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summary

In clinical research, prediction models for binary data are frequently developed
in logistic regression framework to predict the risk of patient’s health status such
as death and illness. However, when the outcome is rare, the maximum likeli-
hood (ML) based standard logistic regression has been reported to show poor
predictive performance by providing overfitted model. To overcome this, penal-
ized maximum likelihood (PML) based logistic models are being widely used in
risk prediction, however, their predictive performance in validation settings is
not well-documented. Several validation approaches, namely split-sample, cross-
validation, bootstrap validation and its two variants 0.632 and 0.632+, have been
widely used to validate the performance of a prediction model, however, it is also
unclear which one of these approaches best for estimating accurate predictive
performance of a rare-outcome model. This paper focused on evaluating pre-
dictive performance of PML based logistic model in such validation settings in
comparison with ML based standard model and identifying the effective valida-
tion method. An extensive simulation study was performed by creating several
scenarios to reflect modeling in dataset with few events. The results revealed that
PML based model showed better performance by reducing overfitting to some ex-
tent and increasing discriminatory ability over ML based model, irrespective of
validation methods under study. Of the validation methods, regular bootstrap
and its variants 0.632 and 0.632+, particularly 0.632+, performed well by provid-
ing nearly accurate and stable estimate of the true predictive performance. We
also illustrated the methods applying them to cardiac data set with few events.
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1 Introduction

Predictive models are increasingly being used in various areas of clinical research such as

cardiology, intensive care medicine, and oncology to predict patient’s future health status

such as death and illness and thereby facilitating patients and providers make shared decision

on future course of treatment (Wyatt, 1995; Moons et al., 2009). Given their importance in

clinical prediction research, it is essential to assess their predictive performance before using

them in practice (Royston et al., 2009; Altman et al., 2009). Two main aspects of model

are usually evaluated: (i) calibration - accuracy of prediction and (ii) discrimination - the

ability to distinguish between low and high risk patients (Altman and Royston, 2000). A

predictive model is generally performed well in terms of both calibration and discrimination

in training data (which is used to develop the model) compared to test data (other than

training set), even if the later set consists of patients from the same population (Royston

et al., 2009; Steyerberg et al., 2001). This behavior is termed as ‘optimism’. The problem of

‘optimism’ associated with predictive model is very common. Hence several approaches have

been proposed for an accurate evaluation of predictive performance in a dataset consisting

of subjects other than that used to develop the model, rather than a naive evaluation in

training sample.

Two common approaches of validation are: internal and external validation, where the

former is based on test data from the same population while the later is based on test

data from different but relevant population. Of the two approaches, external validation is

considered to be more reliable and accurate (Bleeker et al., 2003; Steyerberg et al., 2001).

A model with good predictive performance in external validation setting are claimed to

provide reasonably accurate predictions for any other patients from a relevant but different

population. This concept is generally referred to as ‘validity’ or ‘generalizabilty’, and a

model with such quality is said to be validated (Justice et al., 1999; Bleeker et al., 2003).

However, the test data from external source is hardly available in practice. Alternatively,

some internal validation methods are being widely used to validate the prediction models

(Steyerberg et al., 2001). Of them, the straight forward approach is split-sample where

the whole data are randomly divided into two parts (often 2:1), of which one is used for

training the model and the other for testing it. However, this process is reported to be

less efficient to overcome optimism, because subjects from both datasets are quite similar

as they are from the same underlying population (Toll et al., 2008). Further, there is no

guidelines in split-sample process on what proportion of sample should be in training and

test data. However, there are other sophisticated approaches that use resampling techniques

such as cross-validation and bootstrap validation (Steyerberg et al., 2003, 2001). The cross-

validation is an extension of split-sample. For example, in a k-fold cross-validation the

original sample is partitioned into k subsets of which one is used to test the model and the

remaining k−1 subsets are used to develop the model (Efron, 1983). The bootstrap method

is comparatively efficient, which draws a large number of sample with replacement from the

original sample, and the models are trained using bootstrap sample and validated using

original sample (Efron and Tibshirani, 1993). The average over large number of repetitions
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is an estimate of predictive performance. Two variants of bootstrap resampling such as 0.632

and 0.632+ are also commonly used for internal validation, where 0.632 is an extension of

cross-validation and 0.632+ is a further extension of 0.632 (Efron and Tibshirani, 1997).

More details on these procedures are discussed later.

Steyerberg et al. (2001) showed a comparison among the above internal validation tech-

niques based on the predictive logistic regression model for binary data. However, developing

a predictive model in the standard logistic regression framework and validating its predictive

performance is challenging when the outcome is rare or sample size is small or combination

of both (Steyerberg et al., 2000). This is because the standard logistic regression produces

overfitted model with poor predictive performance (Ambler et al., 2012; Pavlou et al., 2016).

The problem of overfitting is very common when the number of event per variable (EPV) in

the model is very low, for example, less than 10 (Peduzzi et al., 1996). However, the require-

ment of minimum EPV (EPV=10) is often difficult to achieve for small or sparse data or

even for large data with rare events. Pavlou et al. (2016) and Rahman and Sultana (2017)

explored the use of some penalized methods such as ridge (Cessie and van Houwelingen,

1992), lasso (Tibshirani, 1996), Firth-and logF-type penalized methods (Firth, 1993; Green-

land and Mansournia, 2015) in risk prediction for binary data with few events. Of them

Firth’s penalized method is reported to show good performance by removing overfitting to

some extent. Although Rahman and Sultana (2017) explored its use in risk prediction, very

limited studies have been conducted to assess its predictive performance in validation set-

tings allowing for optimism correction. Further, although several validation methods have

been available, it is unclear which one is the most effective for estimating accurate predictive

performance of a rare-outcome model. This paper focused on assessing the predictive per-

formance of the Firth-type penalized logistic regression model for rare events in validation

settings in comparison with the ML based standard logistic regression model. In addition,

this paper compared between the validation approaches to identify the most efficient one

for such model using an extensive simulation study.

The paper is organized as follows. Section 2 describes general methodology including

both standard and penalized logistic regression models, methods for assessing the predictive

ability, and some internal validation approaches. The simulation study is described in

Section 3, and an illustration of the methods using real cardiac data is described in Section

4. Sections 5 ends the paper with a general discussion and conclusion.

2 Methodology

2.1 Maximum Likelihood based Logistic Regression

Let Yi (i = 1, 2, . . . , n) be a binary outcome (0/1) for the ith subject, which follows Bernoulli

distribution with the probability πi = Pr(Yi = 1). The logistic regression model can be

defined as

logit[πi(β | xi)] = ηi = β′xi,
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where β is a vector of regression coefficients of order (k+1), and xi is corresponding predictor

vector (i = 1, . . . , n). The term ηi = β′xi is referred to as ‘risk score’ or ‘prognostic index’.

Predictions can be obtained by putting MLEs β̂ in the following equation

π(β̂ | xi) =
[
1 + exp(−β̂′xi)

]−1
,

where β̂ is the solution of the score equation U(β) = ∂ logL(β)/∂β = 0, with the log-

likelihood function

`(β) =

n∑
i=1

yi log[πi(β)/(1− πi(β))] + ni log[1− πi(β)] + C

for some constant C.

2.2 Penalized Likelihood based Logistic Regression Model

In order to remove first order bias (O(n−1)) due to small-sample in the MLEs of the re-

gression coefficient, Firth (1993) suggested a modified score equation with a penalty term

to the above score equation as:

U(βr)? = U(βr) + (1/2) trace[I(β)−1
{
∂I(β)/∂(βr)

}
] = 0, (r = 1, . . . , k)

where I(β)−1 is inverse of the information matrix I(β) = −∂U(β)/∂β evaluated at β. The

penalty term used above is known as Jeffreys invariant prior and its influence is asymptoti-

cally negligible. The Firth type penalized MLE of β is thus

β̂ = arg max
β

{
`(β) + (1/2) log |I(β)|

}
,

where `(β) is the log-likelihood and |I(β)| denotes the determinant of a square matrix I(β).

This approach is known as bias preventive rather than corrective. Because of the penalty

term in the score equation, the regression coefficient shrinks towards zero in comparison

with MLE, which may help alleviate overfitting.

2.3 Evaluating Predictive Performance

The predictive performance of the model is usually evaluated by quantifying (i) the accuracy

of prediction (calibration): agreement between the observed and predicted risk and (ii) the

ability of the model to distinguish between low-and high-risk patients (discrimination). The

calibration can be quantified by estimating calibration slope (CS) and the discrimination by

estimating the area under receiver operating characteristic curve (AUC): a graph of sensi-

tivity (true positive rate) against one minus specificity (false positive rate). The calibration

slope can be estimated by re-fitting a logistic model with linear predictor or prognostic index

(PI: η̂) derived from the original model as the only covariate (van Houwelingen, 2000):

logit
[
πi | η̂i

]
= β0 + η̂iβPI .



A comparison of internal validation methods . . . 135

The estimated slope β̂PI is the calibration slope for which β̂PI = 1 suggests perfect calibra-

tion, β̂PI < 1 suggests overfitting, and β̂PI > 1 suggests under fitting.

The area under ROC curve (AUC) can be estimated using Mann-Whitney U statistic

(Obuchowski, 1997), which is equal to those obtained by using trapezoidal rule. Under

U-statistic formulation, the AUC can be defined for a pair of subjects (i, j) corresponding

to (event vs non-event) as

AUC = Pr
[{
π(β̂ | xi) | yi = 1

}
>
{
π(β̂ | xi) | yi = 0

}]
= Pr

[
(η̂i | yi = 1) > (η̂j | yj = 0)

]
.

The AUC then can be estimated as

ÂUC =
1

n1n0

n1∑
i=1

n0∑
j=1

I(η̂i, η̂j),

where n1 and n0 are the number of subjects with and without the event, respectively, and

I(η̂i, η̂j) =


1 if η̂i > η̂j

0.5 if η̂i = η̂j

0 if η̂i < η̂j .

The R package “pROC” was used to estimate the AUC and self written R-code was used

for estimating calibration slope.

2.4 Internal Validation Approaches

The predictive performance of the models developed in both the ML and PML based logistic

regression were evaluated in validation settings using five internal validation approaches,

namely split sample, cross-validation, regular bootstrap and its two variants 0.632 and

0.632+, with aim to estimate the test performance of the model more accurately than the

apparent performance using the training sample. In split sample process, we randomly split

the original sample into two equal parts (50% each), of which one was used as training set

and the other as test set. The performance in the test set is reported as the estimated

performance. In the k-fold cross-validation process, we used 10-fold cross validation (k=10)

where we randomly split the original sample into 10 equal parts, of which one part (10%

of the data) was used for testing the model and the rest of the parts (90%) were used for

developing the model. The whole process is repeated 10 times by testing the model with

the consecutive 10% and developing the model using the remaining 90%. The estimated

performance is the average over 10 test performances. More variants of cross-validation can

be created by changing the value of k, however, the k=10, i.e. 10-fold cross-variation is

the most recommended fold for validating prediction model (Efron, 1983; Steyerberg et al.,

2001). Another important variant of the cross-validation is ‘leave-one out’ (the ‘jackknife’)
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where one subject is available for testing the model, which is however difficult to implement

here because some performance measures such as calibration slope cannot be estimated from

the test data with single subject.

The regular bootstrap re-sampling process started with fitting models in bootstrap sam-

ple of the same size as the original sample, selected with replacement from the original sam-

ple, and evaluated the model performance both in the bootstrap sample and the original

sample. The performance in the bootstrap sample is referred to as bootstrap performance

and those in the original sample is referred to as test performance. The difference between

the bootstrap and test performances is referred to as optimism. The stable optimism is the

average over 100 repetitions of the bootstrap re-sampling process. The optimism is then

subtracted from the apparent performance (the performance in the original sample) to ob-

tain the optimism corrected estimated performance. Therefore, the estimated performance

is {apparent performance − average(bootstrap performance − test performance). Further,

two variants of the bootstrap re-sampling method, namely 0.632 and 0.632+, were studied.

In the 0.632 process, on an average 63.2% of all subjects in the original sample are at least

once selected in the bootstrap sample. The model fitted to the bootstrap sample (consists of

63.2% subjects) was evaluated in the remaining 36.8% subjects. This process is referred as

the direct extension of cross-validation where the evaluation of model performance was based

on independent test sample. The process is repeated 100 times. Then the estimated perfor-

mance is the weighted average of the apparent performance (average over 100 estimates in the

training sets) and the test performance (average over 100 estimates in the test sets), i.e. the

estimated performance is {0.368× apparent performance + 0.632× test performance}. The

other bootstrap re-sampling variant, 0.632+ process, is an extension of 0.632 process with

different weighting scheme depending on amount of overfitting (Steyerberg et al., 2001). The

estimated performance is defined as {(1−w)×apparent performance+w×test performance},
where w can be calculated by relative overfitting R as w = 0.632/(1− 0.368×R), where

R =
(test performance− apparent performance)

(‘no information’ performance− apparent performance)
.

The ‘no information’ performance is the average of the performance in the original sample,

where outcome was randomly permuted in each of the 100 replications. For example, the

average no information performance for the AUC is 0.5, which is actually same to the

performance estimated for the null model (model without covariates). For more details on

such approaches, see elsewhere (Steyerberg et al., 2001).

3 Simulation Study

A simulation study was conducted to validate the predictive models for binary data with

rare outcome using some internal validation approaches. Several simulation scenarios were

created by varying the number of events per variable (EPV=3, 5 and 10) in the model to

reflect modeling in a dataset consisting of few events. Under each EPV scenario, we first
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independently generated a mixture of some continuous and binary covariates, each for a

sample of size n = 300. The binary covariates X1 and X2 were independently generated from

Bernoulli distribution with probability 0.6 and 0.2, respectively, reflecting the scenarios with

high or low proportion of subjects being exposed. The continuous covariatesX3, X4, X5 were

independently generated from the standard normal distribution. Finally, the corresponding

binary responses Y were generated from Bernoulli distribution with probability π generated

from the following model:

Pr[Yi = 1 | x] = πi =
[
1 + exp{−(β0 + β1X1i + β2X2i + β3X3i + β4X4i + β5X5i)}

]−1
.

The true value of the regression coefficients β = (β1, . . . , β5)′ were respectively fixed as

(1.005,−0.99, 1.007, 1.01,−1.02)′. The true value of the intercept β0 was varied as -4.6, -3.8,

and -2.8 for generating the binary responses with different prevalence so that we have dataset

with EPV 3, 5, and 10, respectively. Under each EPV scenario, the above data generating

process was repeated to create 100 replications of the data. For each dataset, we evaluated

models using the internal validation approaches discussed earlier by creating training and

test samples. The logistic regression models based on both MLE and PMLE were fitted

in training sample and validated their predictive performance using test sample. In each

simulation, the same procedure was repeated as much as required by 10-fold cross-validation

(10 repetitions) and bootstrap validation (100 repetitions). The R package “logistf” was

used to implement PMLE approach and “glm” function to implement MLE. The R-codes

used in this paper can be obtained on request from the first author. The AUC and calibration

slope were then used to assess the predictive performance (discrimination and calibration)

of the models. For a sensible model the optimal value for calibration slope is, by definition,

1. However, the optimal AUC value was calculated for the true model using a large datasets

(n = 10, 000) with rare outcome (prevalence 5%).

The estimated performance of the respective model for all validation approaches under

study were then summarized using box plot. When the models were evaluated using calibra-

tion slope, the PMLE based prediction model showed better performance, particularly for

low EPV (EPV=3), by improving overfitting to some extent over the MLE based model with

the estimated calibration slope more closer to the optimal value 1 indicated by the horizontal

dash line (Figure 1). The calibration performance increased with increasing EPV value for

both models. These results hold true for all validation approaches. When discriminatory

ability of the models were assessed using AUC, PMLE also showed little improvements in

discrimination over MLE by providing slightly grater AUC value particularly for low EPV,

which is true for all validation approaches (Figure 1).

Of the validation approaches, the bootstrap (regular) and its variants bootstrap 0.632

and bootstrap 0.632+ provided better performance than those for both the cross-validation

and split sample. The amount of bias in the estimated performance (difference from the hor-

izontal line indicating optimal performance) induced by all bootstrap re-sampling methods

were smaller than those induced by both the split sample and cross-validation approaches.

Of them, bootstrap 0.632+ showed the lowest variation in the estimated performance. Both

split-sample and cross-validation underestimated the true performance of the model.
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Figure 1: The optimism corrected AUC and calibration slope for the models based on MLE
and PMLE under different EPV scenarios and validation approaches under study. The
horizontal dash line indicates optimal value of the performance measure.
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4 Illustration using Stress Echocardiography Data

The methods were illustrated using a stress echocardiography data set with rare cardiac

events. The dataset is freely available in a public domain ‘https://goo.gl/p9VTvL‘, which

is maintained by the Department of Biostatistics, Vanderbilt University, USA. The data

were originally extracted from the study conducted by Krivokapich et al. (1999). The aim

of the study was to quantify the performance of dobutamine stress echocardiography (DSE)

in predicting cardiac events in a total of 558 patients (male 220 and female 338) with known

or suspected coronary artery disease. The responses of interest are whether or not a patient

developed either of the following events such as ‘death due to cardiac arrest’, ‘myocar-

dial infarction (MI)’, ‘revascularization by percutaneous transluminal coronary angioplasty

(PTCA)’ and ‘coronary artery bypass grafting surgery (CABG)’ over a year following the

test. Of a total of 558 patients, 24 patients experienced ‘cardiac death’, 28 MI, 27 PTCA,

33 CABG, and 89 any cardiac event (any event), indicating rare outcome and low EPV.

The main predictor of interest are age, history of hypertension (HsTofHT: yes/no), history

of prior MI (HsTofMI: yes/no), status of DSE test (DSE: positive/negative), wall motion

anomaly on echocardiogram (restWMA: yes/no), ejection fraction on dobutamine (Dobu-

tamine EF), and ECG (ECG: normal/equivocal). For more details on variables and data

description, see elsewhere (Krivokapich et al., 1999; Rahman and Sultana, 2017).

The aim of this illustration is to develop risk prediction models in the logistic regression

framework with both MLE and PMLE to predict the risk of having a cardiac event and then

to evaluate and compare their predictive performance in internal validation settings. Before

performing this, we fitted both MLE and PMLE based logistic models with the predictors of

interest mentioned earlier to the original data to examine whether both approaches provide

similar estimates of the regression coefficients or not. The selection of predictors was based

on the model estimated in the study conducted by Krivokapich et al. (1999) and some

exploratory analyses (results not shown). As there were four different cardiac events (MI,

PTCA, death, CABG), we fitted separate models for each of them and a model for any of

the events denoted by ‘anyevent’. From the results in Table 1, it can be observed that the

PMLE provided smaller estimates with lower standard error than those with MLE. This is

expected as PMLE is a bias preventive approach for small sample case.

Now to develop predictive models with rare cardiac events and assess their predictive

performance, we developed predictive model in both MLE and PMLE based logistic re-

gression framework using training sample and assessed their predictive performance in test

sample, created for each of the validation settings mentioned earlier. The estimates of the

calibration slope and the AUC calculated in test sample of each validation setting were re-

ported as the estimated performance of the models. The results in Table 2 revealed that the

bootstrap and its variants, bootstrap 0.632 and bootstrap 0.632+, provided better predic-

tive performance, particularly by improving overfitting, than the other two in all cases. The

PMLE based model showed better predictive performance (in terms of both calibration and

discrimination) than the MLE based model for the cardiac events with low EPV (<10), ir-

respective of the validation procedures. However, both the MLE and PMLE showed similar
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Table 1: The estimated regression coefficients of the MLE and PMLEs based models. The
values in the parenthesis are the standard errors of the estimates.

Cardiac events

MI Death CABG PTCA Anyevent

Covariates MLE PMLE MLE PMLE MLE PMLE MLE PMLE MLE PMLE

DSE+ 0.540 0.523 0.797 0.771 1.110 1.060 0.567 0.556 0.943 0.922

(0.434) (0.424) (0.487) (0.473) (0.421) (0.410) (0.442) (0.431) (0.275) (0.272)

restWMA -0.823 -0.764 -0.522 -0.502 -1.086 -0.994 -0.419 -0.379 -0.749 -0.734

(0.632) (0.604) (0.583) (0.564) (0.687) (0.647) (0.597) (0.576) (0.354) (0.349)

Dobutamine EF -0.0352 -0.0342 -0.0156 -0.0157 -0.0566 -0.0544 -0.0120 -0.0120 -0.0323 -0.0315

(0.0153) (0.0149) (0.0173) (0.0168) (0.0149) (0.0145) (0.0163) (0.0159) (0.0105) (0.0104)

Age 0.0107 0.00968 0.0308 0.0293 0.00991 0.00890 0.00194 0.00129 0.00551 0.00523

(0.0186) (0.0183) (0.0207) (0.0204) (0.0180) (0.0177) (0.0184) (0.0180) (0.0114) (0.0113)

HsTHT 1.344 1.196 1.531 1.318 0.638 0.571 0.393 0.334 0.796 0.764

(0.632) (0.588) (0.750) (0.676) (0.489) (0.471) (0.490) (0.471) (0.315) (0.309)

HsTMI 0.396 0.388 0.0482 0.0657 -0.544 -0.507 1.214 1.174 0.395 0.391

(0.425) (0.415) (0.471) (0.457) (0.431) (0.420) (0.448) (0.437) (0.273) (0.269)

ECG+ 0.304 0.289 -0.743 -0.702 0.433 0.411 0.796 0.753 0.339 0.333

(0.425) (0.414) (0.461) (0.447) (0.419) (0.408) (0.453) (0.440) (0.265) (0.261)

Intercept -2.877 -2.601 -5.303 -4.873 -0.794 -0.670 -3.715 -3.446 -1.012 -0.973

(1.687) (1.642) (1.978) (1.920) (1.606) (1.571) (1.644) (1.604) (1.033) (1.019)

performance for cardiac event (anyevent) with high EPV (>10).

5 Discussion and Conclusion

Developing and validating a prediction model for rare binary outcome is challenging, because

the standard ML based logistic regression showed poor predictive performance by providing

overfitted model. This paper explored the use of penalized logistic regression in risk pre-

diction for rare outcome and evaluated its predictive performance in validation settings. In

addition, this paper compared some well known internal validation methods, namely split-

sample, 10-fold cross-validation, bootstrap validation and its two variants 0.632 and 0.632+

to identify the most efficient one for validating rare-outcome models. The findings of the

study revealed that penalized logistic model (PMLE) showed some improvements in both

calibration and discrimination when EPV is low, particularly by removing over-fitting to

some extent over MLE based standard logistic model, regardless of validation methods. The

improvement in calibration is higher than those in discrimination. The reason, as explained

by Pavlou et al. (2016) and Rahman and Sultana (2017), is that the PMLE tends to shrink

the predicted probability towards the average compared with the MLE and hence the order-

ing of the predicted probabilities with and without experiencing the event in most patient

pairs tend to remain unchanged after shringkage, which resulted in small improvement in
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Table 2: The estimated performance of the MLE and PMLE based predictive models quan-
tified using AUC and calibration slope in different internal validation settings

AUC Calibration slope

Model EPV Validation procedures MLE PMLE MLE PMLE

MI 3 Split sample 0.6956 0.7341 0.5999 0.6696

Cross-validation 0.6926 0.6939 0.3926 0.4379

Bootstrap (Regular) 0.7519 0.7536 0.7535 0.8203

Bootstrap 0.632 0.7504 0.7523 0.7549 0.7730

Bootstrap 0.632+ 0.7356 0.7385 0.7764 0.7893

Sudden death 3 Split sample 0.6900 0.6926 0.5461 0.6055

Cross-validation 0.6119 0.6146 0.2474 0.2492

Bootstrap (Regular) 0.7001 0.6984 0.6487 0.7611

Bootstrap 0.632 0.6444 0.6947 0.6810 0.6930

Bootstrap 0.632+ 0.6664 0.6626 0.6871 0.7004

CABG 4 Split sample 0.7314 0.7349 0.6446 0.7054

Cross-validation 0.6955 0.6968 0.5845 0.5781

Bootstrap (Regular) 0.8170 0.8174 0.8213 0.8942

Bootstrap 0.632 0.8026 0.8036 0.7960 0.8214

Bootstrap 0.632+ 0.8096 0.8102 0.8367 0.8547

PTCA 3 Split sample 0.7733 0.7793 0.8606 0.8751

Cross-validation 0.6312 0.6301 0.2371 0.3070

Bootstrap (Regular) 0.7238 0.7256 0.7582 0.7933

Bootstrap 0.632 0.7236 0.7248 0.7422 0.7507

Bootstrap 0.632+ 0.7157 0.7171 0.7751 0.7821

Any cardiac event > 10 Split sample 0.7750 0.7754 1.0875 1.0935

Cross-validation 0.7122 0.7126 0.8351 0.7846

Bootstrap (Regular) 0.7670 0.7673 0.9018 0.9156

Bootstrap 0.632 0.7670 0.7673 0.9046 0.9047

Bootstrap 0.632+ 0.7713 0.7715 0.9286 0.9279

AUC values of the PMLE in comparison with the MLE. The findings are similar to those

found in the study conducted by Rahman and Sultana (2017).

When comparing the validation methods, the results of the study revealed that regular

bootstrap method and its two variants 0.632 and 0.632+ showed better performance by

providing smaller amount of bias in the estimate of the predictive performance (calibration

slope and AUC) compared to those associated with the split-sample and cross-validation,

for all EPV scenarios. Of them, bootstrap 0.632+ provided the estimate of the predictive

performance with lower variability. The split-sample method provided large amount of bias

and unstable estimate of the predictive performance for low EPV scenarios. The amount

of bias decreased with increasing EPV. On the other hand, although cross-validation has

an intuitive understanding as a straight forward extension of simple split-sample method,

the 10-fold cross-validation under study provided large amount of bias, even larger than
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those associated with split-sample. However, the variability in the estimate is lower, even

equal to those associated with the bootstrap re-sampling methods. The probable reason

for poor performance of the 10-fold cross-validation is that the test data set with 10% of

samples does not have enough events (as we dealt with rare event) to have accurate estimate

of the performance measures (calibration slope and AUC). Another reason, as discussed in

the literature (Efron and Tibshirani, 1993; Steyerberg et al., 2001), is that this form of

cross-validation are not expected to perform better than bootstrap, since the bootstrap was

proposed as an improvement over the jack-knife (leave-one out cross-validation), which was

not considered here because estimation of the calibration slope and AUC is not possible

for data with single subject. These findings are similar to those in the study conducted by

Steyerberg et al. (2001), who explored the effectiveness of bootstrap validation methods for

the model with frequent events.

The general idea of validating a prediction model is to evaluate its predictive performance

using data from external sources but relevant population (Bleeker et al., 2003; Steyerberg

et al., 2001). However, the availability of data for external validation is often difficult. For

such situation, internal validity is widely considered as an approximation of external validity

(or generalizability). However, the evaluation of the model for rare outcome should not be

based on typical split-sample based internal validation, as it is reported to underestimate

the true predictive performance. Similarly, although the cross-validation has intuitive sense,

it may not be recommended for validating model for rare outcome as it produced bias in

the estimate of the predictive performance. However, the bootstrap re-sampling method

or its variants 0.632 and 0.632+ may be recommended to validate a predictive model with

rare outcome as they are reported to provide reasonably accurate and stable estimate of

the predictive performance. Of them, bootstrap 0.632+ is the most efficient one and hence

are recommended for validating the model with few events. Further, the penalized logistic

model might be appropriate choice over standard logistic model for developing prediction

model for rare events.
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