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summary

Many diseases and clinical outcomes may recur to the same patient. These events
are termed as recurrent events. Several statistical models have been proposed in
the literature to analyze recurrent events. In this study, we identify the clinical
and the genetic risk factors for recurring tumors among prostate cancer patients
from The Cancer Genome Atlas (TCGA). Five statistical approaches for modeling
recurrent time-to-event are implemented to identify and to determine the effects
of the clinical and the genetic risk factors of tumor recurrence. In particular,
we consider Andersen-Gill (A-G), Wei-Lin-Weissfeld (WLW), Prentice-Williams-
Peterson Total Time (PWP-TT), Prentice-Williams-Peterson Gap Time (PWP-
GT) and Frailty models. We present and discuss the risk factors influencing the
recurrence of tumors and their impacts in prostate cancer patients obtained from
five commonly used models in this paper.
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1 Introduction

Many applications involve repeated events where a subject may experience a single event

repeatedly or multiple events over the life time. For example, in cancer studies, it is of

interest to identify risk factors and therapeutic measures to multiple occurrences of a cancer.

The event which occurs more than once to a participant over the follow-up time is often

termed as recurrent event, such as, admissions to the hospitals, repeated heart attacks

for coronary patients, recurrence of tumors in cancer patients. Recurrent events provide

more information about the disease progression than a single event. When the outcome

variable of interest in survival analysis is a recurrent event, single event models such as, Cox

proportional hazards model or parametric accelerated failure time models do not provide
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optimal results. In this paper we study, the prostate cancer survival data obtained from

the cancer genome atlas (TCGA) (The Cancer Genome Atlas: www.gdc.nci.nih.gov). Both

clinical and genetic risk factors (RNASeq expressions of a number of genes associated with

prostate cancer) are available in this data. A little over fifteen percent of the patients with

prostate cancer experienced recurrence of tumors.

The primary objective of this paper is to identify the clinical risk factors of recurrence

of tumors in prostate cancer patients in the presence of genetic information in form of gene

expression measures. We also compare the most commonly used statistical methods for

analyzing recurrent time to event data, including Andersen-Gill (A-G), Wei-Lin-Weissfeld

(WLW) marginal mean/rate model, Prentice-Williams-Peterson Total Time (PWP-TT),

Prentice-Williams-Peterson Gap Time (PWP-GT) and Frailty model. A number of studies

investigated clinical (Burns et al. 2014; Chan, 2013; Kenfield et al. 2011; Ross et al.

2003; Wilding et al. 2014) and genetic factors (Barbieri et al. 2012; Jhun et al. 2017;

Mortensen et al. 2015; Robinson et al. 2015; Shancheng et al. 2012; William et al. 2014)

separately. Our goal is to determine which clinical and genetic factors are jointly responsible

on the recurrence of tumors among prostate cancer patients so that appropriate measure or

treatment can be implemented to avoid tumor recurrences. In addition we compare these

results obtained from the five models for analyzing recurrent time to event in practice.

2 Background

Prostate cancer is one of the most common types of cancer in men. American Cancer Soci-

ety (American Cancer Society: www.cancer.org) has declared prostate cancer as the third

leading cause of cancer death in American men, behind lung cancer and colorectal cancer.

According to National Cancer Institute (NCI) (National Cancer Institute: www.cancer.gov),

there were 161,360 new cases of prostate cancer and an estimated 26,730 people might die

of this disease in 2017. Some risk factors that may have clear effect on prostate cancer

are age, race, geography, family history, and changes in genes whereas some may have

less effect on prostate cancer such as, diet, obesity, smoking status, chemical exposures,

sexually transmitted infections, inflammation of the prostate (American Cancer Society:

www.cancer.org).

Several studies have been implemented to identify clinical factors which might be re-

sponsible for developing prostate cancer. One study identified the existence of racial/ethnic

disparities by comparing the average mean tumor size, the median of survival time, and

the survival function between White and African American men (Chan, 2013). On the

other hand, to examine the role of health care provider and socio-economic status (area-

based deprivation) on survival, age, stage, Gleason grade, marital status and region of

residence are considered as the controlling factors for prostate cancer survival (Burns et al.

2014). Another study revealed that stage, grade of tumor, level of prostate-specific antigen

(PSA) along with race were found as the strongest prognostic factors in period analysis of

prostate cancer survival (Wilding et al. 2005). Smoking status was also taken in to ac-
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count for prostate cancer survival and recurrence along with the presence of cardiovascular

disease (Kenfield et al. 2011) in one study. To identify the correlation of primary tumor

prostate-specific membrane antigen expression with disease recurrence in prostate cancer,

tumor grade, pathological stage, Gleason grade, level of PSA, biochemical recurrence were

considered primarily (Ross et al. 2003).

In addition to clinical factors, genetic factors play significant role in the development

of cancer, including prostate cancer. A large number of studies on identifying responsible

genes on the development of prostate cancer have been carried out. Some studies only focus

on the significant genes and their genomic expression in finding the impact on the survival

of prostate cancer patients. Several genes and chromosomal regions have been found to be

associated with prostate cancer in various linkage analyses, case-control studies, genome-

wide association studies (GWAS), and admixture mapping studies. One such study was

conducted by the health professionals of the National Cancer Institute (NCI) (National

Cancer Institute: www.cancer.gov) in order to better understand and address psychosocial

and behavioral issues in high-risk families. Another study on prostate cancer tissue found

twelve genes as independent predictors of recurrence after prostatectomy (Jhun et al. 2017).

A huge number of genes which are responsible for prostate cancer were found from different

types of studies, such as, therapeutic potential on the recurrence rearrangements in prostate

cancer patients (Mortensen et al. 2015), recurrent copy number alterations in prostate

cancer (William et al. 2014), RNA Sequencing analysis (Shancheng et al. 2012), mutation

(Barbieri and Baca, 2012), Integrative Clinical Genomics (Robinson et al. 2015) and so on.

Different recurrent time to event analysis were proposed over time. The most frequent

methods in analyzing recurrent events were used for different studies are Andersen-Gill

model (A-G)- an extension of Cox proportional hazards model which assumes that the

correlation between event times for a person can be explained by past events (Amorim

and Cai, 2015; Kelly and Lim, 2000; Ullah et al. 2012), Prentice-Williams-Peterson Total

Time (PWP-TT) model- evaluates the effects of a factor for a event since the entry time

in the study (Amorim and Cai, 2015; Kelly and Lim, 2000; Ullah et al. 2012), Prentice-

Williams-Peterson Gap Time (PWP-GT) model- evaluates the effect of a factor for a event

since the time from the previous event (Amorim and Cai, 2015; Kelly and Lim, 2000;

Ullah et al. 2012), Wei-Lin-Weissfeld (WLW) model- deals with cumulative time from

randomization to events (Amorim and Cai, 2015; Kelly and Lim, 2000; Ullah et al. 2012),

Frailty model- induces dependence among the multiple event times (Amorim and Cai, 2015;

Oakes, 1992; Ullah et al. 2012), Multi-State model- provides a means of analyzing data with

multiple event times (Amorim and Cai, 2015), Accelerated Failure Time model- regresses

the logarithm of the survival time over the factors (Wei and Glidden, 1997; Zare et al. 2015),

and so on. Every model for analyzing the effects of recurrent events on the survival differs

in assumptions and interpretation. Also, they have advantages as well as disadvantages.

However, researchers need to be careful in selecting appropriate models based on the research

questions, data structure and information given about subjects, etc.
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3 Methodology

In time to event analysis, we usually refer to the time variable as survival time or time to

event, because it is the time that an individual has ‘survived’ over some follow-up period.

We also typically refer to the event as a failure, because the event of interest usually is

death, disease incidence, or some other negative individual experience. In this study time

to event refers to the ‘time to tumors after initial treatment’. For some patients, tumor

recurred more than once. Thus our analysis calls for methods to analyze recurrent events

where the events or failures are the recurrence of tumors.

Since the main objective of this study is to identify the important clinical and genetic

risk factors that may prevent recurrences, we employ several commonly used methodolo-

gies to analyze recurrent tumor events that occurred to the prostate cancer patients under

considerations and compare the results thereof. These methods are discussed briefly as

follows.

3.1 The Andersen and Gill Model

The Andersen and Gill (A-G) is based on the counting process approach and generalizes the

Cox model (Andersen and Gill, 1982). The A-G model assumes that the recurrent events

are identical and is formulated in terms of increments in the number of events along the

time line. In other words, the A-G model is formulated in terms of relating the intensity

function for the kth recurrent event of the ith subject to the covariates as follows.

λik(t | Zik(t)) = Yik(t)λ0(t) exp(β′Zik(t)), k = 1, 2, . . . ,K.

Here, λik(t) represents the hazard or intensity function for the kth recurrent event of the

ith subject at time t; λ0(t) represents the common baseline intensity function for all events

over time; Zik(t) = (Z1ik(t), Z2ik(t), . . . , Zpik(t)) is the vector of possibly time-dependent

covariates; β is a fixed vector of p coefficients; and Yik(t) is a predictable process taking

values 1, when ith subject is under observation, and 0, otherwise. A-G models considers the

outcome of interest as time since randomization for a treatment (or other exposure) until

an event occurs. Thus the outcome is time since the study entry, also known as total time

scale. A common baseline hazard function and the same regression coefficients for all the

events are considered.

A-G model assumes that the correlation between event times for a person can be ex-

plained by past events, which implies that the time increments between events are condi-

tionally uncorrelated, given the covariates. It is a suitable model when correlations among

events for each individual are induced by measured covariates. Thus, dependence is cap-

tured by appropriate specification of time-dependent covariates, such as number of previous

events or some function thereof. However, if this assumption does not hold, robust sand-

wich covariance matrix for the resulting regression coefficient estimators are calculated that

address the correlations among the recurrent event times.
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3.2 Prentice, Williams, and Peterson Model

Prentice, Williams and Peterson (PWP) (Prentice, Williams and Peterson, 1981) proposed

the first extended Cox models for multiple events. More specifically they proposed regression

models for the intensity or hazard function for kth recurrent event of ith subject on two

different time scales, namely, the total time (PWP-TT) and the gap time (PWP-GT). PWP-

TT and PWP-GT models for the intensity or hazard function for the kth recurrent event

of ith subject can be written as follows.

λik(t | Ni(t),Zik(t)) = Yik(t)λ0k(t) exp(β′kZik(t)), k = 1, 2, . . . ,K.

λik(t | Ni(t),Zik(t)) = Yik(t)λ0k(t− Ti,k−1) exp(β′kZik(t)), k = 1, 2, . . . ,K.

It is to be noted that the intensity functions in both models depend on the event history

process Ni(t) for the ith subject in addition to the covariate process Zik(t). In the first

model (PWP-TT), the time scale is total time t from the beginning of the study and in

the second model (PWP-GT), the time scale is the time t − Ti,k−1, from the immediately

preceding failure. One important distinction between PWP models and A-G model is that

the baseline intensity functions λ0k(t) and the regression coefficients βk for PWP models are

event specific, whereas the baseline intensity function, λ0(t) and the regression coefficients

are the same for A-G model across all recurrent events. Similar to A-G model, Yik(t) is

defined as a predictable process taking values, 1 when ith subject is under observation, and

0, otherwise.

3.3 Wei, Lin, and Weissfeld Marginal Model

Marginal means models are proposed by Wei, Lin, and Weissfeld (WLW) (Wei, Lin and

Weissfeld, 1989) to analyze multivariate failure times in a regression setup. This general

approach can be adopted to analyze recurrent events with assumption that there is no time

dependent covariates or there is no specific dependence structures among the recurrent event

times within a subject. Under the marginal means model, the intensity or hazard function

for the kth recurrent event of ith subject has the following form.

λik(t) = λ0k(t) exp(β′kZik(t)), k = 1, 2, . . . ,K.

Similar to PWP models marginal mean models assumes event specific baseline intensity

function λ0k(t) as well as event specific regression coefficients βk. Among others, one major

issue in applying WLW marginal modeling approach is that it allows a subject to be at risk

for several events simultaneously. It is to be noted that this approach considers all recurrent

events occurred to the same subject as a single counting process and does not consider the

subject’s past event history.

3.4 Frailty Model

Frailty models also known as random effect models are in which the intensity or the hazard

for the event of interest depends partly on an unobservable random variable and is assumed
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to act multiplicatively on the intensity (Liu et al. 2004; Nielsen et al. 1992). Within

subject correlations are modeled explicitly in frailty models. For multiple event scenario,

an unobservable random variable induces dependence among the these event times of the

same subject. Random effects or frailty models can be applied to model the conditional

intensity or hazard function of recurrent events, when there is heterogeneous susceptibility

to the risk of such events (Amorim and Cai, 2015). Under frailty or random effects model,

the intensity or hazard function for the kth recurrent event of ith subject has the following

form.

λik(t |Wi) = Wiλ0(t) exp(β′Zik(t)), k = 1, 2, . . . ,K.

Here, the frailty term Wi, i = 1, . . . , n, are assumed to be independent and identically

distributed with a common parametric density. Known as shared or Gamma frailty model

(Clayton and Cuzick, 1985), where Wi has a Gamma distribution with mean 1 and some

variance θ.

4 Data and Variables

Prostate cancer survival data is obtained from the cancer genome atlas (TCGA) (The Can-

cer Genome Atlas: gdc.nci.nih.gov), a collaboration between the National Cancer Institute

(NCI) and National Human Genome Research Institute (NHGRI). It has comprehensive and

multi-dimensional maps of the key genomic changes in 33 types of cancer. TCGA created a

genomic data analysis pipeline that can effectively collect, select, and analyze human tissues

for genomic alterations on a very large scale. This database consists of information sepa-

rately on clinical characteristics, genome, DNA sequencing, mutation, methylation, miRSeq

and mRNASeq. In this study, both clinical and RNAseq gene expressions data set are

accumulated to identify the clinical and genetic risk factors for prostate cancer patients.

The prostate cancer data has follow-up periods of four years (2011 to 2015) with cancer

initialization year of 2000.

4.1 Response Variable

Recurrence Time to Tumors

We consider recurrent time to tumors after initial treatment as the response or outcome

variable. Time to tumors indicates the number of days an individual has developed tumors.

Three hundred and ninety seven patients are included in the model while considering recur-

rent events after omitting missing observations. We considered the recurrence of tumor in

different follow-up times. A total of 61 patients are detected to have recurred tumors after

initial treatment. Since the data set had follow-up up to second round, in addition to single

event, we counted new tumor at 2nd follow-up as additional recurrence. Figure 1 shows the

overall tumor free survival for recurrent events.
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Figure 1: Tumor Free Survival Function for Recurrent Events

4.2 Risk Factors

Clinical Data and Variables

TCGA stores clinical as well as demographic information about the patients along with

other genomic information. In prostate cancer data, 337 clinical information on 498 prostate

cancer patients are observed. This data consists of information about patients’ demography

(i.e., age, race, ethnicity, laterality, death reason, etc.), histology, diagnostics, drug, therapy,

radiation, tumor as well as follow-up on several health conditions. To determine the factors

associated for developing tumors after initial treatment, we finally consider four clinical

variables (i.e., age, clinical stage, pathological stage, treatment). These clinical variables

are comparable with the risk factors of prostate cancer literature (Burns et al. 2014; Chan,

2013; Kenfield et al. 2011; Ross et al. 2003; Wilding et al. 2014).

Age is considered as one of the responsible factors for tumor growth in cancer patients.

Patients diagnosed with prostate cancer in TCGA database has a mean age of 61 years

with minimum 41 and maximum 78 years of age. Race is another important factor (Chan,

2013). However, patients’ race is not considered in this study. Among different races, the

likelihood of developing prostate cancer varies. Information about 147 white, 7 African

American, 2 Asian men are enlisted in the clinical data set with missing racial information

of 342 patients. High number of missing values and the contradiction of previous study

findings that prostate cancer is more likely to occur in African American men lead us to

drop race from further considerations.

In choosing treatment options as well as predicting a man’s outlook for survival, clinical
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and pathological stages are very important. Stage variable helps to identify how far a cancer

has spread. Clinical stage is an important predictor to determine the extent of the disease,

based on the results of physical exam, lab tests, prostate biopsy and imaging tests, if any.

On the other hand, pathological stage is measured based on the results above, plus the

results of surgery. This means that if a patient has surgery, the stage of his cancer might

actually change afterward. We use the American Joint Committee on Cancer (AJCC)

(American Joint Committee on Cancer: www.cancerstaging.org) Tumor-Nodes-Metastasis

(TNM) system to create the clinical as well as pathological stages grouping. According

to AJCC, both clinical and pathological stages have five categories (I, IIA, IIB, III, IV).

For the simplicity as well as to avoid misleading results due to the missing information,

we divide the distribution of tumor type in low-stage (I/IIA/IIB) and high-stage (III/IV).

Distribution of patients in different stages are shown in figure 2.

Another clinical factor- ‘treatment’ (whether the patient received any of the treatments -

molecular therapy, neoadjuvant therapy, chemotherapy and radiation therapy) is considered

based on the treatment the patients received after diagnosis. Among a total of 498 patients

only 97 (19%) received treatment (either received molecular, neoadjuvant, chemotherapy or

radiation therapy).
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Figure 2: Distribution of Clinical and Pathological Stages
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RNA Sequencing Data and Gene Expressions

Deoxyribonuclic acid (DNA) and Ribonuclic acid (RNA) play a fundamental role in car-

rying genetic information in all living organisms on the earth. RNA directly codes for

amino acids and acts as a messenger between DNA and ribosomes to make proteins while

DNA stores genetic information. The RNA Sequencing (RNAseq), also termed as whole

transcriptome shotgun sequencing is a recent advancement in biological research. The high-

throughput sequencing technology sequence complementary deoxyribonucleic acid (cDNA)

to extract information on RNA content from the sample and generates millions of short read

sequences (deoxyribonucleic acid (DNA) sequences). These short reads are then mapped

or aligned to a reference genome. Thus, the number of mapped reads to a gene is used as

a measure of tag abundance, or equivalently known as gene expression. Gene expression

is quantified by summing the number of sequencing reads that map to exons within each

gene. RNAseq methodology was developed in order to comprehensively measured different

types of RNA and to quantify their expression levels during various developmental stages

and across experimental conditions (Paul, 2010).

In TCGA database of RNAseq, gene expressions of 20531 genes from 550 prostate cancer

patients are enlisted. z-scores are calculated for each gene of each patient. For expression

measures from RNA-Seq experiments, the standard rule is to compute the relative expression

of an individual gene and tumor to the gene’s expression distribution in a reference pop-

ulation (The Cancer Genome Atlas: gdc.nci.nih.gov). That reference population is either

all tumors that are diploid (containing two complete sets of chromosomes, one from each

parent) for the gene in question or when available, normal adjacent tissue. The returned

value indicates the number of standard deviations away from the mean of expression in the

reference population (z-score). This measure is useful to determine whether a gene is up- or

down-regulated relative to the normal samples or all other tumor samples. In this study, we

considered those genes with z > ±1.96 (roughly p = 0.05 or 2 SD away) to be differentially

expressed. To obtain z-scores for the RNA Seq data we use the following formula:

z =
Expression for gene X in tumor Y −Mean expression for gene X in normal

Standard deviation of expression for gene X in normal
.

We used the z-score values to define which samples are altered and which do not change.

The numbers for altered and not altered refer to the number of samples with gene expression

higher/lower than a specific threshold such as z-score of 2.

Significant Gene Selection

We measure z-scores for the expression measures of 20531 genes which are available from

the prostate cancer samples in TCGA. Top ranked genes (i.e., P-value ≤ 0.10) for which

survival are significantly different in altered and non-altered groups are selected using each

of the five methods (A-G, WLW, PWP-TT, PWP-GT and Frailty) and are listed in Table

1. If the absolute value of z-score is greater than 1.96 ≡ 2, i.e., the gene whose z-score lies

apart from the 95% of the distribution is considered as ‘altered gene’ otherwise ‘non-altered’.
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Table 1: Significant Genes from Recurrent Events

A-G Model

CTHRC1a BUB1a AURKAb PAGE4b FAM49Bb CCNA2b

EZH2c CDKN3c MKI67c MAPK3c CTGFc TOP2Ac

NOX4c GRB2c CCL2c ALOX15c TPX2c ELAC2c

BIRC5d CXCR4d SNHG8d IL1Bd CCNB1d

WLW Model

CTHRC1a FAM49Ba AURKAb PAGE4b CCNA2b BUB1b

GRB2b MKI67b CDKN3b EZH2b MAPK3c CTGFc

CCL2c TOP2Ac NOX4c TPX2c ALOX15c CXCR4c

BIRC5c ELAC2c IL1Bd CCNB1d SNHG8d

PWP-TT Model

CTHRC1a BUB1b FAM49Bb PAGE4b AURKAb CCNA2b

EZH2c GRB2c MAPK3c MKI67c CDKN3c TOP2Ac

CTGFc NOX4c CCL2c ALOX15c TPX2c CXCR4c

BIRC5c ELAC2c IL1Bd SNHG8d CCNB1d PCA3d

PWP-GT Model

CTHRC1a BUB1b PAGE4b HOXD13c FASNc TTTY15c

NOX4c SNHG8c CCNA2c AKT1c MKI67c AURKAc

TPX2c CCL2c SDHCd EZH2d FAM49Bd TOP2Ad

ELAC2d ALOX15d ARAFd

Frailty Model

CTHRC1a BUB1b AURKAb PAGE4b CCNA2c EZH2c

FAM49Bc MAPK3c CDKN3c MKI67c TOP2Ac CCL2c

GRB2c NOX4c ALOX15d TPX2d CTGFd BIRC5d

a : P-value ≤ .001, b : .001 < P-value ≤ .01, c : .01 < P-value ≤ .05, d : .05 < P-value ≤ .1

5 Analysis and Findings

5.1 Andersen Gill (A-G) Model

One of the simplest method to implement recurrent event analysis follows the counting

process approach of Andersen-Gill (A-G) (Andersen and Gill, 1982) model and measures

the intensity rate. At first, we fit the A-G model on clinical variables and altered status of

twenty three genes separately. Apart from clinical stage and treatment status, patient’s age

(HR: 1.074, P-value: 0.007) along with patients’ belong to high (stage III/IV) pathological

stage (HR: 1.080, P-value: 0.065) are found significantly associated with the recurrence of

tumors. Four genes (SNHG8, CCL2, CTHRC1 and PAGE4) are found to have significant

effect on the recurrence of tumors while fitting gene expressions separately.

In contrast, while considering both clinical and gene expressions in the same model we

get different results. Outcome of the clinical factors and gene expressions from the combined

model are presented in Table 2. Patient’s age becomes statistically insignificant. However,

hazard rate of 1.041 indicates the expected hazard, i.e., recurrence of tumors is 1.041 times

higher for a patient who is one year older. Patients who belong to high (stage III/IV)

clinical stage are 66.3% less likely to have recurrent tumors than patients who are at low
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Table 2: Effects of Risk Factors: A-G Model

Risk Factors Hazard Ratio (95% CI)

Age 1.041 (0.941, 1.152)

Clinical Stage (High) 0.337 (0.051, 2.242)

Pathological Stage (High) 4.322d (0.839, 22.259)

Treatment (Not Received) 1.884 (0.186, 19.062)

BUB1 (Altered) 15.333c (1.784, 31.736)

PAGE4 (Altered) 3.602d (0.885, 14.662)

FAM49B (Altered) 5.961d (1.146, 30.982)

MKI67 (Altered) 7.912d (0.830, 17.399)

CTGF (Altered) 3.475d (0.790, 15.279)

CCL2 (Altered) 5.796c (1.359, 24.704)

a : P-value ≤ .001, b : .001 < P-value ≤ .01,

c : .01 < P-value ≤ .05, d : .05 < P-value ≤ .1

clinical stage. It is also to be noted that patients who belong to high pathological stage

have higher risk of having recurring tumors than those at low pathological stage. One of

the crucial risk factors of the prostate cancer patients is the treatment. The results from

A-G model show that the patients belonging to non-treatment group (did not receive any

of the molecular, neoadjuvant, chemotherapy or radiation therapy) have higher relative risk

(88.4%) of having recurring tumor than those who received any of the treatments stated

above. In addition, patients with altered genes MKI67, BUB1, CTGF, CCL2, FAM49B and

PAGE4 have higher risk of developing tumors than those do not have these genes altered.

5.2 Wei-Lin-Weissfeld (WLW) Model

The second model we consider is Wei-Lin-Weissfeld (WLW) model (Wei, Lin and Weissfeld,

1989) that is based on the idea of marginal risk sets. Considering either clinical or gene

expressions while fitting WLW model gives us almost identical results as A-G model. The

model (WLW) which considers clinical risk factors only identifies the same covariates as risk

factors, i.e., patients’ age and patients belong to high pathological stage and the mean ratios

are almost the same as we did not include time varying covariates in the model. Though

the mean ratios from WLW model and hazard ratios from A-G model give identical esti-

mates, the model which contains gene expressions identifies more genes (CTHRC1, PAGE4,

MAPK3, CCL2, ALOX15, SNHG8) as significant risk factors for the recurrence of tumors

than the A-G model.
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Table 3: Effects of Risk Factors: WLW Model

Risk Factors Mean Ratio (95% CI)

Age 1.041 (0.948, 1.144)

Clinical Stage (High) 0.337 (0.064, 1.762)

Pathological Stage (High) 4.322d (0.969, 19.263)

Treatment (Not Received) 1.884 (0.234, 15.152)

FAM49B (Altered) 5.961c (1.453, 24.448)

PAGE4 (Altered) 3.602c (1.024, 12.674)

BUB1 (Altered) 15.333b (2.566, 19.597)

MKI67 (Altered) 7.912c (1.024, 26.118)

MAPK3 (Altered) 3.121d (0.869, 11.209)

CTGF (Altered) 3.475d (0.957, 12.613)

CCL2 (Altered) 5.796b (1.608, 20.883)

a : P-value ≤ .001, b : .001 < P-value ≤ .01,

c : .01 < P-value ≤ .05, d : .05 < P-value ≤ .1

Mean Ratios from the WLW model with the combination of both clinical and gene risk

factors are listed in Table 3. We found one noticeable difference between the A-G and the

WLW models. The WLW model delivers more genes expressions as statistically significant in

the recurrence of tumors than A-G model which illustrates that more genes are responsible

in the recurrence of tumors. Furthermore, patients who receive treatment and who belong

to high pathological stage have higher risk of recurring tumors.

5.3 Prentice, Williams, and Peterson Total Time (PWP-TT) Model

In fitting the third model, Prentice-Williams-Peterson total time (PWP-TT) (Prentice,

Williams and Peterson, 1981), we evaluate the effects of a factor for an event since the

entry time in the study. While fitting clinical factors and gene expressions separately, pa-

tients’ age and pathological stage are found to have significant effects on the recurrence of

tumors similar to A-G and WLW models. Five genes- CTHRC1, PAGE4, MAPK3, CCL2

and SNHG8 are found to be significant for developing tumors after initial treatment.
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Table 4: Effects of Risk Factors: PWP-TT

Risk Factors Hazard Ratio (95% CI)

Age 1.041 (0.919, 1.180)

Clinical Stage (High) 0.569 (0.042, 7.574)

Pathological Stage (High) 8.500d (0.770, 13.774)

Treatment (Not Received) 1.809 (0.082, 19.933)

CTHRC1 (Altered) 11.961c (1.069, 33.764)

BUB1 (Altered) 9.648b (3.341, 27.046)

FAM49B (Altered) 6.671d (0.719, 21.812)

CCL2 (Altered) 10.510b (2.002, 41.170)

a : P-value ≤ .001, b : .001 < P-value ≤ .01,

c : .01 < P-value ≤ .05, d : .05 < P-value ≤ .1

Combined model shows (Table 4) that the patients who belong to high pathological stage

have 8.500 times higher risk of having recurring tumor than those at low pathological stage.

Patients at low clinical stage are 43.1% less likely to have recurring tumor than those at

high clinical stage. Patients’ who did not receive any treatment have 1.809 times higher

risk of recurring tumor. In addition, patients with altered genes as follows, BUB1, PAGE4,

FAM49B, MKI67, CTGF, CCL2 have higher risk of having recurring tumors compared to

those having non altered genes.

5.4 Prentice, Williams, and Peterson Gap Time (PWP-GT) Model

Prentice, Williams, and Peterson gap time (PWP-GT) (Prentice, Williams and Peterson,

1981) model evaluates the effect of a factor for a particular event since the time from the

previous event. Models with clinical factors and gene expressions separately, reveals that

patients’ age along with pathological stage (high) are significantly associated with the risk

of recurring tumor. Also, five genes (CTHRC1, PAGE4, TTTY15, CCL2, ALOX15) are

found to be highly significant among twenty one genes for recurring tumor.
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Table 5: Effects of Risk Factors: PWP-GT

Risk Factors Hazard Ratio (95% CI)

Age 1.076 (0.948, 1.221)

Clinical Stage (High) 0.607 (0.130, 2.819)

Pathological Stage (High) 7.887b (1.789, 34.768)

Treatment (Not Received) 1.678 (0.047, 11.128)

CTHRC1 (Altered) 4.524c (1.277, 11.017)

BUB1 (Altered) 8.832d (0.777, 16.359)

PAGE4 (Altered) 4.296d (0.781, 13.613)

CCL2 (Altered) 7.987b (1.946, 32.776)

FAM49B (Altered) 5.682c (1.031, 21.328)

a : P-value ≤ .001, b : .001 < P-value ≤ .01,

c : .01 < P-value ≤ .05, d : .05 < P-value ≤ .1

Additionally, combined model (Table 5) illustrates that the recurrence of tumors in-

creases with patients’ age, and is higher among patients who belong to high-pathological

stage, and did not receive any treatment yet. The risk of recurrence of tumors is also

higher for the patients with the following altered genes, CTHRC1, BUB1, PAGE4, CCL2,

FAM49B.

5.5 Frailty Model

We consider the most commonly used frailty model, the shared frailty (Amorim and Cai,

2015) with random effects. Patients’ age and pathological stage are found to be significant

risk factor for recurring tumors. Only two gene expressions (CTHRC1, CCL2) among

nineteen top-ranked genes are found to be significantly associated with recurring tumor

when we consider frailty models separately for clinical factors and gene expressions.
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Table 6: Effects of Clinical Risk Factors: Frailty

Risk Factors Hazard Ratio (95% CI)

Age 1.035 (0.927, 1.157)

Clinical Stage (High) 0.482 (0.103, 2.255)

Pathological Stage (High) 3.767d (0.967, 14.668)

Treatment (Not Received) 1.529 (0.204, 11.408)

BUB1 (Altered) 9.641c (1.054, 18.124)

FAM49B (Altered) 3.862d (0.946, 15.765)

CCL2 (Altered) 4.230d (0.940, 19.022)

a : P-value ≤ .001, b : .001 < P-value ≤ .01,

c : .01 < P-value ≤ .05, d : .05 < P-value ≤ .1

Table 6 illustrates that the rate of recurrence increases with age, is higher for patients

at high pathological stage and those who did not receive treatment. Patients from high

clinical stage influences the risk of recurrence, however it is not significantly associated with

a decreased risk of recurrence. Also, three gene factors (BUB1, FAM49B, CCL2) show

higher risk of recurring tumors for alteration of these genes.

Table 7: Results of Five Analytical Approaches for Recurrent Events: Clinical Risk Factors

A-G WLW PWP-TT PWP-GT Frailty

Effects HR (95% CI) MR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI)

Age 1.041 1.041 1.041 1.076 1.035

(0.941, 1.152) (0.948, 1.144) (0.919, 1.180) (0.948, 1.221) (0.927, 1.157)

Clinical Stage 0.337 0.337 0.569 0.607 0.482

(High) (0.051, 2.242) (0.064, 1.762) (0.042, 7.574) (0.130, 2.819) (0.103, 2.255)

Pathological Stage 4.322d 4.322d 8.500d 7.887b 3.767d

(High) (0.839, 22.259) (0.969, 19.263) (0.770, 13.774) (1.789, 34.768) (0.967, 14.668)

Treatment 1.884 1.884 1.809 1.678 1.529

(Not Received) (0.186, 19.062) (0.234, 15.152) (0.082, 19.933) (0.047, 11.128) (0.204, 11.408)

a : P-value ≤ .001, b : .001 < P-value ≤ .01, c : .01 < P-value ≤ .05, d : .05 < P-value ≤ .1

Finally Tables 7 and 8 summarize the hazard ratios (HR) or mean ratios (MR) and

corresponding 95% confidence intervals for the combined risk factors for each of the five

models considered in this study. Table 7 presents the clinical risk factors. The risk of
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recurring tumors increases with patients’ age but is not statistically significant. Treatment

is another risk factor which is also not statistically significant. Nevertheless, the group of

patients who did not receive treatment has higher hazard of recurring tumors compared

to the group who received treatment. Patients in high pathological stage are significantly

associated with the recurrence, i.e., patients who are already in the high pathological stage

are prone to the recurrence of tumor and the rate is higher compared to low pathological

stage patients for all five models.

Table 8: Results of Five Analytical Approaches for Recurrent Events: Gene Expressions

A-G WLW PWP-TT PWP-GT Frailty

Effects HR (95% CI) MR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI)

BUB1 15.333c 15.333b 9.648b 8.832d 9.641c

(1.784, 31.736) (2.566, 19.597) (3.341, 27.046) (0.777, 16.359) (1.054, 18.124)

PAGE4 3.602d 3.602c 3.351 4.296d 3.107

(0.885, 14.662) (1.024, 12.674) (0.590, 19.021) (0.781, 13.613) (0.740, 13.046)

FAM49B 5.961d 5.961c 6.671d 5.682c 3.862d

(1.146, 30.982) (1.453, 24.448) (0.719, 21.812) (1.031, 21.328) (0.946, 15.765)

MKI67 7.912d 7.912c 9.335 7.708 4.972

(0.830, 17.399) (1.024, 16.118) (0.607, 15.443) (0.406, 17.435) (0.350, 17.580)

CTGF 3.475d 3.475d 3.650 - 2.062

(0.790, 15.279) (0.957, 12.613) (0.552, 14.120) - (0.292, 14.556)

CCL2 5.796c 5.796b 10.510b 7.987b 4.230d

(1.359, 24.704) (1.608, 20.883) (2.002, 41.170) (1.946, 32.776) (0.940, 19.022)

MAPK3 3.121 3.121d 3.932 - 2.493

(0.671, 11.499) (0.869, 11.209) (0.570, 9.120) - (0.662, 9.393)

CTHRC1 4.003 4.003 9.961c 4.524c 3.043

(0.559, 10.078) (0.716, 9.096) (1.069, 13.076) (1.277, 11.017) (0.650, 14.236)

a : P-value ≤ .001, b : .001 < P-value ≤ .01, c : .01 < P-value ≤ .05, d : .05 < P-value ≤ .1

Table 8 compares the effects of gene expressions controlling for the clinical factors using

five models. In the absence of time dependent covariates (patients’ age was recorded during

the first diagnosis of prostate cancer), A-G and WLW model produce identical point esti-

mates for hazard and mean ratios. However, the confidence intervals are different for these

two models due to their distinct estimation procedure. Estimates from both PWP models

are based on risk sets which only include those with the same number of prior events. How-

ever, for each statistically significant gene expression, frailty model produces comparatively

lower hazard rate than other models. One plausible reason is that frailty models assume that
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patients’ susceptibility to risk of cancer recurrence differs and the induced correlation among

the recurrent events are addressed explicitly; whereas other four models do not address the

heterogeneous susceptibility to the risk of recurrent events. Three genes are found to be

statistically significant for recurring tumors in all five models (BUB1, FAM49B, CCL2). It

is to be noted that all four models except PWP-GT found the hazards for recurrent tumors

associated with altered gene BUB1 as statistically significant. All four models except frailty

model found the hazards for recurrent tumors associated with altered gene CCL2 as sta-

tistically significant. Whereas three models, A-G, WLW and PWP-GT found the hazards

for recurrent tumors associated with altered gene FAM49B as statistically significant. Thus

these genes may be associated with higher risk of recurring tumors among prostate cancer

patients.

6 Conclusion

The primary objective of this study is to identify the risk factors for the recurrent time to

tumor events on prostate cancer patients and compare their effects obtained from different

statistical approaches for analyzing recurrent time to event data. In this study, we consider

five commonly used extended Cox models for recurrent events, namely, A-G, WLW, PWP-

TT, PWP-GT and Frailty model. These five models differ in assumptions as well as the

mechanism of modeling recurrent events. A-G and PWP model assume that any particular

event depends only on prior event. WLW model assumes no specific dependence structures

among the recurrent event times within a subject, and distinguishes the mean or rates of

the counting process. Frailty model assumes dependency among the recurrent event times

within a subject through shared random effects.

Analysis of recurrence of tumors among prostate cancer patients using five statistical

models for recurrent events results in somewhat similar clinical and genetics factors. The

clinical factors which are found to be influential on the survival of the prostate cancer

patients in the literature are also found to be important for recurrence of tumors after the

diagnosis. Elderly men are prone to have recurring tumors and the risk of older age is

found to be high in all five recurrent event models. The hazards for having recurring tumors

among patients in high pathological stage is remarkably greater compared to those in lower

stage, although the hazard ratio is not statistically significant in four of the five models.

Only PWP-GT model produce a relatively higher and statistically significant hazard ratio

for high pathological stage patients. Nonetheless these results illustrate that patients may

have recurring tumors even after surgery. Therapeutic treatment (any of the molecular,

neoadjuvant, chemotherapy or radiation therapy) is an important factor, and the results

from all the five models illustrate that the patients who had not received any treatment are

about twice as likely to have recurrent tumors compared to those received treatment.

When considered separately a number of gene’s expression status (altered versus not-

altered) are found to be associated with the recurrence of tumors from all five models for

recurrent events. However, after controlling for clinical factors less number of genes become
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influential in recurring of tumors among the prostate cancer patients. Furthermore, these

influential genes have higher risk of tumor recurrence if they belong to the altered group

whose standardized expression counts are greater than the threshold value of 2. Three

genes are found to be statistically significant for recurring tumors in all five models (BUB1,

FAM49B, CCL2). All four models except PWP-GT found the hazards for recurrent tumors

associated with altered gene BUB1 as statistically significant. All four models except frailty

model found the hazards for recurrent tumors associated with altered gene CCL2 as statis-

tically significant. Whereas three models, A-G, WLW and PWP-GT found the hazards for

recurrent tumors associated with altered gene FAM49B as statistically significant. Thus it

is reasonable to conclude that these genes may be associated with higher risk of recurring

tumors among prostate cancer patients.

Missingness is a major drawback in biomedical studies. In particular, often times missing

data fail to observe and include all important information about the patients. We completely

ignored the missingness of the covariates and excluded one covariate (e.g., patient’s race)

from the model which was found significant on previous studies due to excessive missing

values. Taking into account the covariates for which information was incomplete might give

us more accurate results.

In this research, we considered five models (A-G, WLW, PWP-TT, PWP-GT and Frailty)

to analyze recurrent tumors among prostate cancer patients as we limited our study con-

sidering time independent variables as well as few recurrence per subject. Inclusion of

time dependent covariates, incomplete covariate information and consideration of other ap-

proaches for recurrent events are left as future research. In addition, similar approaches can

be implemented to other prominent cancer data from TCGA.
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