned to the class with the 

largest vote. 

The classification rate of ten individual and combined 

finger movements is calculated ten times for each subject. 

Then the average classification rate is calculated for that 

subject. The process is repeated for the remaining subject’s. 

TABLE VI shows the average classification rate for all five 

subjects.  

Table 6. Average classification rate using support vector 

machine with the designed parameters 

Data 
Subject 

1 2 3 4 5 6 7 8 9 10 
Avg.(

%) 

Subject 

1 
85 90 90 85 90 85 85 90 95 90 88.50 

Subject 
2 

95 90 90 90 75 100 90 90 90 95 90.50 

Subject 

3 
85 90 90 100 90 95 85 95 90 90 91.00 

Subject 
4 

95 90 95 100 95 85 95 90 90 95 93.00 

Subject 

5 
95 90 95 95 95 95 100 90 90 95 94.00 

          Avg 91.40 

  

4.  Results and Discussion 

4.1 Window Size vs Classification Rate 

Fig. 7 shows the variation of classification rate by changing 

window sizes. It is seen that classification rate increases if 

we increase the window size with fixed window increment. 

The classification rate is increasing upto 512 ms window 

size. It does not improve much after 512 ms window if we 

increase the window sizes. Since 512 ms window gives 

better classification rate and choosing larger window gives 

nothing but a larger processing time it has been chosen as 

window size with fixed window increment 128 ms in this 

study. 

 

 

Fig. 7: Relation between classification rate and window sizes 



Classification of Electromyography Signals Using Support Vector Machine 51 

4.2 Feature Parameters vs Classification Rate 

Fig. 8 shows the dependency of classification rate or error 

rate on the selection of feature parameters. It is clearly seen 

that increasing feature parameters reduces the average error 

rate. More interesting result is found if we see feature 

parameters of feature set seven and eight (TABLE I). 

 

Fig. 8: Relation between error rate and feature set 

The reduction of average error rate is less if we consider 

feature set seven to eight. AR model is included in feature 

set eight. But error rate is not reduced significantly if we 

use feature set eight. In this study feature parameters of 

feature set eight has been considered to classify EMG 

patterns. 

4.3 Average Classification Rate  

The overall average classification rate across all subjects is 

approximated which is equal to 91.40 % (TABLE VI). 

 

Fig. 9: Average classification rate of eight subjects using SVM 

based classifier. 

Fig. 9 shows the average classification rate for each subject. 

The x-axis represents data subject. Along y-axis, each value 

represents the classification rate for each subject. A 

horizontal line is drawn through the vertical bars in order to 

represent overall average classification rate. 

 

5. Conclusion 

A support vector machine (SVM) based EMG signal 

classification method has been designed in this work. The 

classification method starts with collected EMG data 

segmentation with a sliding window technique. Features are 

extracted using time domain feature representation for each 

sliding window. Among several window sizes suitable 

window has been selected by investigating their influences 

on the classification accuracy. Best feature set (i.e. feature 

parameters) that ensures maximum separation between 

finger movements has also been investigated. The 

classification accuracy of individual and combined finger 

movements using SVM based classifier is of  91.40 % 

across all subjects. So it can be concluded that support 

vector machine based pattern recognition system is suitable 

for discriminating hand motions with the little cost of 

average classification rate.  
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