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summary

In the analysis of time-to-event data, e.g. from cancer studies, the group effect
of main interest such as treatment effect of a chemo-therapy often needs to be
adjusted by confounding factors (possibly continuous) such as hormonal receptor
status, age at diagnosis, and pathological tumor size, when the study outcome
is affected by their imbalanced distributions across the comparison groups. The
median, or quantile, is a popular summary measure for censored survival data
due to its robustness. In this paper, first the logistic regression is extended to
fractional responses transformed from censored survival data, which can directly
predict conditional survival probabilities beyond a fixed time point given covari-
ates. As a special case, we construct a median test for censored survival data
that can be used to assess a group effect adjusting for the potentially multiple
confounding factors. A quasi-likelihood-based inference procedure is adopted to
construct the test statistic. Simulation studies show empirical type I error prob-
abilities and powers for the adjusted two-sample median test are reasonable. The
method is illustrated with a breast cancer dataset.
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1 Introduction

In clinical studies that generate time-to-event data, or survival data, a popular summary

measure to compare the outcome data has been the median, or quantile, event time due

to its robustness. For example, in a breast cancer treatment study (B-14) performed by

National Surgical Adjuvant and Bowel Project (NSABP), breast cancer patients with posi-

tive estrogen receptors were assigned to either a hormonal therapy (tamoxifen) or placebo

group (Fisher et al., 1989, 2002). The usual study design for this type of study is to detect

a reduction in the hazard rate of the events of interest, but investigators might also be

interested in comparing the median times to the events of interest, say, recurrence of the

original cancer, to evaluate an effect of the hormonal therapy. This concept of the quantile

would provide a straightforward interpretation about the drug effect in terms of extending

times to the events of interest.

In time-to-event data analysis, true probabilities of surviving beyond a fixed time point

can be simply dichotomized as long as events occurs at any time point or censoring happens

after the fixed time point. A case where the survival probability has to be stochastically

determined would be when the observed survival time is censored before the fixed time

point. This process would transform the time-to-event responses into the fractions between

0 and 1, the limits inclusive, which will be referred to as “fractional responses” for the rest of

this paper. Therefore the inference procedures developed for the ordinary logistic regression

model cannot be directly applied to this case. In econometrics, Papke and Wooldridge

(1996) proposed a regression model on simple fractional responses such as proportions, but,

to the best of our knowledge, it has never been extended to a biomedical setting where the

fractional responses can be obtained by transforming censored time-to-event data.

When two or more groups are compared in terms of the median times to events of

interest, Brookmeyer and Crowley (1982), Wang and Hettmansperger (1990), and Tang and

Jeong, (2012), among others, proposed various median test statistics without adjusting for

confounding factors. In the fractional logistic regression setting described above, if the fixed

time point is set to be the true median of the population under the null hypothesis of equal

medians, any significant difference among comparison groups in probabilities of surviving

beyond the pooled sample median would lead to a rejection of the null hypothesis. Therefore

this particular application of the fractional logistic regression based on the transformed time-

to-event data would be an extension of the existing median tests to one accommodating

covariate adjustment.

The rest of the paper is organized as follows: In Section 2, the fractional logistic re-

gression model is reviewed and extended to the right censoring case. In Section 3, the

quasi-likelihood-based inference procedure is reviewed for the regression coefficients from

the fractional logistic regression model, and the new median test is constructed. In Section

4, simulation studies are performed to assess performance of the proposed median test with

and without covariate adjustment, and compared with existing methods. In Section 5, the

proposed test is applied to a breast cancer dataset, and Section 6 discusses some advantages

of the proposed test.
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2 Model

Suppose that for the ith subject (i = 1, 2, . . . , n), Xi is the true event time and Ci is

the true censoring time, and define the observed survival time as Ti = min(Xi, Ci). Also

define the event indicator as δi = I(Xi < Ci). Furthermore suppose that we are interested

in inferring the survival probability beyond a fixed time point t0, and define an indicator

Yi = I(Xi > t0). Given partially or fully observable survival data (Ti, δi, zi), where zi is

a vector of covariates, we extend the following regression model (Papke and Wooldridge,

1996) for censored survival data:

E(Yi|zi) = G(z′iβ), (2.1)

where the function G(·) can take a nonlinear form and β is a vector of regression coefficients.

Note that without censoring, the outcome Yi is fully observable as a Bernoulli random

variable once a time point is fixed at t0. Even under censoring, Yi is observable as long

as Ti is greater than t0 or Ti is less than t0 as an event. However, when Ti is less than t0
as censored, Yi is not observable any longer, so that E(Yi|Ti < t0, δi = 0) can be replaced

with the estimate of Pr(Xi > t0|Ti < t0, δi = 0). We adopt the estimation procedure from

Brookmeyer and Crowley (1982) as follows:

qi(t0) = Pr(Xi > t0|Ti < t0, δi = 0) = Pr(Xi > t0|Xi > Ti) =
Pr(Xi > t0)

Pr(Xi > Ti)
=
S(t0)

S(Ti)
, (2.2)

where the true survival function S(·) can be estimated by the Kaplan-Meier estimator (Ka-

plan and Meier, 1958). Heuristically, from the uniform consistency of the Kaplan-Meier

estimator (Gill, 1983; Wang, 1987), the estimate q̂i(t0) would be also consistent for a large

sample. Therefore, conditional on a fixed time point t0, the time-to-event outcome can be

transformed into the fractional outcome consisting of any numbers between 0 and 1. Under

model (2.1), if t0 is the median failure time under the null hypothesis of equal medians be-

tween two groups, testing for the regression coefficient for a group effect would be equivalent

to testing for the equal medians adjusted for other covariates.

3 Adjusted Median Test Statistic

In model (2.1), note that the left hand side term is basically the conditional survival proba-

bility beyond t0 given covariates, so that a reasonable choice for G(·) would be a cumulative

distribution function, such as the logistic function, i.e. G(u) = eu/(1 + eu). Under model

(2.1) with the logistic link function, the Bernoulli pseudo-loglikelihood function for a subject

i is given by (TABLE II, Gourieroux et al., 1984)

l(β) =

n∑
i=1

yi log{G(z′iβ)}+ (1− yi) log{1−G(z′iβ)}. (3.1)
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Under some regularity conditions, Gourieroux et al. (1984) showed that the pseudo-maximum

likelihood estimator of β from (3.1) is asymptotically consistent and efficient through the

quasi-likelihood inference only by specifying the mean and variance functions.

To find the asymptotic variance of the Bernoulli pseudo-maximum likelihood estimator,

define g(u) := dG(u)/du, Ĝi := G(z′iβ̂) = ŷi and ĝi := g(z′iβ̂). Note that with G(u) =

eu/(1 + eu), it holds

g(u) =
dG(u)

du
=

eu

(1 + eu)2
= G(u) · (1−G(u)). (3.2)

Therefore, the observed information matrix is

Ĵ := J (β̂) = −∇∇T l(β)|β=β̂ =

N∑
i=1

Ĝi(1− Ĝi)z′izi. (3.3)

A naive standard error of β̂j can be estimated from the square root of the jth diagonal

element of Ĵ−1. However, as Papke and Wooldridge (1996) pointed out, this would not

be a consistent estimator of the true asymptotic standard error because the outcomes are

fractions, not binary. They proposed a robust estimator of the asymptotic variance of β̂

against model misspecification, i.e. the Huber sandwich estimator, as

Ĵ−1B̂Ĵ−1, (3.4)

where

B̂ = [∇T l(β) · ∇l(β)]|β=β̂ =

N∑
i=1

û2i ĝ
2
i z
′
izi

[Ĝi(1− Ĝi)]2
=

N∑
i=1

û2i z
′
izi

with

ûi := yi −G(z′iβ̂).

The consistent standard error estimates of β̂j ’s can be obtained as the square roots of the

diagonal elements of equation (3.4). Therefore, the Wald-type median test statistic adjusted

for other covariates would be the estimated regression coefficient associated with the group

indicator as a covariate divided by its corresponding standard error from (3.4).

4 Simulation Studies

In this section, we consider the following model to test for a difference in the medians

between the two groups adjusted for the covariate vector zi = (1, zi1, . . . , zim)′, where zi1 is

a group indicator and the others are confounding factors:

E(Yi|zi) = Pr(Xi > θ̂pooled|zi) =
exp(z′iβ)

1 + exp(z′iβ)
, (4.1)

where β = (β0, β1, . . . , βm)′ is a corresponding vector of the regression coefficients. Here

θ̂pooled is the estimated median under the Kaplan-Meier estimates based on the pooled
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sample (Ti, δi), i.e. under the null hypothesis of β1 = 0, where β1 is the regression coefficient

associated with zi1. Failure to reject the null hypothesis of β1 = 0 would imply that the

population medians being compared are equivalent adjusted for other covariates.

Once the data are observed, the fractional response Yi can be estimated under the null

hypothesis as follows (Brookmeyer and Crowley, 1982):

Pr(Xi > θ̂pooled) =


1, if Ti > θ̂pooled and δi = 1,

1, if Ti ≥ θ̂pooled and δi = 0,

0, if Ti ≤ θ̂pooled and δi = 1,

q̂i(θ̂pooled), if Ti < θ̂pooled and δi = 0,

where q̂i(·) was defined in (2.2).

4.1 Simulation Studies with a Single Binary Covariate

First we performed simulation studies to evaluate the proposed method for two-sample cases

without covariate adjustment. When two groups are compared, the group indicator can be

included in the regression model as a single binary covariate. With nk being the number of

subjects in group k (k = 1, 2), denote Tkj (j = 1, . . . , nk) for a random variable for failure

times for a subject j in group k. Therefore in the combined sample, we have

T = (T11, T12, . . . , T1,n1
, T21, T21, . . . , T2,n2

)′,

δ = (δ11, δ12, . . . , δ1,n1
, δ21, δ21, . . . , δ2,n2

)′, and

Y = (Y11, Y12, . . . , Y1,n1 , Y21, Y21, . . . , Y2,n2)′.

Let us denote the ith element of the vectors T , δ, and Y as Ti, δi, and Yi, respectively, and

the covariate vector for subject i as zi = (1, zi1)′.

Extensive simulations have been performed to assess type I error probabilities and pow-

ers of the proposed approach at various nominal significance levels (α), sample sizes per

group (nk), and censoring proportions. Two scenarios are used to generate failure times to

investigate type I error probabilities: (1) S1(t) = S2(t) = exp(−t) and (2) S1(t) = exp(−t)
and S2(t) = 1 − Φ(log(1.44t)). In case (1), both samples are taken from the same distri-

bution, so that the medians are equal. In case (2), two samples are taken from different

distributions but with the same medians down to two decimal places. Censoring times are

generated from Uniform(0, ck), where ck determines a different censoring proportion for

group k (k = 1, 2). The censoring parameter ck’s are chosen so that the censoring propor-

tions are similar to those reported in Su and Wei (1993) for comparison. With sample sizes

of 30, 50 and 100 for each group and various censoring proportions, the proportions of cases

that were significantly different in median failure times between two samples are reported

in Table 1 under scenario (1) and Table 2 under scenario (2) at various nominal levels of

5%, 10%, 15% and 20%. One can notice that the proposed method controls the type I error

probabilities reasonably well.
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Table 1: Fractional logistic regression: empirical type I error probabilities for case I with
S1(t) = S2(t) = exp(−t)

Mean Censoring Proportion

nk α .43, .43 .28, .28 .1, .1 .01, .01 .1, .28 .1, .43

30 0.05 0.051 0.06 0.046 0.036 0.044 0.045

0.1 0.116 0.096 0.107 0.089 0.107 0.116

0.15 0.154 0.159 0.161 0.155 0.143 0.151

0.2 0.198 0.208 0.202 0.228 0.221 0.207

50 0.05 0.046 0.046 0.045 0.068 0.051 0.056

0.1 0.105 0.097 0.084 0.089 0.103 0.101

0.15 0.137 0.141 0.137 0.135 0.155 0.159

0.2 0.197 0.220 0.218 0.20 0.193 0.188

100 0.05 0.041 0.052 0.052 0.049 0.056 0.054

0.1 0.109 0.077 0.098 0.086 0.105 0.085

0.15 0.165 0.156 0.164 0.154 0.142 0.140

0.2 0.198 0.206 0.192 0.193 0.203 0.183

Power analysis at a significance level of 0.05 has also been performed for various censor-

ing proportions by increasing the median differences with different sample sizes of 50, 100

and 200. Data were generated similarly as before from two distributions S1(t) = exp(−t)
and S2(t) = exp(−t + t∗), where t∗ is the median difference between the two exponential

distributions. Tables 3 summarizes the proportion of the proposed test statistic rejecting

the null hypothesis of equal medians, which quickly increases with larger median differences

and sample sizes, as expected.

We have also compared the powers of the proposed regression-type median test (Frac-

tional Logistic) with existing two-sample median tests, i.e. Brookmeyer and Crowley’s test

(Brookmeyer and Crowley, 1982) and the Chi-square test (Tang and Jeong, 2012) (see Figure

1). The proposed method seems to perform better than the Chi-square test, and performs

similar to Brookmeyer and Crowley’s approach. In the next subsections, simulation studies

will be performed under the accelerated failure time (AFT) model to evaluate the proposed

procedure to adjust for an additional continuous covariate.
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Table 2: Fractional logistic regression: empirical type I error probabilities for case II with
S1(t) = exp(−t), S2(t) = 1− Φ(log(1.44t))

Mean Censoring Proportion

nk α .43,.43 .28,.28 .1,.1 .01,.01 .1,.28 .1,.43

30 0.05 0.05 0.059 0.046 0.035 0.05 0.055

0.1 0.118 0.092 0.103 0.097 0.112 0.114

0.15 0.153 0.153 0.165 0.158 0.152 0.157

0.2 0.208 0.211 0.207 0.240 0.216 0.227

50 0.05 0.052 0.051 0.042 0.073 0.050 0.054

0.1 0.115 0.102 0.081 0.090 0.105 0.102

0.15 0.136 0.142 0.140 0.140 0.147 0.160

0.2 0.203 0.215 0.213 0.195 0.192 0.193

100 0.05 0.041 0.055 0.055 0.049 0.056 0.047

0.1 0.122 0.085 0.104 0.092 0.110 0.096

0.15 0.160 0.159 0.162 0.148 0.147 0.135

0.2 0.205 0.208 0.197 0.193 0.196 0.190
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Table 3: Empirical powers for S1(t) = 1− exp(−t) and S2(t) = 1− exp(−t+ t∗), where t∗

is the median difference; significance level=0.05

Mean Censoring Proportion

nk t∗ .43,.43 .28,.28 .1,.1 .01,.01 .1,.28 .1,.43

50 0.1 0.134 0.145 0.132 0.127 0.131 0.117

0.2 0.287 0.292 0.283 0.253 0.278 0.270

0.3 0.503 0.474 0.455 0.426 0.450 0.499

0.4 0.697 0.660 0.637 0.617 0.654 0.698

0.5 0.855 0.789 0.800 0.782 0.805 0.825

100 0.1 0.209 0.183 0.167 0.199 0.184 0.189

0.2 0.465 0.443 0.409 0.407 0.423 0.440

0.3 0.776 0.705 0.693 0.659 0.706 0.720

0.4 0.932 0.905 0.885 0.877 0.900 0.923

0.5 0.986 0.986 0.965 0.961 0.968 0.980

200 0.1 0.297 0.279 0.258 0.239 0.282 0.278

0.2 0.741 0.690 0.645 0.621 0.696 0.697

0.3 0.934 0.942 0.915 0.908 0.920 0.937

0.4 0.999 0.994 0.992 0.986 0.992 0.994

0.5 1.0 1.0 0.999 1.0 1.0 1.0
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Figure 1: Power comparison among the proposed method (Fractional Logistic), the Chi-
square test, and Brookmeyer and Crowley’s test.

4.2 Simulation Studies with an Additional Adjusting Covariate

In this section, we simulate survival data from a log-linear model, to demonstrate practical

applicability of the proposed test when covariate adjustment is needed. The log-linear model

can be specified as

logXi = z′iβ + σW, (4.2)

where W is a random variable for an error distribution and zi = (1, zi1, zi2)′, zi1 being

a binary covariate and zi2 being a continuous covariate. It is well known that the model

(4.2) is equivalent to the accelerated failure time (AFT) model S(x|zi) = S0(xe−z
′
iβ), noting

that the sign of the vector of regression coefficients are reversed. In our simulation studies,

we assume that W follows (i) a standard extreme value distribution with the cumulative

distribution function (CDF) of FW (w) = 1 − e−ew and (ii) a standard logistic distribution

with the CDF of FW (w) = ew/(1 + ew)2. It is also well known that under the extreme

value error structure, the true failure time X follows a Weibull distribution, which is closed

under both AFT and proportional hazards models, and the logistic error structure gives the

log-logistic distribution for X, which is closed under the proportional odds model (Bennett,

1983). The simulation scenario was as follows:

1. σ = 0.5.

2. z′iβ = β0 + β1zi1 + β2zi2 where β0 = −0.5, β2 = 1 and β1 = 0 for type I error and

β1 = 1 for power analysis.
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3. zi1 ∼ Bernoulli(1, 0.5) and zi2 ∼ N(1, 1).

4. Censoring times were generated from an exponential distribution with a fixed rate

parameter that produced the corresponding censoring proportions in Table 4.

5. Sample sizes per group; 60, 100 and 200.

6. For each simulation, 1000 simulated datasets were generated to assess type 1 error

probabilities and powers at the nominal significance level 0.05.

Type 1 error probabilities and powers from the proposed model are summarized for

the extreme value error and logistic error models in Table 4. One can notice that type I

error probabilities were controlled quite well under both models, and powers increase as the

sample size increases, but not much affected by heavy censoring.

5 Application to NSABP Data

We applied the proposed method to a dataset from the NSABP B-14 study described in

the Introduction Section. In this study, total 2,892 patients with primary cancer, negative

axillary nodes and estrogen receptor positive tumors were originally randomized to receive

either tamoxifen (a hormonal therapy) or placebo following a surgery. In this example, a

cohort of 2,852 eligible patients with follow-up and known pathological tumor size (1,283

patients from tamoxifen group and 1,299 patients from placebo group) has been analyzed.

The censoring proportion in this dataset was about 66% when the long-term follow-up was

closed. The median follow-up was about 16 years. For our analysis here, we have included

three covariates; treatment indicator (zi1), pathological tumor size (zi2), and age at diagnosis

(zi3), which give the model at a fixed time point t0

Pr(Xi > t0|zi) =
exp(β0 + β1zi1 + β2zi2 + β3zi3)

1 + exp(β0 + β1zi1 + β2zi2 + β3zi3)
. (5.1)

The primary endpoint was overall survival (OS), defined as time to any death.

Since the survival estimates in the pooled data haven’t reached 0.5 yet as shown in Figure

2, we have compared the lower quantile failure times between the two treatment groups, i.e.

0.1-, 0.2-, 0.3-, and 0.4-quantile failure times, rather the median failure time.

Recall that after replacing the fixed time point t0 in model (5.1) with the median failure

time from the pooled data, testing the null hypothesis of β1 = 0 would be equivalent to a

test for the equal median failure times between two treatment groups adjusted for the other

two covariates, i.e. tumor size and age at diagnosis. The test results for different quantile

failure times are given in Table 6.

The results indicate that there is no statistically significant difference up to the .2-

quantile failure time between the two treatment groups after adjusting for tumor size and

age at diagnosis, which changes the direction starting from the .25 quantile. This was also

reflected in the Kaplan-Meier plot without the covariate adjustment in Figure 2. As the
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Table 4: Type 1 error probabilities (β1 = 0) and powers (β1 = 1) of the proposed test under
the extreme value error and logistic error models

Censoring Proportion Type I Error/Power

Sample Size Extreme value Logistic Extreme value Logistic

β1 = 0 n = 60 0.23 0.24 0.058 0.059

0.32 0.36 0.050 0.05

0.47 0.56 0.055 0.063

n = 100 0.23 0.24 0.048 0.041

0.32 0.36 0.048 0.044

0.47 0.56 0.060 0.051

n = 200 0.23 0.24 0.051 0.052

0.32 0.36 0.047 0.044

0.47 0.56 0.051 0.056

β1 = 1 n = 60 0.30 0.33 0.381 0.765

0.41 0.48 0.374 0.716

0.56 0.67 0.301 0.583

n = 100 0.30 0.33 0.595 0.951

0.40 0.47 0.578 0.936

0.55 0.67 0.526 0.798

n = 200 0.30 0.33 0.882 0.999

0.40 0.48 0.853 0.994

0.55 0.67 0.820 0.978

Table 5: Estimates of regression coefficients and associated standard errors and p-values for
various quantiles of the distribution of NSABP B-14 data

β̂0 β̂1 β̂2 β̂3

Quantile Est. P-val S.E. Est. P-val S.E. Est. P-val S.E. Est. P-val S.E.

.10 2.84 < 10−4 .41 .19 .15 .13 -.03 < 10−4 .004 -.002 .78 .007

.20 2.40 < 10−4 .31 .16 .11 .10 -.025 < 10−4 .004 .01 .07 .005

.30 2.44 < 10−4 .28 .25 .0034 .085 -.02 < 10−4 .0034 -.023 < 10−4 .0046

.40 2.28 < 10−4 .23 .20 .005 .07 -.02 < 10−4 .003 -.028 < 10−4 .004
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Figure 2: Kaplan-Meier estimates in NSABP B-14 data.

byproduct of the results presented in Table 5, we can also estimate the survival probability

beyond the .4-quantile failure time in the pooled sample (=18.6 years) for a woman who

developed her breast cancer at the age of 50, was assigned to tamoxifen group, and her

tumor size was 20mm, from the following model:

Pr(Xi > 18.6|zi) =
exp(2.28 + 0.20− 0.02× 20− 0.028× 50)

1 + exp(2.28 + 0.20− 0.02× 20− 0.028× 50)
, (5.2)

which gives 67%. Cox’s proportional hazards model (Cox, 1972) also provided a close

predicted survival probability of 68% at year 18.6. In fact, the predicted probabilities from

the two models were very similar for the 0.1-, 0.2-, and 0.3-quantiles as well; 92%, 83%,

and 76% from the fractional logistic regression model vs. 93%, 85%, and 77% from Cox’s

model, respectively, even though the underlying assumptions are different between these

two models. It is well known that Cox’s model needs to satisfy the proportional hazards

assumption and the logit should be linear in covariates under the logistic regression model.

6 Discussion

In this paper, we have extended the fractional logistic regression to censored survival data.

This work contributes in two folds; (i) it provides a simple and direct model to predict

survival probabilities for right censored data and (ii) a special case allows for constructing a

median test adjusting for confounding factors. A major advantage of the latter would be that

it could be applied easily to any time point including various quantiles as well as the mean
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of the pooled failure time distribution, where the mean can be evaluated by integrating the

Kaplan-Meier estimates of the pooled distribution. Another advantage would be that the

proposed approach does neither require estimation of the probability density function nor a

complicated variance formula to infer the quantiles. The third advantage would be that the

proposed procedure uses the quasi-likelihood-based inference, which does not require any

distributional assumption for the error distribution and can be easily implemented by using

an existing software such as the glm procedure in R. R codes used for the simulation studies

and real data analysis are available from the corresponding author.
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