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summary

In this paper we introduce a new class of asymmetric normal distributions, namely
extended skew curved normal distribution, as a generalization of the skew curved
normal distribution of Arellano-Valle et al. (Commun. Statist. Theor. Meth.,
2004) and study some of its important aspects. A location scale extension of this
family of distribution is also considered and the estimation of the parameters of
the extended class is discussed.
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1 Introduction

The origin of non-symmetric distributions can be traced back to Edgeworth (1886) and Pear-

son (1893). Interest in asymmetric distributions, in particular, skew normal distribution has

been growing tremendously over the past two decades. The first systematic treatment of

skew normal distribution was given by Azzalini (1985, 1986), although this idea is sug-

gested in earlier work. For example see Birnbaum (1950), Nelson (1964), Weinstein (1964),

Roberts (1966), and ÓHagen and Leonard (1976). Azzalini (1985) defined the skew normal

distribution as given below:

A random variable X is said to follow skew normal distribution with asymmetry param-

eter λ ∈ R = (−∞,∞) if its probability density function (p.d.f.) g(x;λ) is of the following

form, in which x ∈ R.

g(x;λ) = 2φ(x)Φ(λx), (1.1)

where φ(·) and Φ(·) are respectively the p.d.f. and cumulative distribution function (c.d.f.)

of a standard normal variate. The skew normal distribution with p.d.f. (1.1) has been

studied extensively in the literature and it has been found application in several areas of
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research. For details, see Genton (2004) or the review paper of Azzalini (2005), and the

references there in. Arellano-Valle et al. (2004) introduced a generalized form of skew

normal distribution namely skew curved normal distribution, through the following p.d.f.,

in which x ∈ R, λ ∈ R.

g1(x;λ) = 2φ(x)Φ
( λx√

1 + λ2x2

)
(1.2)

A distribution with p.d.f. (1.1) we denoted as SND(λ) and a distribution with p.d.f. (1.2) we

denoted as SCND(λ). Buccianti(2005) reported that both the normal and the SND(λ) are

not capable for describing the situation of plurimodality. He investigated the shape of the

frequency distribution of the logratio ln(cl-=Na+) whose components are related to water

composition for 26 wells. Samples have been collected around the active center of Vulcano

Island from 1977. Data of the log ratio have been tentatively modeled by evaluating the

performance of the skew normal model for each well. Value of the shape parameter say λ

for wells of Vulcano Island appear to covers a wide range corresponding to a 1) more or

less good symmetry, 2) presence of a moderate skewness, 3) presence of plurimodality. For

the first and second situation he noted that normal or skew normal model is better and

for the third case where these models are not adequate. To accommodate such plurimodal

situations, Kumar and Anusree (2011) considered a generalized version of the SND(λ),

which they defined as follows:

A random variable Y is said to have a generalized skew normal distribution GMNSND(λ, α)

if its p.d.f. is of the following form, in which y ∈ R, λ ∈ R and α ≥ −1.

g2(y;λ, α) =
2

(α+ 2)
φ(y)

[
1 + αΦ(λy)

]
(1.3)

A limitation of the GMNSND(λ, α) model is that for moderate values of λ nearly all the

mass accumulates either on the positive side or on the negative side, as determined by the

sign of λ . In such cases, (1.3) closely resembles the half-normal density, with a nearly linear

shape in the side with smaller mass. To partially mitigate such a limitation, through this

paper we introduce a new family of asymmetric normal distribution that exhibits a better

behavior, particularly at the side with smaller mass. This class of distribution is referred

as “the extended skew curved normal distribution (ESCND)”, as a generalized mixture of

the standard normal distribution and the skew curved normal distribution of Arellano-Valle

et al. (2004). This interesting property is the basic motivation for considering ESCND.

The rest of the paper is organized as follows. In section 2 we present the definition of the

ESCND and discuss some of its properties. In section 3, we derive an explicit expression

for moments of the ESCND and in section 4 certain reliability aspects concerning this

family is obtained. In section 5 a location scale extension of the ESCND is considered

and in section 6, the maximum likelihood estimation of the parameters of the ESCND is

discussed. In section 7, a numerical example is given for illustrating the practical usefulness

of this new class of distributions and finally, section 8 is the concluding section .
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2 Extended Skew Curved Normal Distribution

First we define the ESCND as in the following.

Definition 2.1. A random variable Z is said to have an extended skew curved normal dis-

tribution if its p.d.f. takes the following form, in which z ∈ R, λ ∈ R and α ≥ −1.

f(z;λ, α) =
2

(α+ 2)
φ (z)

[
1 + αΦ

(
λz√

1 + λ2z2

)]
(2.1)

A distribution with p.d.f. (2.1) hereafter we written as ESCND(λ, α). There are several

phenomenons which cannot be described by either the normal or the skew normal distribu-

tions. In this respect, more flexible probability models near to normal but suitable for both

the asymmetric and plurimodal situations are essential. So through this article our main

goal is to develop and study certain families of skew normal distributions that is flexible

enough to support plurimodal shapes. For particular values of α and λ, the ESCND(λ, α)

reduces to the following special cases.

1. when α = 0 and or when λ = 0, the ESCND(λ, α) reduces to the standard normal

distribution,

2. when α = −1, the ESCND(λ, α) reduces to the SCND(−λ)

3. when α tend to ∞, the ESCND(λ, α) reduces to SCND(λ)

The p.d.f. of the ESCND(λ, α) given in (2.1) is plotted for particular choice of λ and α

and presented in Figure 1.

Figure 1: Probability plots of ESCND(λ, α) for λ = 8.5 and α = 0.85

We have also obtained the probability plots of ESCND(λ, α) with the corresponding

distributions normal, SND, GMNSND for comparison and is as shown in Figure 2.
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Figure 2: Probability plots of N , ESND, SCND, EGMNSND, and ESCND

Now we have the following results.

Result 2.1. If Z follows ESCND(λ, α) then Z1 = −Z follows ESCND(−λ, α).

Proof. The p.d.f. f1(z1;λ, α) of Z1 is given by

f1(z1;λ, α) = f(−z;λ, α)

∣∣∣∣ dzdz1
∣∣∣∣

=
2

(α+ 2)
φ(−z1)

[
1 + αΦ

(
−λz1√
1 + λ2z21

)]
= f(z1;−λ, α),

which implies that Z1 follows the ESCND(−λ, α).

Result 2.2. If Z be a random variable following the ESCND(λ, α). Then |Z| follows stan-

dard half normal distribution.

Proof. Let Z2 = |Z|. Then for z > 0, the p.d.f. f2(z2;λ, α) of Z2 is

f2(z2;λ, α) = f (z;λ, α) + f (−z;λ, α)

=
2

α+ 2
φ (z)

[
1 + αΦ

(
λz√

1 + λ2z2

)]
+

2

α+ 2
φ (z)

[
1 + αΦ

(
−λz√

1 + λ2z2

)]
= 2φ (z) ,

which is the p.d.f. of a half normal distribution as φ(·) is the p.d.f. of a standard normal

variate.

Result 2.3. If Z has the ESCND(λ, α) then Z2 follows chi-square distribution with one

degree of freedom.
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Proof. Let Z3 = Z2. The p.d.f. f3(z3;λ, α) of Z3 is the following, for z3 > 0.

f3(z3;λ, α) = φ
(√
z3, λ, α

) ∣∣∣∣ dzdz3
∣∣∣∣+ φ

(
−
√
z3, λ, α

) ∣∣∣∣ dzdz3
∣∣∣∣

=
2φ
(√
z3
)

(α+ 2)(2
√
z3)

[
1 + αΦ

(
λ
√
z3√

1 + λ2z3

)]
+

2φ
(
−√z3

)
(α+ 2)(2

√
z3)

[
1 + αΦ

(
−λ√z3√
1 + λ2z3

)]
= (1/

√
z3)φ (

√
z3)

= (1/
√

2π)z
1
2−1
3 e−

z3
2 ,

which is the p.d.f. of a chi-square variate with one degrees of freedom.

Result 2.4. The characteristic function, ψ(t) of a random variable Z following ESCND(λ, α)

with p.d.f. (2.1) is the following, for any t ∈ R and i =
√
−1.

ψ (t) =
2

α+ 2
e−

t2

2

1 + αE

Φ

 λ (W + it)√
1 + λ2 (W + it)

2

 (2.2)

where W is a standard normal variate.

Proof. Let Z follows ESCND(λ, α) with p.d.f. (2.1). By the definition of characteristic

function, for any t ∈ R and i =
√
−1, we have

ψ (t) = E
(
eitZ

)
=

2

α+ 2

 ∞∫
−∞

eitzφ (z) dz + α

∞∫
−∞

eitz
1√
2π
e−

z2

2 Φ

(
λz√

1 + λ2z2

)
dz


=

2

α+ 2
e−

t2

2

1 + α

∞∫
−∞

φ (z − it) Φ

(
λz√

1 + λ2z2

)
dz


On substituting z − it = w, ψ(t) reduces to

ψ (t) =
2

α+ 2
e−

t2

2

1 + α

∞∫
−∞

φ (w) Φ

 λ (w + it)√
1 + λ2 (w + it)

2

 dw

 (2.3)

which leads to (2.2).

Result 2.5. The c.d.f. of a random variable Z following ESCND(λ, α) is

F (z;λ, α) = Φ (z)− 2α

α+ 2
ξ
(
z;λt/

√
1 + λ2t2

)
, (2.4)

where for any a, b ∈ R,

ξ (a, b) =

∞∫
a

φ(t)

b∫
0

φ(u) du dt. (2.5)
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3 Moments

By Result 2.3, the even moments of the ESCND(λ, α) and those of the standard normal

distribution are identical. So, for computing odd moments, we develop the following result.

Result 3.1. If Z follows ESCND(λ, α), then for k = 0, 1, 2, . . .

E
(
Z2k+1

)
=

[
2k+1Γ(k + 1) + α

√
2πΛk(λ)

]
(α+ 2)

√
2π

(3.1)

in which for λ ∈ R,

Λk (λ) =

∞∫
0

uk√
2π
e−

u2

2 Φ

(
λ
√
u√

1 + λ2u

)
du.

Proof. By definition,

E
(
Z2k+1

)
=

∞∫
−∞

z2k+1 2

α+ 2
φ(z)

[
1 + αΦ

(
λz√

1 + λ2z2

)]
dz

On substituting z2 = u, we get

E
(
Z2k+1

)
=

∞∫
0

uk+
1
2

2

α+ 2

1√
2π
e−

u2

2

[
1 + αΦ

(
λ
√
u√

1 + λ2u

)]
1

2
√
u
du

=
1

α+ 2

 ∞∫
0

uk
e−

u2

2

√
2π

du+ α

∞∫
0

uk
e−

u2

2

√
2π

Φ

(
λ
√
u√

1 + λ2u

)
du

 ,
which implies (3.1).

Result 3.2. The p.d.f. of the ESCND(λ, α) is log concave for the following cases, in which

κ (λ) =
αλ21φ

′ (d)

[1 + αΦ(d)][1 + λ2z2]3
(3.2)

and

ζ (λ) =
αλ3z

[1 + αΦ(d)][1 + λ2z2]5/2
, (3.3)

with d = λz/
√

1 + λ2z2.

(i) For α > 0, λz > 0 if κ(λ) ≤ 1,

(ii) α < 0, λz < 0 if κ(λ) ≤ 1,

(iii) α > 0, λz < 0 if κ(λ) + 3ζ(λ) ≤ 1 and
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(iv) α ∈ (−1, 0), λz > 0 if κ(λ) + 3ζ(λ) ≤ 1.

Proof. Taking logarithm on both sides of the p.d.f. of the ESCND(λ, α) given in (2.1) and

differentiating twice with respect to z, we get the following, in which

η(λ) =
α2λ2φ(d)2

[1 + αφ(d)]2[1 + λ2z2]3
,

κ(λ) and ζ(λ) are as given in (3.2) and (3.3)

d2

dz2

[
log (f (z;λ, α))

]
= −1− η (λ) + κ (λ)− 3ζ (λ) (3.4)

Note that η(λ) is positive for all α, λz ∈ R and α/{1 + αΦ(d)} is positive for any λz ∈ R,

for α > 0 and negative for all α < 0, λz < 0 or α ∈ (−1, 0), λz > 0. Thus, ζ(λ) given in

(3.3) is positive for α > 0, λz > 0 or α < 0, λz < 0. Hence (3.4) will be negative for α > 0,

λz > 0 or α < 0, λz < 0 provided κ(λ) ≤ 1.

If α > 0 and λz < 0, then ζ(λ) is negative and in this case (3.4) will be negative only

when κ(λ) − 3ζ(λ) ≤ 1. Also, if α ∈ (−1, 0) and λz > 0, then ζ(λ) will be negative and

hence (3.4) will be negative only when κ(λ)− 3ζ(λ) ≤ 1. Hence f(z;λ, α) is log-concave for

those case as mentioned in (i), (ii), (iii) and (iv).

Result 3.3. The p.d.f. of the ESCND(λ, α) is unimodal at least for the following cases:

(i) For α > 0, λz > 0 if κ(λ) ≤ 1,

(ii) α < 0, λz < 0 if κ(λ) ≤ 1,

(iii) α > 0, λz < 0 if κ(λ) + 3ζ(λ) ≤ 1 and

(iv) α ∈ (−1, 0), λz > 0 if κ(λ) + 3ζ(λ) ≤ 1.

Result 3.4. The p.d.f. of the ESCND(λ, α) is plurimodal at least for the following cases:

(i) For α > 0, λz > 0 if κ(λ) > 1 + η(λ) + 3ζ(λ),

(ii) α < 0, λz < 0 if κ(λ) > 1 + η(λ) + 3ζ(λ),

(iii) α > 0, λz < 0 if κ(λ) + 3ζ(λ) > 1 + η(λ) and

(iv) α ∈ (−1, 0), λz > 0 if κ(λ) + 3ζ(λ) > 1 + η(λ).

4 Reliability Aspects

Here we derive explicit expressions for certain reliability measures of the ESCND(λ, α)

such as reliability function, failure rate and mean residual life function.
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Result 4.1. The reliability function R (t;λ, α) of the ESCND(λ, α) is given by

R (t;λ, α) = 1− Φ (t) +
2α

α+ 2
ξ

(
t;

λt√
1 + λ2t2

)
,

where ξ
(
t;λt/

√
1 + λ2t2

)
is as defined in (2.4).

The proof follows from the definition of reliability function and Result 2.5.

Result 4.2. The failure rate r (t;λ, α) of the ESCND(λ, α) is given by

r (t;λ, α) =
2φ (t)

[
1 + αΦ

(
λt√

1+λ2t2

)]
(α+ 2) [1− Φ (t)] + 2αξ

(
t; λt√

1+λ2t2

)
The proof follows from the definition of failure rate and Result 2.5.

Note that when α > 0, the reliability function R(t;λ, α) is a decreasing function of t

where as the failure rate r(t;λ, α) is an increasing function of t.

Result 4.3. The mean residual life function M (t;λ, α) of ESCND(λ, α) is the following.

M (t;λ, α) =
2

(α+ 2)R(t;λ, α)
√

2π

[
e−

t2

2 + αe−
t2

2 Φ

(
λt√

1 + λ2t2

)
+ α
√

2πξ∗ (t;λ)

]
− t

in which

ξ∗ (t;λ) =

∞∫
t

φ(z)

 d

dz


λz√

1+λ2z2∫
0

φ(u)du


dz

Proof. By definition, the mean residual life function MRLF (t) of Z is

MRLF (t) = E(Z − t | Z > t) = E(Z | Z > t)− t,

where

E (Z | Z > t) =
1

(α+ 2)R (t;λ, , α)

∞∫
t

[
2zφ (z) dz + 2αzφ (z) Φ

(
λz√

1 + λ2z2

)]
dz

=
2

(α+ 2)R(t;λ, α)
√

2π

[
e−

t2

2 + αe−
t2

2 Φ

(
λt√

1 + λ2t2

)
+ α
√

2πξ∗(t;λ)

]
,

which implies (4.1).

The functions R(t;λ, α), r(t;λ, α) and M(t;λ, α) are equivalent in the sense that if one

of them is given the other two can be uniquely determined.
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5 Location Scale Extension and Properties

In this section, we present the definition of the location scale extension of the ESCND(λ, α)

and discuss some of its important properties.

Definition 5.1. The location-scale extension of a random variable Z following the ESCND(λ, α)

is defined as the distribution of X = µ+σZ, whose p.d.f. is as given below, in which λ ∈ R,

α ≥ −1.

g(x;µ, σ, λ, α) =
2

(α+ 2)σ
φ

(
x− µ
σ

){
1 + αΦ

[
λ (x− µ)√

σ2 + λ2 (x− µ)
2

]}
, (5.1)

where µ ∈ R and σ > 0 are respectively the location and scale parameters. A distribution

with p.d.f. (5.1) we call the extended generalized skew curved normal distribution and is

denoted as EGSCND(µ, σ;λ, α).

Clearly

1. when α = 0 and/or when λ = 0, the p.d.f. given in (5.1) reduces to that of normal

distribution N(µ, σ2) and

2. when α = −1, the p.d.f. given in (5.1) reduces to that of the location scale extended

form of skew curved normal distribution with parameters µ, σ and −λ.

Now we obtain the following properties of the EGSCND(µ, σ;λ, α).

Result 5.1. If the conditional distribution of U given V = v follows EGSCND(µ, σ; v, α) and

V follows N(0, σ2
1) then U follows N(µ, σ2) and the conditional distribution of T1 = σ−11 V

given U1 = u follows EGSCND(0, σ;σ1(u− µ), α).

Proof. Let q(u, v), q10(u/v) and q2(v) denote respectively the joint p.d.f of U and V , the

conditional p.d.f. of U given V and the marginal p.d.f. of V .

Then the marginal p.d.f. of U is

q1 (u) =

∞∫
−∞

q10 (u/v) q2 (v) dv

=
2

(α+ 2)σσ1
φ

(
u− µ
σ

) ∞∫
−∞

1 + αΦ

 v (u− µ)√
σ2 + v2 (u− µ)

2

φ

(
v

σ1

)
dv (5.2)

On substituting v = σ1t in (5.2) we get

q1(u) =
1

(α+ 2)

1

σ
φ

(
u− µ
σ

)2 + α

∞∫
−∞

2Φ

 σ1 (u− µ) t√
σ2 + σ2

1 (u− µ)
2
t2

φ (t) dt


=

1

σ
φ

(
u− µ
σ

)
, (5.3)
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since the integrant in the second term of the right hand side expression of (5.3) is the p.d.f.

of a location scale extension of the skew curved normal distribution. Thus, (5.3) shows that

U follows N(µ, σ2).

Now for v ∈ R, the conditional p.d.f. q01(v | u) of V given U = u is

q01 (v | u) =
q (u, v)

q1(u)

=
q10(u | v)q2(v)

q1(u)

=
2φ
(
u−µ
σ

)
(α+ 2)σσ1

1 + αΦ

 v (u− µ)√
σ2 + v2 (u− µ)

2

 φ(v/σ1)

(1/σ)φ
(
u−µ
σ

) .
On substituting t = σ−11 v, we get

q01 (tσ1 | u) =
2

(α+ 2)σ

1 + αΦ

 tσ1 (u− µ)√
σ2 + t2σ12 (u− µ)

2

φ (t) ,

which is the p.d.f. of the EGSCND(0, σ;σ1(u− µ), α).

Result 5.2. Assume that: (i) the conditional distribution of U given V1 = v and V2 = v

follows EGSCND (µ, σ; v, α), (ii) the conditional distribution of V1 given V2 = v follows

N(0, σ2
1), (iii) V1 and V2 are independent. Then (i) U and V2 are independent, (ii) U

follows N(µ, σ2) and (iii) the conditional distribution of V1 given U = u, T2 = t follows

EGSCND(0, σ;σ1(u− µ), α), where T2 = σ−11 V2.

Proof. In order to prove that U and V2 are independent it is enough to show that the

conditional distribution of U given V2 is independent of v. For u ∈ R, the conditional p.d.f.

of U given V2 = v is

gU |V2
(u) =

∞∫
−∞

gU |V1,V2
(u)gV1

(v)dv

=

∞∫
−∞

2

(α+ 2)σ
φ

(
u− µ
σ

)1 + αΦ

 v (u− µ)√
σ2 + v2 (u− µ)

2

 1

σ1
φ

(
v

σ1

)
dv (5.4)

On substituting v
σ1

= t in (5.4) we get

gU |V2
(u) =

1

(α+ 2)σ
φ

(
u− µ
σ

)2 + α

∞∫
−∞

Φ

 σ1t (u− µ)√
σ2 + σ2

1t
2 (u− µ)

2

φ (t) dt


=

1

σ
φ

(
u− µ
σ

)
,
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which is independent on v. This shows that U and V2 are independent and U follows

N
(
µ, σ2

)
.

Now, for v ∈ R,

gV1|U,V2
(v) =

gU,V1|V2
(u, v)

gU |V2
(u)

=
2φ (v/σ1)

(α+ 2)σ1

1 + αΦ

 v (u− µ)√
σ2 + v2 (u− µ)

2

 . (5.5)

If we take v = σ1t, then (5.5) leads to

gV1|U,T2
(σ1t) =

2φ (t)

(α+ 2)σ1

1 + αΦ

 σ1t (u− µ)√
σ2 + σ2

1t
2 (u− µ)

2



which implies that (V1 | U = u, T2 = t) follows EGSCND(0, σ;σ1(u− µ), α).

Result 5.3. If the conditional distribution of U given V = v follows GMNSND(v, α) and

V follows N(λ, λ2) then U follows ESCND(λ, α).

Proof. The proof follows from the similar arguments we made in the proof of Result 5.1.

6 Maximum Likelihood Estimation

In this section we discuss the maximum likelihood estimation of the parameters of the

EGSCND(µ, σ;λ, α). Let X1, X2, . . . , Xn be a random sample from a population following

EGSCND(µ, σ;λ, α) with p.d.f. (5.1). Then the likelihood function of the random sample

is

L =

(
2√
2π

)n
e
−

n∑
i=1

(xi−µ)
2

2σ2
{

(α+ 2)
n
σn
}−1 n∏

i=1

[1 + αΦ (di)],

where di = λ (xi − µ)/

√
σ2 + λ2 (xi − µ)

2
. Taking logarithm on both sides, we get

logL = n log

(
2√
2π

)
−

n∑
i=1

(xi − µ)
2

2σ2
−n log (α+ 2)−n log σ+

n∑
i=1

log [1 + αΦ (di)]. (6.1)
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On differentiating (6.1) with respect to µ, σ2, λ, and α respectively and equating to zero, we

get the following normal equations:

∂ logL

∂µ
= 0⇒

n∑
i=1

(xi − µ)

σ2
=

n∑
i=1

αφ(di)λσ
2

[1 + αΦ (di)]

[
σ2 + λ2 (xi − µ)

2
]− 3

2

, (6.2)

∂ logL

∂σ2
= 0⇒ n

2σ2
=

n∑
i=1

(xi − µ)
2

2σ4
−

n∑
i=1

αφ(di)λ(xi − µ)

2{1 + αΦ(di)}

[
σ2 + λ2 (xi − µ)

2
]− 3

2

, (6.3)

∂ logL

∂λ
= 0⇒

n∑
i=1

ασ2φ(di)

1 + αΦ(di)

(
(xi − µ)

(σ2 + λ2(xi − µ)2)
3
2

)
= 0 and (6.4)

∂ logL

∂α
= 0⇒ −n

α+ 2
+

n∑
i=1

Φ(di)

1 + αΦ(di)
= 0. (6.5)

If we put

φ (di)
(
σ2 + λ2 (xi − µ)

2
)− 3

2

1 + αΦ (di)
= W (xi) and

Φ (di)

1 + αΦ (di)
= V (xi)

in equations (6.2) to (6.5) to get

n∑
i=1

(xi − µ)

σ2
− λσ2

n∑
i=1

αW (xi) = 0 (6.6)

n∑
i=1

(xi − µ)
2

σ4
− αλ

n∑
i=1

W (xi)(xi − µ) =
n

σ2
(6.7)

n∑
i=1

ασ2 (xi − µ)W (xi) = 0 (6.8)

n

α+ 2
−

n∑
i=1

V (xi) = 0. (6.9)

Solving the equations from (6.6) to (6.9) using mathematical software one can obtain the

maximum likelihood estimates of the parameters of the EGSCND(µ, σ;λ, α), provided the

following inequalities hold good.

n∑
i=1

∂

∂µ
W (xi) <

−1

αλσ4

n∑
i=1

(
2W (xi)(xi − µ) + σ2 ∂

∂σ2
W (xi)(xi − µ)

)
<
−n
αλσ2

n∑
i=1

x ∂
∂λW (xi)

n∑
i=1

∂
∂λW (xi)

< µ and

n∑
i=1

∂

∂α
V (xi) <

−n
(α+ 2)2

.
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7 An Application

For carrying out a numerical illustration, here we consider the data matrices related to

milk production of 28 cows taken from Bhuyan (2005), which we presented as Dataset and

is given in the following Table 1. The variable under study is the daily milk production

in kilogram, the variable recorded for three times in milking cows. For model comparison

Table 1: Data set

34.6 27.7 29.2 25.3 27.6 37.9 32.6 32 30.7 29.6 38.3 32.9 30.8 32.2

32.9 28.1 33.9 28.6 28.1 35.9 34.8 40.3 30.9 34.4 19.8 25.8 37.3 32.4

we have calculated the information criteria - AIC, BIC and the AICc. The numerical

results obtained are presented in Table 1, which includes the estimated values of the pa-

rameters, log-likelihood (l), AIC, BIC and AICc for different models such as N(µ, σ),

ESND(µ, σ, λ), ESCND(µ, σ, λ), EGMNSND(µ, σ, λ, α) and EGSCND(µ, σ, λ). From

Table 2: Estimated values of the parameters, l, AIC, BIC and AICc for the dis-
tributions N(µ, σ), ESND(µ, σ, λ), ESCND(µ, σ, λ1, λ2), EGMNSND(µ, σ, λ, α) and
EGSCND(µ, σ, λ1, λ2, α)

Parameters N ESND ESCND EGMNSND EGSCND

criteria (µ, σ) (µ, σ, λ) (µ, σ, λ) (µ, σ, λ, α) (µ, σ, λ, α)

µ 31.59286 32.95 31.59 31.596 31.95

σ 4.46 4.58 4.38 4.38 4.62

λ – –0.39 0.562 0.07 0.394

α – – – 0.485 2.27

l −81.11 −81.08 −81.10 −78.01 −63.32

AIC 166.23 168.17 170.21 164.02 136.65

BIC 168.9 172.17 175.54 169.36 143.3

AICc 166.7 169.17 171.95 165.77 139.37

Table 2 and Figure 3, it can be seen the EGSCND(µ, σ, λ, α) gives a better fit to the data

considered here compared to the existing models-N(µ, σ), ESND(µ, σ, λ), ESCND(µ, σ, λ)

and EGMNSND(µ, σ, λ, α). From Table 2 it can also be observe that the EGMNSND

have not given better fit to the data set mainly due to the moderate value of λ, while the

EGSCND overcomes this limitation.
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Figure 3: Plots showing the c.d.f. of various models: N , ESND, ESCND, EGMNSND,
EGSCND and empirical c.d.f.

8 Summary and Conclusion

Through this paper we introduce and study a new family of asymmetric normal distributions

namely “the extended skew curved normal distribution (ESCND)”, that exhibits a better

behavior compared to several existing asymmetric normal models, particularly at the tails

with smaller mass. The ESCND is obtained as a generalized mixture of the standard

normal distribution and the skew curved normal distribution of Arellano-Valle et al. (2004).

A location scale extended class of the ESCND is also considered for providing more flexible

classes of asymmetric as well as plurimodel normal models. Moreover, we have illustrated

the relevance of the proposed model in fitting real life data sets compared to existing models

in such categories.
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