Journal of Statistical Research ISSN 0256 - 422 X
2017, Vol. 51, No. 2, pp. 165-191

ON SHRINKAGE AND SELECTION: ANOVA MODEL

A. K. MD. EHSANES SALEH"

School of Mathematics and Statistics, Carleton University, Ottawa, Canada
Email: esaleh@math.carleton.ca

M. ARASHI
Department of Statistics, School of Mathematical Sciences

Shahrood University of Technology, Shahrood, Iran
Email: m_arashi_stat@yahoo.com

M. NOROUZIRAD
Department of Statistics, School of Mathematical Sciences

Shahrood University of Technology, Shahrood, Iran
Email: mina.norouzirad@gmail.com

B M GoaALM KIBRIA
Department of Mathematics and Statistics

Florida International University, Miami, FL, USA
Email: kibriag@fiu.edu

SUMMARY

This paper considers the estimation of the parameters of an ANOVA model
when sparsity is suspected. Accordingly, we consider the least square estima-
tor (LSE), restricted LSE, preliminary test and Stein-type estimators, together
with three penalty estimators, namely, the ridge estimator, subset selection rules
(hard threshold estimator) and the LASSO (soft threshold estimator). We com-
pare and contrast the Ls-risk of all the estimators with the lower bound of La-
risk of LASSO in a family of diagonal projection scheme which is also the lower
bound of the exact Lo-risk of LASSO. The result of this comparison is that nei-
ther LASSO nor the LSE, preliminary test, and Stein-type estimators outperform
each other uniformly. However, when the model is sparse, LASSO outperforms
all estimators except “ridge” estimator since both LASSO and ridge are La-risk
equivalent under sparsity. We also find that LASSO and the restricted LSE are
Lo-risk equivalent and both outperform all estimators (except ridge) depending
on the dimension of sparsity. Finally, ridge estimator outperforms all estimators
uniformly. Our finding are based on La-risk of estimators and lower bound of the
risk of LASSO together with tables of efficiency and graphical display of efficiency
and not based on simulation.
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1 Introduction

An important model belonging to the class of general linear hypothesis is the analysis of
variance (ANOVA) model. In this model, we consider the assessment of p treatment effects

by considering samples experiments of sizes nq,ng,...,n, respectively with the responses
{(yﬂ, e Yin) T i = 1,2, ,p} which satisfy the model, y;; = 0; +e;; (j =1,2,...,n,,
1 =1,2,...,p). The main objective of the paper is the selection of the treatments which

would yield best results. Accordingly, we consider the penalty estimators, namely, ridge,
subset selection rule and LASSO together with the classical shrinkage estimators, namely,
the preliminary test estimator and the Stein-type estimators such as James-Stein estimator
(JSE) and positive-rule Stein-type estimator (PRSE) of § = (61,...,60,)T. For LASSO and
the related, see Breiman (1995), Fan and Li (2001), Zou and Hastie (2005), Zou (2006)
among others and for preliminary test and Stein-type estimators, see Saleh (2006).

The paper points to the useful “selection” aspect of LASSO and ridge estimators as
well as limitation found in other papers. Our conclusions are based on the ideal Lo-risk of
LASSO of an oracle which would supply with an optimal coefficients in a diagonal projection
scheme given by Donoho and Johnstone (1994, Pg. 437). The comparison of the estimators
considered here are based on mathematical analysis as well as by tables of Ls-risk efficiencies
and graphs and not by simulation.

In his pioneering paper, Tibshirani (1996) examined the relative performance of the
subset selection, ridge regression and LASSO in three different scenarios, under orthogonal
design matrix in a linear regression model: (a) Small number of large coefficients - subset
selection does the best here, the LASSO not quite as well, ridge regression does quite poorly,
(b) Small to moderate numbers moderate-size coefficients - LASSO does the best followed
by ridge regression and then subset selection, and (c) Large number of small coefficients -
ridge regression does best by a good margin, followed by LASSO and then subset selection.
These results refer to prediction accuracy.

Recently, Hansen (2016) considered the comparison of LASSO, Stein-type estimators
and subset selection based on the upper bounds of Lo-risk under infeasible condition: all
parameters may be zero. His findings may be summarized as follows: (i) The condition above
yielded an infeasible estimate equal to 0-vector with the Lo-risk equal to the divergence
parameter, A2. This led to doubt the “oracle properties” of LASSO. (ii) Neither LASSO
nor Stein-type estimators uniformly dominate one other, (iii) Via simulation studies, he
concludes that LASSO estimation is particularly sensitive to coefficient parametrization
and for a significant portion of the parameter space, LASSO has higher Lo-risk than the
LSE. He did not specify the regions where one estimator or the other has lower La-risk. In
his analysis, he used the normalized Ly-risk bounds (NRB) to arrive at his conclusion with
a total sparse model.

In our study, we discovered the following conclusions:

(i) The ridge estimator outperforms the LSE, preliminary test, and Stein-type estima-
tors (JSE and PRSE) uniformly. The ridge dominates LASSO and restricted LSE
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uniformly for A2 > 0 and at A? = 0, they are Ly-risk equivalent where A? is the
divergence parameter.

(ii) The restricted LSE (RLSE) and LASSO are Ly-risk equivalent and satisfy “oracle
properties”.

(iii) Under the family of “Diagonal Linear Projection”, the “Ideal” Lo- risk of LASSO and
subset rule (hard threshold estimator) are same and do not depend on the threshold
parameter (k) under sparse condition.

(iv) Performance of estimators compared to the LSE depends on the size p1, po, and the
divergence parameter, A?. RLSE, HTE and LASSO perform best compared to LSE on
the interval [0, p2]. On the other hand, LASSO approximately outperforms Stein-type
estimator inside the interval [0, p1]. LASSO is worse off beyond the interval, [0, p1].

The organization of the paper is as follows: Section 2 discusses various estimators and Ly-risk
expressions using ANOVA model. Section 3 discusses the bias and Lo-risks of the estima-
tors, multivariate normal decision theory and oracles for diagonal variant linear projection.
Section 4 deals with the comparisons of the estimators. To illustrate the methodologies of
this paper, a numerical data analysis is given in section 5. Section 6 presents summary of
our results along with superiority tables of efficiency and graphs related to the comparisons.

2 Model, Estimation and Tests
Consider the ANOVA model
Y:B0+€:B191+B202+6, (21)

where Y = (y11,- -, ¥inys- - ¥prr-- > Ypny) T, @ = (01,...,0p,,0,,41,...,0,)T is the un-

known vector can be partitioned as 8 = (67,0])T where 61 = (61,...,0,,)7 and 03 =
(0p,41,---,0p)T. The error vector €is (€11, -, €inys-- -+ €pys-- -, Epn, )T with € ~ N, (0,0°1,).
The notation B stands for a block-diagonal vector of (1,,,...,1,,) which can subdivide
into two matrices By and Bs as (B, Bs) where 1,,, = (1,...,1)7 is an n; tuples of 1s, I,

is the n-dimensional identity matrix, where n = ny + - -+ n, and o2 is the known variance
of the errors.

Our objective is to estimate and select the treatments 6 = (61, ...,6,)T when we suspect
that the subset 82 = (05, 41,...,6,)T may be 0, i.e. ineffective. Thus, we consider the model
(2.1) and discuss the LSE of € in the Subsection 2.1.
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2.1 Estimation of Treatments Effects

First, we consider the unrestricted LSE of 8 = (0], 0])" given by

On = argmine{(Y — 3101 — BQGQ)T(Y — 3101 — 3292)}

—1 -1

[ B{B: BB By |[N; O BlY (2.2)
BlB, BIlB, BlY 0 N BlY

_ NleIY _ éln
N;'BlY 62,

where N = BTB = diag(n1,...,np), N1 = diag(nq,...,n,, ), and No = diag(np, 41, - ., np)-
In case that o2 is unknown, the BLUE of o2 is given by

82 (nfp)il(YfBléln 7B292n)T(Y7B191n 7B292n).

n =

Clearly, 6,, ~ N,(8,02N~") is independent of ms2 /a2 (m = n —p), which follows a central
x2-distribution with m degrees of freedom (d.f.).

When 65 = 0, then the restricted LSE (RLSE) of 8z = (8T, 0T)7 is given by 0z =
(éIn, OT)T7 where 81, = N;'BTY.

2.2 Test of Significance

For the test of H, : @2 = 0 versus H 4 : 05 # 0, we consider the statistic £,, given by

1 - .
L, = —ZﬂgnNngn, if 02 is known (2.3a)
o
1 - .
= 5 9;nN202n, if 02 is unknown (2.3b)
p2sy,

Under a null-hypothesis H,, the null-distribution of £,, is the central y2-distribution with
p2 d.f. when o2 is known and the central F-distribution with (ps,m) d.f. in the case of
o? is unknown, respectively. Under the alternative hypothesis, H.4, the test statistics £,
follows the non-central version of the mentioned densities. In both cases, the non-centrality
parameter is A2 = 6] N262/02. In this paper, we always assume that o2 is known, then
L, follows a chi square distribution with ps d.f.

Further, we note that
éjnwj\/(ej’g2n;1)’ jzl,,p

so that Z; = Wéjn/a ~ N(Aj,1), where Aj = \/n;0; /0. Thus, one may use Z; to test
the null-hypothesis ng) :0; =0 versus ’quj) 10; #0, j=p1+1,...,p.

In this paper, we are interested in studying of three penalty estimators, namely, (i)
the subset rule called “hard threshold estimator” (HTE), (ii) LASSO or the “soft threshold
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estimator” (STE) and (iii) the “ridge regression estimator” (RRE) together with the classical
preliminary test estimator (PTE) and Stein-type estimators such as “James-Stein estimator”
(JSE) and “positive-rule Stein-type estimator” (PRSE).

2.3 Penalty Estimators

In this section, we shall discuss the penalty estimators. Define the HTE as

S HT - - _1 T
0, (k)= (anl(wjn\ > Kon; 2)|j = 1,...,p)

_1 ) T
= (on, P Z310Z5 > Wi =1, 00)
where £ is a positive threshold parameter.

This estimator is discrete in nature and may be extremely variables and unstable due to
the fact that small change in the data can result in a very different models and can reduce

SHT
the prediction accuracy. As such we obtain the continuous version of 6,, (x), the LASSO
is defined by

P
@i()\) = arg mein(Y — BO)"(Y — BO) + 2)\02 NN
j=1
where |0 = (|61],...,]0,])7, yielding the equation
BTBO — BTY + Ao N?sgn(6) = 0

or

- 1 o
07 (\) — 0, + 5AaN*%sgn(afL (\) =0 (2.4)
Now, the jth component of (2.4) is given by
0L, (N) = 0 + Aon; Zsgn (0L, (N) = 0. (2.5)
Then, we consider three cases:

(i) sgn(éjLn()\)) = +1, then, (2.5) reduces to

ojLn(A) o éjn

0< +A=0

M

1
2
O"ﬂj O'le

Hence,

0< éfn(/\) =on; *(Z; = \) =on; *(|Z;] = A) (2.6)

with clearly Z; > 0 and |Z;]| > .
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(i) sgn(fk, (\)) = —1, then we have

ok (A
0> -1 :Zj+)\:*(|2j|*)\) (27)

anj

—

ol=

with clearly Z; < 0 and |Z;| > A, and

(iii) For éJLn()\) =0, we have —Z; 4+ y = 0 for some v € (—1,1). Hence, we obtain Z; = Ay
which implies |Z;| < A.

Combining (2.6)-(2.7) and (iii), we obtain
A~ _1 .
07,(\) = on; sen(Z;)(125] = NF, j=1,....p

where a™ = max(0, a). Hence, the LASSO is given by

N _1 . T
6,0 = (on; *sen(Z)(1Z5] = N*li = 1,....p)

Next, we consider the ridge regression estimator given by

o= 9 ), kert (2.8)

L A
1+k02”

n

to accommodate sparse condition.
~RR ~ ~ -
We may obtain 8,, (k) equal to 61, when 83 = 0 and 0, (k) = ﬁazn by minimizing
the objective function,

(Y — B161,, — B205)T(Y — B161,, — B263) + kO] N0,

with respect to 85. Thus, Eq. (2.8) is “feasible estimator of 8” when 605 consists of small
sized parameters.

2.4 Preliminary Test and Stein-type Estimators

We recall that the unrestricted estimator of 8 = (67,61)T is given by (8],,,65,)T with
marginal distribution 8y, ~ N, (01,02N7") and 0, ~ N, (02,02 N5 1), respectively. The
restricted estimator of (67,077 is (67,,,07)T. Similarly, the preliminary test estimator of @
is given by
N 01,
éznl(ﬁn > Ca)

where I(A) is the indicator function of the set A, £,, is the test statistic given in section 2.2
and ¢, is the a-level critical value.
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Similarly, the James-Stein estimator (JSE) is given by

~JS 0
0n = Oln ) D2 Z 3

é2n(]~ - (p2 - 2)£r:1)
and the positive-rule Stein-type estimator (PRSE) is given by

A5t _ eln
n ~JS
02n I(‘Cn > p2 — 2)

3 Bias and Weighted Ls-risks of Estimators

This section contains the bias and the weighted La-risk expressions of the estimators. We
study the comparative performance of the seven estimators defined above based on the
weighted Ly-risks defined by

R(6;, : W1, W) =E[(67, — 01)TW (0], — 61)] + E[(05, — 02)TW (65, — 02)], (3.1)

where 07 = (07,7,605,7)T is any estimator of 8 = (0],01)T, and W and W are weight

matrices. For convenience, when Wy = I, and W, = I,,,, we get the mean square error
(MSE) and write R(6, : I,,) = E[||6} — 0]]?].
First, we note that for LSE,

Bl(én) =0 and Rl(én : Ip) = 02(]?1 +p2)
. 1 T
and for RLSE, 0 = (0171, OT) , we have

By(6r) = (07, 0]) and Ry(Br;I,) = o2(p +A2).

3.1 Hard Threshold Estimator (Subset Selection Rule)

The bias of this estimator is given by
SHT 1 , T
B0, (1) = (—on; A Hs(w% AN = 1,....p)
where H,(-; A?) is the cumulative distribution function (c.d.f.) of a non-central x*-distribution
with v d.f. and non-centrality parameter A? (j=1,...,p).

The MSE of 9ST(/<;) is given by

R(éfT(“) I,) = ZE[@MI(WJM > man;%) — 1%]2
=0’ i”?l{(l — Hy(r*; A7) + A3 (2H3(r%; A7) — Hs (k% A7))}.(3.2)

Jj=1
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Since [0, 1(|0,] > Kon %) —0;]% < (0, — 0;)% + 07, we obtain

R(énHT(H) 1) <o?tr N1 4070  (free of x).

Following Donoho and Johnstone (1994), one can show that the following holds.

Lemma 3.1. Under the assumed regularity conditions

(i) o?(1+ k) trN~* VO eRP, k>1,
RO, (®):1p) < (i) o2t N"'+070 V6 R,
(iii)  o?pur(k,0)tr N1 +1.2070 0< 6 < k1]

where pur(K,0) = 2[(1 — ®(k)) + Kp(k)], and ¢(-) and O(-) are the probability density
function (p.d.f.) and c.d.f. of standard normal distribution, respectively.

Theorem 1. Under the assumed regularity conditions, the weighted La-risk bounds are given

by

() o*(1+ k) (p1+p2) K> 1
~HT (ii) o%(p1 +p2) + O] N1, + O] N20, VO € RP
(iii)  o®pur(K,0)(p1 + p2)
+1.2{0TN 6, + 0T N,0,} 0<6 <k,

~HT ~ T ~HT

If the solution of 6,, (k) has the configuration (OIR, OT) , then the Lo-risk of 8,, (k)
is given by
(k) : N1, Ny) = o[p1 + A?],

independent of k.

3.2 LASSO Estimator

The bias expression of LASSO estimator is given by

1

BOLO) = (om; FN@D(A) ~ i =1, ~Ap i ..A,,)T

The MSE of the LASSO estimator has the form

L p1
R0, (\) : I,) =0 n;'psr(A\A;) + A2,

Jj=1
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where

psT(N D) = (L4 A){1 = B(A = Aj) + S(—=A — Aj)} + AHR(A - Aj) — B(=A — A))}
—{A=2)pA+4;) + A+ A;)p(A—A;)}

Thus due to Donoho and Johnstone (1994, appendix 2), we have the following result.

Lemma 3.2. Under the assumed regularity conditions

(i) 21+ A)trN~! VOERP, k> 1
R(0,,(A) 1 Ip) < { (i) o2tr N~'+ 076 V6 ecRP
(iii)  o2psr(N\0)tr N™t +1.2070 VO € R?

where psT(X,0) =2 [(1+ A?)(1 — (X)) — kp(N)].

L 5 SL
If the solution of 6,,(\) has the configuration (OLL, OT)7 then the Lo-risk of 8, (\) is
given by

Ra(O-(\) : N1, No) = o2(p1 + A?). (3.3)

Thus, we note that

HT ~L
R2(0n : vaNQ) = R3(0n (H) : N17N2) = R4(0n(>‘) : N17N2) = 02(p1 +A2)

To proof Ls risk of LASSO, we consider the multivariate decision theory. We are given
the LSE of 8 as 8,, = (61, ...,0ps)T according to

_1
Gjn:0j+anj ZZ]' ZjNN(O,l),

2

where o ? is the marginal variance of 6, and noise level, and {6;} =, are the treatment

J ~
effects of interest. We measure the quality of the estimators based on the Lo-risk, R(6,, :
I,) = E[||8,, — 6||?]. Note that, for sparse solution, we use (3.1).

Consider the family of diagonal linear projections,

L R ~
Tpp(8,(N) :8) = (0101,(N), -, 6,0, (V)T (3.4)
with 6 = (81,...,0,)7, §; € (0,1), j = 1,...,p. Such estimators “kill” or “keep” the
coordinates.
Suppose we had available an oracle which would supply for us the coeflicients J; op-
timal for use in the diagonal projection scheme (3.4). These “ideal” coefficients are §; =

1
I <|9j\ >on; 2), ideal diagonal projections consist of estimating only those 6;, larger than

N|=

its noise, Unj_ (j=1,2,...,p). These yield the “ideal” Lo-risk given by (3.5) below.
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_1
Then, the ideal diagonal coordinates in our study are I(|0;] > on; ?). These coordinates

estimate those treatment effects 6; which are larger than the noise level O'Tl;l/ 2, yielding
the “ideal” Lo-risk as
~L - 9 9 _1 o?tr N1 V|94|>0nf%,j:1,...,p,
R, (\) : I,) = Zmin(ﬁj,a n; )= ’ . (3.5)
j=1 070 V00| <on;?, j=1,....p.

Thus, we find that ideal lower bound of the Ly-risk of ész (M) leading to “keep” or “kill”
solution is (87, 0T)". Thus, R(DP; N1, No) = 02(p1 + A%) which is the same as (3.5).

In general, the Lo-risk given by (3.5) cannot be achieved for all by any linear or
nonlinear estimator of treatment effects. However, in the sparse case, if p; treatment effects
|6;] exceed anj_l/ % and p, coefficients are null, then we obtain the ideal Ly-risk given by

R(O-(N\) : 1,) = o tr NT' + 016,.

This ideal Lo-risk happen to be the lower bound of Ly-risk given by (3.2). We shall use
this ideal Lo-risk to compare with the Lo-risk of other estimators. Consequently, the lower
bound of the weighted Lo-risk is given by

R(O-(\) : N1, No) = o2(p1 + A?).

3.3 Ridge Regression Estimator

Recall that the ridge regression estimator is given by

~RR 01,

6, (k)= | . keRT.
TR 020
. ~RR
The bias and MSE of 8,, (k) have forms
~RR 0
B@, k)=
1402
and
RO, (k) I,) = o?tr NT* + —— (0 tr N3* + k200
0, (k):I,)=o0"tr 1+(1+k)2(0r 2 T 5602).
Hence, the weighted Ls-risk is obtained as
~RR 0'2
R(6, (k): N1,N2)=0"pi + m(?z + k2A2).

One may find the optimum value k = k, = po A2, yielding

~RR p2A?
: N1, Ny) =o? .
Ra(B) (k) N1 N = 0? (4 20 )
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4 Comparison of Estimators

In this section, we compare various estimators with respect to the unrestricted estimator
(LSE), in term of relative weighted Loy-risk efficiency (RWRE).

We recall that for sparse solution, the Lo-risk of LASSO is 02(p; + A?) (Eq. 3.3) which
is also the “ideal” Ly-risk in an “ideal” diagonal projection scheme. Therefore, we shall use
o?(p1 + A?) to compare the Lo-risks function of other estimators.

4.1 Comparison of LSE with RLSE

Recall that the restricted LSE (RLSE) is given by ,, = (HIn, 07)T. In this case, the relative
weighted Lo-risk efficiency (RWRE) of RLSE versus LSE is given by

—1
PO p1+ D2 D2 A2
B0, :0,) =212 (1 P2 (1 20
RWRE(D, :0,) = 222 (+)(+ )

which is a decreasing function of A2. So, 0 < RWRE(én : én) < (1 + p—2>.

4.2 Comparison of LSE with PTE

Here, it is easy to see that

~PT
Re(6,," (@) : N1, N2) = pi+p2 (1 = Hp,yo(ca; A%))+A% [2Hp, 12(ca; A%) = Hp, ya(ca; A?)] .

Then, the RWRE expression for PTE versus LSE is given by

RWRE(@:T( Dp1 + P2

@) :0,)

" pr 02 (1= Hpy1a(cai A7) + A2 [2H,, 12(ca; A2) = Hp, 4(ca; A2)]
Then, the PTE outperforms the LSE for

0< A2 < p2HP2+2(ca;A2)

=A% 4.1
S Sy, a(cw A2) — Hy, aen A7)~ ST (1)

Otherwise, LSE outperforms the PTE in the interval (A%, 00). We may mention that
~PT

RWRE(@,, (

decreases crossing the 1-line to a minimum at A% = A%_.(min) with a value Mp7(«) then

increases toward 1-line. This means the gains in efficiency of PTE is the highest in the

interval given by Eq. (4.1) and loss in efficiency can be noticed outside it.
~PT ~
The RWRE (Gn ;Hn) belongs to the interval

@) : 0,) is a decreasing function of A? with a maximum at A? = 0, then

-1
Mpr(a) < RWRE (éfT(a); én) < (1 + ?) (1 + iﬁ [1— Hp,po(ca; 0)]> ,
1 1
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where Mpr(c) depends on the size a and given by

= P2 P21y _ Co; A% (min
Mpr(a) = <1+p1> {”m (1= Hypyo(co; Ay (min))]

+ A%y (min) [

1
P 2H, 12 (Ca; Apy(min)) — Hy, 14 (cas A%T(miﬂm} :

The quantity A%, (min) is the value A? at which the RWRE value is minimum.

4.3 Comparison of LSE with JSE and PRSE

Since JSE and PRSE need p2 > 3 to express their weighted Lo-risk (WLyR) expressions, we
assume always po > 3. First, note that

~JS
R7(60,, : N1,N3) =p1 +p2 — (p2 — 2)°E [x;,2(A%)] .

As a result, we obtain

—9)2 -1
RWRE (0,”:6,) = (1 + p2> (1 + ? - WE [pr(A?)]) .
1 1

-1
It is a decreasing function of A2, At A? = 0, its value is <1 + %) (1 + p%) and when
A? — o0, its value goes to 1. Hence, for A? € RY,

1< (1+§j) (1+£j— (pr:Q)ZE [X;QQ(AQ)])l < <1+§j) <1+;)_1.

Hence, the gains in efficiency is the highest when A? is small and drops towards 1 when A2
is the largest. Also,

RWRE (éiJr; én) = <1 + p2> <1 L P2 ME [x;2(A%)]

D1 P1 D1
- %E [(1 — (p2 = 2X20(2))° T (X2, 42(A%) < (p2 — 2))}
+ %{QE (1= (p2 — 2)x,22(A%) I (2, 42(A2) < (92 — 2))]

-E [(1 — (p2 — 2)X;22+4(A2)>21 (s +4(A%) < (p2 = 2))} }>_1'

So that,

~S+ ~ ~JS ~
RWRE(®.";6,) > RWRE(®.:8,)>1 VA? € R*.

We also provide graphical representation (Figure 1) of RWRE of the estimators.

In the next subsection, we show that RRE uniformly dominates all other estimators

although it does not select variables.
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Pi=5,p=15 p1=5,p=15
p1=5,p2=15

* d

— restricted LSE
— LSE

3.0

2.0

RWRE
2
I
RWRE
4
RWRE
2.0 25

15

Figure 1: RWRE for the restricted, preliminary test, Stein-type and its positive rule esti-
mators.

4.4 Comparison of LSE and RLSE with RRE

First we consider weighted Lo-risk difference of LSE and RRE given by

p2A? A? o2p3
o*(; +p2)*02101*02m = o’ps <1p2+A2 :p2+22 >0, VAZeRT

Hence, RRE outperforms the LSE uniformly. Similarly, for the RLSE and RRE, the weighted
Lo-risk difference is given by

o2 (p1 + Az) _ (02]91 + g2p2A2> o2A%

= > 0.
po + A2 po + A2

Therefore, RRE performs better than RLSE uniformly.
In addition, the RWRE of RRE versus LSE equals

~ ~ 2 -1
RWRE(D,. (ko) : 8,) = 21022 — (1 n p?) (1 ; p(pzA)) |
1

2
p1+ pZiAAg p1 P2 + A2

which is a decreasing function of A2 with maximum (1 + ﬁ—f) at A% = 0 and minimum 1

as A% — oco. So,

—1
1<(1+792> 1+ —2 ) <142 va?ert
D1 p1(1+22) D1
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4.5 Comparison of RRE with PTE, JSE and PRSE
Here, the weighted Lo-risk difference of PTE and RRE is given by

02p2A2
po + A2

o? {pQ —p2l — Hp2+2(ca§ A2) + A2 {2Hp2+2(ca§ Az) - Hp2+4(ca§ A2)}} -

P2
e [m B — {PaHpi(cai %) = A% (2Hy 2003 8%) = Hypalea AQ))}] >0, (42)
Since the first term is a decreasing function of A% with a maximum value py at A? = 0
and tends to 0 as A2 — oo. The second function in the bracket is also decreasing in A?
with maximum peHp,2(ca;0) at A% = 0 which is less than ps and the function tends to
0 as A%? — co. Hence, Eq. (4.2) is non-negative for A? € R*. Thus, the RRE uniformly
performs better than PTE.
Similarly, we show that RRE uniformly performs better than the JSE, i.e.,

~RR ~JS

n ( n )

WLoR(O, (k,)) < WLoR(8,), VA?cRT.

The weighted La-risk difference of JSE and RRE is given by
2

o 2 xm e B (G2 + 78 Do La(A)]} = 0 — B [, (A%)] | 20

VA? € RY,

since the first function decreases with a maximum value ps at A2, also the second function

decreases with a maximum value 1(< p2) and tends to 0 as A2 — co. For that reason, the

two functions are one below other one and the difference is non-negative for A? € Rt.
Next, we show that the weighted Lo-risk (WLsR) of the two estimators may be ordered

as
WLoR(O. (k) < WLoR(O2 1), VA2 € RY.
Note that . s
Rg(en 1N1,N2):R7(0n Z]\Tl,]\rg)—l%*7 (43)
where
B = pa B[ (1= (p2 = 2x,25(87) T (x4 222(A%) < p2 = 2)]
+ AQ{QE [(1 - (p2 - 2)X522+2(A2)) I (X;22+2(A2) <p2— 2)]
_ 2., _
- E[(l = (P2 — 2)Xp22+4(A2)) I(XP22+4(A2) <P2— 2)] } (4.4)
Thus, we find that the WLyR-difference is given by
WLoR(0, ) — WLaR(9), " (k.) = {WLoR(8,) - WLaR(8),  (k,)} —R* (4.5

= { - }is negative — R*(non-negative) < 0.

Hence, the RRE uniformly performs better than the PRSE.
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4.6 Comparison of LASSO with LSE and RLSE

First note that if we have for p; coefficients, |3;| > O"/lj_l/ % and also po coefficients are zero
in a sparse solution, then the “ideal” weighted Lo-risk is given by o2(p; + A2). Thereby, we
compare all estimators relative to this quantity. Hence, weighted Lo-risk difference between
LSE and LASSO is given by

o*(p1 +p2) — 0> (p1 + A%) = 0” [p2 — A?].

Hence, if A% € (0,pz), the LASSO performs better than the LSE, while if A? € (p2,00) the
LSE performs better than the LASSO. Consequently, neither LSE nor the LASSO performs
better than the other, uniformly.

Next, we compare the RLSE and LASSO. In this case, the weighted La-risk difference is
given by

o?(p1 + A?) — o (p1 + A?) = 0.

Hence, LASSO and RLSE are Lo-risk equivalent. And consequently, the LASSO satisfies
the oracle properties.

4.7 Comparison of LASSO with PTE, JSE and PRSE

We first consider the PTE versus LASSO. In this case, the weighted Lo-risk difference is

given by

~PT ~L

Rﬁ(gn (Oé)ZN1,N2)—R4(0TL(/\)ZN1,N2) (46)
= 0% [pa(1 = Hp, y2(ca; A?)) = A* {1 = 2Hp, 12(ca; A?) + Hp,1a(ca; A%)} ] (4.7)
> 02172(1 - Hp2+2(ca; O)) > 07 if AQ =0.

Hence, the LASSO outperform the PTE when A%? = 0. But, when A2 # 0, the LASSO

outperforms the PTE for

0<AZ< p2 [1 = Hp,42(ca; A?)] .
1-— 2Hp2+2(ca; AQ) + HP2+4(CO£; A2)

Otherwise, PTE outperforms the LASSO. Hence, neither LASSO nor PTE outmatches the
other uniformly.
Next, we consider JSE and PRSE versus the LASSO. In these two cases, we have weighted
Lo-risk differences given by
. JS L
R7(0n : Nl, Ng) — R4(0n (/\), Nl, NQ)

_ g [pl Fpr— (p2— 2B [20(A%)] — (1 + AZ)} (48)

=22~ (2 2B [, (8] - 22)
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and from (4.3),

S+ L ~JS AL .
Rg(en ZNl,NQ) 7R4(0n()\) : Nl,NQ) :R(Hn ZNl,NQ) 7R(0n(>‘) : Nl,NQ)fR 5

where R* is given by (4.4). Therefore, the LASSO outperforms the JSE as well as the PRSE

in the interval [0,p2 — (p2 — 2)°F [X;f (A?%)]]. Thus, neither JSE nor the PRSE outperform
the LASSO uniformly.

4.8 Comparison of LASSO with RRE

Here, the weighted Lo-risk difference is given by

oL ~RR A2
Ra(6,(\); N1, N2) =Rs(6,, (ko); N1, N2) = o {(pl +A?%) - (pl + pzm—i- A2>}

o2 A2
- 72 >y,
po+ A2

Hence the RRE outperforms the LASSO uniformly.
In the Figure 2, the comparisons of LASSO with other estimators are showed.

pP1=5.p2=15

© - —— LASSO

Pi=5,p2=15 P1=5,pz=15

RWRE
RWRE

\\\\\
.
___________

Figure 2: RWRE for the LASSO, ridge, restricted, preliminary test, Stein-type and its
positive rule estimators.
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5 Application

To illustrate the methodologies in Sections 4 and 5, we will consider the following numerical
example in this section. The data were generated from N(6;,1.25) distribution, where
6; = (3,1.5,2.5,0,0,4,0,0,4.5,0) and ¢ = 1.25. The respective sample sizes are n; =
(10,15,12,20,10,15,12,20,10,16)". The generated data and some summary statistics are
presented in the following Table 1.

Table 1: One way ANOVA table

vyl y2 y3 v4 ¥5 y6 y7 v8 y9 y10
1 3.963 2.754 2.156 -0.776 0.589 5.134 0.050 2.372 1.984 -0.817
2 2.557 2.878 3.173 -0.516 -2.100 1.963 -1.055 1.475 3.358 0.953
3 0.948 1.364 1.440 -0.469 -1.447 2.120 0.928 0.435 7.123 -0.174
4 4.254 2.426 2.635 -0.192 0.078 3.385 -0.747 -2.213 3.843 -1.403
5 2.496 2.391 3.280 0.983 -1.605 3.997 1.095 1.409 5.122 -0.276
6 2.684 -0.168 6.687 -2.806 0.857 4.102 -1.857 0.985 3.814 0.819
7 3.684 1.104 0.973 0.729 -0.619 5.161 0.795 -0.376 5.232 -0.345
8 1.807 3.429 0.755 1.269 -2.191 3.661 0.578 0.161 5.310 1.000
9 2.029 1.744 2.511 1.106 -0.136 3.519 -0.445 0.662 3.897 0.362
10 0.466 3.411 0.186 -1.891 -2.289 5.997  -0.627 -0.555 4.066 0.632
11 2.264 3.382 1.192 3.502 -0.515 -0.552 0.458
12 3.445 4.780 -0.060 2.444 -2.082 -0.604 1.317
13 1.444 -1.658 5.942 0.272 -0.690
14 -0.154 -1.187 2.200 0.001 1.291
15 1.451 -0.659 3.270 -1.739 -0.860
16 1.144 -1.125 1.559
17 1.468 -2.784
18 -0.014 0.572
19 -0.243 -0.012
20 0.652 0.719
s 2.489 1.986 2.663 -0.096 -0.886 3.760 -0.323 -0.45 4.375 0.239
s 1.243 1.168 1.815 1.185 1.190 1.320 1.048 1.264 1.390 0.906

i

First we compute the LASSO estimator and find the following
OLASSO — (2.535,1.120, 2.075,0.000, 0.000, 3.620, 0.000, 0.000, 4.035, 0.000)’
Since, LASSO kills é47 é5, é7, fs, and 61¢, we will be testing the following hypothesis
Hy:0,=0, ws H,:0,#0

where 6‘2 = (04, 957 (97, 987 910)/.

Note that the estimate of the overall mean is 6y = 1.250. The computed value of the test
statistic for known ¢ = 1.25 is 6.561, which is less than the critical value of x§ g5 5 = 9.488,
hence the null hypothesis will not be rejected. The estimated values of different estimators
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Table 2: Estimated values of different estimators

6 RE PT Lasso SE PR
1 2.489  2.489 2.489 2.535 2.489 2.489
2 1.986 1.986 1.986 1.120 1.986 1.986
3 2.663 2.663 2.663 2.075 2.663 2.663
4 3.760  3.760  3.760 0.000 3.760 3.760
5 4.375  4.375  4.375 0.000 4.375 4.375
6  -0.096  0.000  0.000 3.620  -0.067  -0.067
7  -0.886  0.000  0.000 0.000  -0.616  -0.616
8  -0.323  0.000  0.000 0.000  -0.225  -0.225
9  -0.045 0.000  0.000 4.035  -0.031 -0.031
10 0.239  2.489 2.489 0.000 0.166 0.166

for 6 are given in the following Table 2. For the computation of the estimators we used
formulas in Section 2 and prepared the Table 1. For the comparison of weighted risks
among the estimators, see Tables 3 to 8.

6 Summary and Concluding Remarks

In this section, we discuss the contents of the Tables 3 - 7 presented as confirmatory evidence
of the theoretical findings of the estimators.

First, we note that we have two classes of estimators, namely, the traditional PTE and
Stein-type estimators and the penalty estimators. The restricted LSE plays an important
role due to the fact that LASSO belongs to the class of restricted estimators. We have the
following conclusions from our study.

(i) Since the inception of the ridge regression estimator by Hoerl and Kennard (1970),
there have been articles comparing ridge with PTE and Stein-type estimators. From
this study, we conclude that the ridge regression estimator dominates the LSE, PTE
and Stein-type estimators uniformly. The ridge estimator dominates the LASSO esti-
mator uniformly for A? greater than 0. They are Lo-risk equivalent at A? = 0 and at
this point LASSO dominates all other estimators. The ridge estimator does not select
variables but the LASSO estimator does. See Table 3 and graphs there of in Figure 3.

(ii) The Restricted LSE (RLSE) and LASSO are Lo-risk equivalent. Hence, LASSO sat-
isfies “oracle properties ”.

(iii) The “ideal” La-risk of HTE and LASSO does not depend on the threshold parameter,
but the upper bound does. See Donoho and Johnstone (1994).

(iv) The RWRE of estimators compared to the LSE depends upon the size of p1, p2 and
divergence parameter, A2. LASSO/RLSE and ridge outperform all of estimators when
A? is 0.
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(v) The LASSO satisfies the “oracle properties” and it dominates LSE, PTE, JSE, and
PRSE in the sub-interval of [0,p;). In this case, with a small number of active pa-
rameters, the LASSO and HTE performs best followed by ridge as pointed out by
Tibshirani (1996).

(vi) If py is fixed and po increases, the RWRE of all estimators increases. See Table 6.

(vii) If py is fixed and p; increases, the RWRE of all estimators decreases. Then, for a given
p2 small and p; large, the LASSO, PTE, JSE, and PRSE are competitive. See Table
7.

(viii) The PRSE is always outperform JSE. See Tables 3-7.

(ix) We illustrated the findings of the paper by an numeral application in Section 5.

pi=5,p;=15

P1=5,p,=25 P1=5,p;=35

RWRE
4

RWRE
2 4
L L
RWRE
2 4

Figure 3: RWRE of estimates of a function of A? for p; = 5, and different p,.
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Table 3: RWRE for the estimators

PTE
(p1,p2,482) | LSE | RLSE/LASSO | o =0.15 a=0.2 a=0.25 JSE | PRSE | Ridge
(5, 15, 0) 1 4.00 2.30 2.07 1.89 | 2.86 3.22 4.00
(5, 15, 0.1) 1 3.92 2.26 2.03 1.85 | 2.82 3.16 3.92
(5, 15, 0.5) 1 3.64 2.10 1.89 1.74 | 2.69 2.93 3.64
(5, 15, 1) 1 3.33 1.93 1.76 1.63 | 2.56 2.71 3.36
(5, 15, 2) 1 2.86 1.67 1.55 1.45 | 2.33 2.40 2.96
(5, 15, 3) 1 2.50 1.49 1.40 1.33 | 2.17 2.19 2.67
(5, 15, 5) 1 2.00 1.26 1.21 1.17 | 1.94 1.92 2.26
(5, 15, 7) 1 1.67 1.13 1.10 1.08 | 1.78 1.77 2.04
(5, 15, 10) 1 1.33 1.02 1.02 1.01 1.62 1.60 1.81
(5, 15, 15) 1 1.00 0.97 0.97 0.98 | 1.46 1.45 1.60
(5, 15, 20) 1 0.80 0.97 0.98 0.98 | 1.36 1.36 1.47
(5, 15, 30) 1 0.57 0.99 0.99 0.99 | 1.25 1.25 1.33
(5, 15, 50) 1 0.36 0.99 0.99 1.00 | 1.16 1.16 1.21
(5, 15, 100) 1 0.19 1.00 1.00 1.00 | 1.05 1.05 1.11
(7, 33, 0) 1 5.71 2.86 2.50 2.23 | 4.44 4.92 5.71
(7, 33, 0.1) 1 5.63 2.82 2.46 2.20 | 4.40 4.84 5.63
(7, 33, 0.5) 1 5.33 2.66 2.34 2.10 | 4.23 4.57 5.34
(7, 33, 1) 1 5.00 2.49 2.20 1.98 | 4.03 4.28 5.02
(7, 33, 2) 1 4.44 2.21 1.97 1.80 3.71 3.84 4.50
(7, 33, 3) 1 4.00 1.99 1.79 1.65 | 3.45 3.51 4.10
(7, 33, 5) 1 3.33 1.67 1.53 1.43 | 3.05 3.05 3.53
(7, 33, 7) 1 2.86 1.46 1.36 1.29 | 2.76 2.74 3.13
(7, 33, 10) 1 2.35 1.26 1.20 1.16 | 2.46 2.44 2.72
(7, 33, 15) 1 1.82 1.09 1.07 1.05 | 2.13 2.11 2.31
(7, 33, 20) 1 1.48 1.02 1.02 1.01 1.92 1.91 2.06
(7, 33, 30) 1 1.08 0.99 0.99 0.99 | 1.67 1.67 1.76
(7, 33, 33) 1 1.00 0.99 0.99 0.99 | 1.62 1.62 1.70
(7, 33, 50) 1 0.70 0.99 0.99 0.99 | 1.43 1.43 1.49
(7, 33, 100) 1 0.37 1.00 1.00 1.00 | 1.12 1.12 1.25
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Table 4: RWRE of the estimators for p € {10,20} and different A?-value for varying p;

p = 10
a2 =0 a?=1
Estimators pp =2 pp =3 pL =5 pp =7 pp =2 pp =3 pL =5 pL =7
LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RLSE/LASSO 5.00 3.33 2.00 1.43 3.33 2.50 1.67 1.25
PTE (a = 0.15) 2.34 1.98 1.51 1.23 1.75 1.55 1.27 1.09
PTE (o = 0.2) 2.06 1.80 1.43 1.19 1.60 1.45 1.22 1.07
PTE (a = 0.25) 1.86 1.66 1.36 1.16 1.49 1.37 1.18 1.06
JSE 2.50 2.00 1.43 1.11 2.14 1.77 1.33 1.08
PRSE 3.03 2.31 1.56 1.16 2.31 1.88 1.38 1.10
Ridge 5.00 3.33 2.00 1.43 3.46 2.58 1.71 1.29
A% =5 A2 =10
LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RLSE/LASSO 1.43 1.25 1.00 0.83 0.83 0.77 0.67 0.59
PTE (a = 0.15) 1.05 1.01 0.95 0.92 0.92 0.92 0.92 0.94
PTE (o = 0.2) 1.03 1.00 0.95 0.93 0.94 0.93 0.94 0.95
PTE (a = 0.25) 1.02 0.99 0.96 0.94 0.95 0.95 0.95 0.97
JSE 1.55 1.38 1.15 1.03 1.33 1.22 1.09 1.01
PRSE 1.53 1.37 1.15 1.03 1.32 1.22 1.08 1.01
Ridge 1.97 1.69 1.33 1.13 1.55 1.40 1.20 1.07
a2 =20 A2 =60
LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RLSE/LASSO 0.45 0.43 0.40 0.37 0.16 0.16 0.15 0.15
PTE (a = 0.15) 0.97 0.97 0.98 0.99 1.00 1.00 1.00 1.00
PTE (o = 0.2) 0.98 0.98 0.99 0.99 1.00 1.00 1.00 1.00
PTE (a = 0.25) 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00
JSE 1.17 1.12 1.04 1.00 1.06 1.04 1.01 1.00
PRSE 1.17 1.12 1.04 1.00 1.05 1.04 1.01 1.00
Ridge 1.30 1.22 1.11 1.04 1.10 1.08 1.04 1.01
p = 20
A2 =0 A% =1
Estimators P =2 p1 =3 Pr1 =5 p1 =T P =2 p1 =3 P1 =5 p1 =7
LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RLSE/LASSO 10.00 6.67 4.00 2.85 6.67 5.00 3.33 2.50
PTE (a = 0.15) 3.20 2.84 2.31 1.95 2.50 2.27 1.93 1.68
PTE (o = 0.2) 2.70 2.45 2.07 1.80 2.17 2.01 1.76 1.56
PTE (a = 0.25) 2.35 2.17 1.89 1.67 1.94 1.82 1.63 1.47
JSE 5.00 4.00 2.86 2.22 4.13 3.42 2.56 2.04
PRSE 6.28 4.77 3.22 2.43 4.58 3.72 2.71 2.13
Ridge 10.00 6.67 4.00 2.86 6.78 5.07 3.37 2.52
A% =5 A2 =10
LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RLSE/LASSO 2.86 2.50 2.00 1.67 1.67 1.54 1.33 1.18
PTE (a = 0.15) 1.42 1.36 1.25 1.17 1.08 1.06 1.02 0.99
PTE (o = 0.2) 1.33 1.29 1.20 1.14 1.06 1.04 1.02 0.99
PTE (a = 0.25) 1.27 1.23 1.17 1.11 1.04 1.03 1.01 0.99
JSE 2.65 2.36 1.94 1.65 2.03 1.87 1.62 1.43
PRSE 2.63 2.34 1.92 1.64 2.01 1.85 1.60 1.42
Ridge 3.38 2.91 2.28 1.88 2.37 2.15 1.82 1.58
A2 =20 A2 =60
LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RLSE/LASSO 0.91 0.87 0.80 0.74 0.32 0.32 0.31 0.30
PTE (a = 0.15) 0.97 0.97 0.97 0.97 1.00 1.00 1.00 1.00
PTE (o = 0.2) 0.98 0.98 0.98 0.98 1.00 1.00 1.00 1.00
PTE (a = 0.25) 0.99 0.98 0.98 0.99 1.00 1.00 1.00 1.00
JSE 1.58 1.51 1.36 1.26 1.21 1.18 1.13 1.09
PRSE 1.58 1.50 1.36 1.25 1.21 1.18 1.13 1.09
Ridge 1.74 1.64 1.47 1.34 1.26 1.23 1.18 1.13

185
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Table 5: RWRE of the estimators for p € {40,60} and different A?-value for varying p;

p = 40
a2 =0 a?=1
Estimators p1=2 | p1=3 | p1=5| p1=7 | p1=2| p1 =31 p1=5]|p=7
LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RLSE/LASSO 20.00 13.33 8.00 5.71 13.33 10.00 6.67 5.00
PTE (a = 0.15) 4.05 3.74 3.24 2.86 3.32 3.12 2.77 2.49
PTE (a = 0.2) 3.29 3.09 2.76 2.50 2.77 2.64 2.40 2.20
PTE (a = 0.25) 2.78 2.65 2.42 2.23 2.40 2.30 2.13 1.98
JSE 10.00 8.00 5.71 4.44 8.12 6.75 5.05 4.03
PRSE 12.80 9.69 6.52 4.92 9.25 7.51 5.45 4.28
Ridge 20.00 13.33 8.00 5.71 13.45 10.07 6.70 5.02
A2 =5 A2 =10
LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RLSE/LASSO 5.71 5.00 4.00 3.33 3.33 3.08 2.67 2.35
PTE (a = 0.15) 1.9641 1.8968 1.7758 1.6701 1.3792 1.3530 1.3044 1.2602
PTE (a = 0.2) 1.75 1.70 1.61 1.53 1.29 1.27 1.24 1.20
PTE (a = 0.25) 1.60 1.56 1.50 1.44 1.23 1.22 1.19 1.16
JSE 4.87 4.35 3.59 3.05 3.46 3.20 2.78 2.46
PRSE 4.88 4.36 3.59 3.05 3.42 3.16 2.75 2.44
Ridge 6.23 5.40 4.27 3.53 4.03 3.68 3.13 2.72
A2 = 20 A2 =60
LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RLSE/LASSO 1.82 1.74 1.60 1.48 0.64 0.63 0.61 0.60
PTE (a = 0.15) 1.05 1.05 1.03 1.02 0.99 0.99 0.99 0.99
PTE (a = 0.2) 1.04 1.03 1.02 1.02 0.99 0.99 0.99 0.99
PTE (a = 0.25) 1.03 1.02 1.02 1.01 0.99 0.99 1.00 1.00
JSE 2.41 2.2046 2.09 1.92 1.52 1.48 1.42 1.36
PRSE 2.41 2.29 2.08 1.91 1.52 1.48 1.42 1.36
Ridge 2.65 2.50 2.26 2.06 1.58 1.54 1.47 1.41
p = 60
A2 =0 A2 =1
LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RLSE/LASSO 30.00 20.00 12.00 8.57 20.00 15.00 10.00 7.50
PTE (a = 0.15) 4.49 4.23 3.79 3.43 3.80 3.62 3.29 3.02
PTE (a = 0.2) 3.58 3.42 3.14 2.91 3.10 2.99 2.78 2.59
PTE (a = 0.25) 2.99 2.89 2.70 2.54 2.64 2.56 2.42 2.29
JSE 15.00 12.00 8.57 6.67 12.12 10.09 7.55 6.03
PRSE 19.35 14.63 9.83 7.40 13.99 11.34 8.22 6.45
Ridge 30.00 20.00 12.00 8.57 20.11 15.06 10.03 7.52
A2 =5 A2 =10
LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RLSE/LASSO 8.57 7.50 6.00 5.00 5.00 4.61 4.0000 3.53
PTE (a = 0.15) 2.35 2.28 2.16 2.05 1.63 1.60 1.55 1.50
PTE (a = 0.2) 2.04 1.99 1.91 1.83 1.49 1.47 1.43 1.39
PTE (a = 0.25) 1.83 1.79 1.73 1.67 1.39 1.37 1.34 1.31
JSE 7.10 6.35 5.25 4.47 4.89 4.53 3.94 3.50
PRSE 7.17 6.41 5.28 4.50 4.84 4.48 3.91 3.47
Ridge 9.09 7.90 6.26 5.19 5.70 5.21 4.45 3.89
A2 =20 A2 =60
LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RLSE/LASSO 2.73 2.61 2.40 2.22 0.97 0.95 0.92 0.89
PTE (a = 0.15) 1.15 1.14 1.13 1.11 0.99 0.99 0.99 0.99
PTE (a = 0.2) 1.11 1.10 1.09 1.08 0.99 0.99 0.99 0.99
PTE (a = 0.25) 1.08 1.08 1.07 1.06 0.99 0.99 0.99 0.99
JSE 3.25 3.09 2.82 2.60 1.83 1.79 1.72 1.65
PRSE 3.23 3.08 2.81 2.59 1.83 1.79 1.72 1.65
Ridge 3.55 3.37 3.05 2.79 1.90 1.86 1.78 1.71
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Table 6: RWRE values of estimators for p1 € {5, 7}, different values of p2 and A?

PTE

(p1, P2, A2) LSE RLSE/LASSO a =0.15 o =0.2 a =0.25 JSE PRSE Ridge
(5,5 1.00 2.00 1.76 1.51 1.36 1.43 1.56 2.00
(5, 15, 0) 1.00 4.00 3.11 2.31 1.89 2.86 3.22 4.00
(5, 25, 0) 1.00 6.00 4.23 2.84 2.20 4.28 4.87 6.00
(5, 35, 0) 1.00 8.00 5.18 3.24 2.42 5.71 6.52 8.00
(5, 55, 0) 1.00 12.00 6.71 3.79 2.70 8.57 9.83 12.00
(5, 5, .5) 1.00 1.82 1.58 1.37 1.26 1.37 1.46 1.83
(5, 15, .5) 1.00 3.64 2.79 2.10 1.74 2.70 2.93 3.65
(5, 25, .5) 1.00 5.45 3.81 2.61 2.05 4.03 4.43 5.46
(5, 35, .5) 1.00 7.27 4.68 2.98 2.26 5.36 5.93 7.28
(5, 55, .5) 1.00 10.91 6.11 3.52 2.55 8.02 8.94 10.92
(5,5, 1) 1.00 1.67 1.43 1.27 1.18 1.33 1.38 1.71
(5, 15, 1) 1.00 3.33 2.53 1.93 1.63 2.56 2.71 3.37
(5, 25, 1) 1.00 5.00 3.46 2.41 1.92 3.80 4.08 5.03
(5, 35, 1) 1.00 6.67 4.27 2.77 2.13 5.05 5.45 6.70
(5, 55, 1) 1.00 10.00 5.61 3.29 2.42 7.55 8.22 10.03
(5, 5, 5) 1.0000 1.00 0.93 0.95 0.96 1.15 1.15 1.33
(5, 15, 5) 1.00 2.00 1.47 1.26 1.17 1.94 1.92 2.28
(5, 25, 5) 1.00 3.00 1.98 1.54 1.35 2.76 2.75 3.27
(5, 35, 5) 1.00 4.00 2.44 1.77 1.50 3.59 3.59 4.27
(5, 55, 5) 1.00 6.00 3.27 2.16 1.73 5.25 5.28 6.26
(7, 5, 0) 1.00 1.43 1.33 1.23 1.16 1.11 1.16 1.43
(7, 15, 0) 1.00 2.86 2.41 1.94 1.67 2.22 2.43 2.86
(7, 25, 0) 1.00 4.28 3.35 2.46 2.00 3.33 3.67 4.28
(7, 35, 0) 1.00 5.71 4.17 2.86 2.23 4.44 4.92 5.71
(7, 55, 0) 1.00 8.57 5.54 3.43 2.53 6.67 7.40 8.57
(7, 5, .5) 1.00 1.33 1.23 1.15 1.10 1.09 1.13 1.35
(7, 15, .5) 1.00 2.67 2.22 1.80 1.56 2.12 2.27 2.67
(7, 25, .5) 1.00 4.00 3.08 2.29 1.87 3.17 3.41 4.00
(7, 35, .5) 1.00 5.33 3.84 2.66 2.10 4.23 4.57 5.34
(7, 55, .5) 1.00 8.00 5.13 3.21 2.40 6.33 6.89 8.00
(7,5, 1) 1.00 1.25 1.15 1.09 1.06 1.08 1.10 1.29
(7, 15, 1) 1.00 2.50 2.05 1.68 1.47 2.04 2.13 2.52
(7, 25, 1) 1.00 3.75 2.85 2.13 1.77 3.03 3.20 3.77
(7, 35, 1) 1.00 5.00 3.56 2.49 1.98 4.03 4.28 5.01
(7,55, 1) 1.00 7.50 4.77 3.02 2.29 6.03 6.45 7.52
(7, 5, 5) 1.00 0.83 0.87 0.92 0.94 1.03 1.03 1.13
(7, 15, 5) 1.00 1.67 1.32 1.17 1.11 1.65 1.64 1.88
(7, 25, 5) 1.00 2.50 1.78 1.44 1.29 2.34 2.34 2.70
(7, 35, 5) 1.00 3.33 2.20 1.67 1.44 3.05 3.05 3.53
(7, 55, 5) 1.00 5.00 2.98 2.05 1.67 4.47 4.50 5.19




On shrinkage and selection . ..

Table 7: RWRE values of estimators for po € {5, 7}, different values of p; and A?

PTE
(p1,p2,A2) LSE RLSE/LASSO o =0.15 =0.2 a = 0.25 JSE PRSE Ridge
(5, 5, 0) 1.00 2.00 1.76 1.51 1.36 1.43 1.56 2.00
(15, 5, 0) 1.00 1.33 1.27 1.20 1.15 1.18 1.22 1.33
(25, 5, 0) 1.00 1.20 1.17 1.127 1.10 1.11 1.14 1.20
(35, 5, 0) 1.00 1.14 1.12 1.09 1.07 1.08 1.10 1.14
(55, 5, 0) 1.00 1.09 1.08 1.06 1.04 1.05 1.06 1.09
(5, 5, 0.5) 1.00 1.82 1.58 1.37 1.26 1.34 1.46 1.83
(15, 5, 0.5) 1.00 1.29 1.22 1.16 1.11 1.16 1.19 1.29
(25, 5, 0.5) 1.00 1.18 1.14 1.10 1.07 1.10 1.12 1.18
(35, 5, 0.5) 1.00 1.13 1.10 1.07 1.05 1.07 1.08 1.13
(55, 5, 0.5) 1.00 1.08 1.06 1.05 1.03 1.05 1.05 1.08
(5, 5, 1) 1.00 1.67 1.43 1.27 1.18 1.33 1.38 1.71
(15, 5, 1) 1.00 1.25 1.18 1.12 1.08 1.14 1.16 1.26
(25, 5, 1) 1.00 1.15 1.11 1.08 1.05 1.09 1.10 1.16
(35, 5, 1) 1.00 1.11 1.08 1.06 1.04 1.07 1.07 1.12
(55, 5, 1) 1.00 1.07 1.05 1.04 1.03 1.04 1.05 1.07
(5, 5, 5) 1.00 1.00 0.93 0.95 0.96 1.15 1.15 1.33
(15, 5, 5) 1.00 1.00 0.97 0.97 0.98 1.07 1.07 1.14
(25, 5, 5) 1.00 1.00 0.98 0.98 0.98 1.05 1.04 1.09
(35, 5, 5) 1.00 1.00 0.98 0.99 0.99 1.03 1.03 1.07
(55, 5, 5) 1.00 1.00 0.99 0.99 0.99 1.02 1.02 1.04
(3,7, 0) 1.00 3.33 2.60 1.98 1.66 2.00 2.31 3.33
(13, 7, 0) 1.00 1.54 1.44 1.33 1.24 1.33 1.40 1.54
(23, 7, 0) 1.00 1.30 1.26 1.20 1.15 1.20 1.23 1.30
(33,7, 0) 1.00 1.21 1.18 1.14 1.11 1.14 1.16 1.21
(53, 7, 0) 1.00 1.13 1.11 1.09 1.07 1.09 1.10 1.13
(3, 7, 0.5) 1.00 2.86 2.21 1.73 1.49 1.87 2.06 2.88
(13, 7, 0.5) 1.00 1.48 1.38 1.27 1.20 1.30 1.35 1.48
(23, 7, 0.5) 1.00 1.28 1.22 1.16 1.12 1.18 1.20 1.28
(33, 7, 0.5) 1.00 1.19 1.16 1.12 1.09 1.13 1.15 1.19
(53, 7, 0.5) 1.00 1.12 1.10 1.07 1.06 1.08 1.09 1.12
(3,7, 1) 1.00 2.50 1.93 1.55 1.37 1.77 1.88 2.58
(13,7, 1) 1.00 1.43 1.32 1.22 1.16 1.28 1.31 1.44
(23,7, 1) 1.00 1.25 1.19 1.13 1.10 1.17 1.18 1.26
(33,7, 1) 1.00 1.18 1.14 1.10 1.07 1.12 1.13 1.18
(53,7, 1) 1.00 1.11 1.09 1.06 1.05 1.08 1.08 1.11
(3,7, 5) 1.00 1.25 1.04 1.01 0.99 1.38 1.372 1.69
(13, 7, 5) 1.00 1.11 1.02 1.00 0.99 1.16 1.15 1.26
(23, 7, 5) 1.00 1.07 1.01 1.00 0.99 1.10 1.10 1.16
(33,7, 5) 1.00 1.05 1.01 1.00 0.99 1.07 1.07 1.11
(53, 7, 5) 1.00 1.03 1.01 1.00 0.99 1.05 1.05 1.07
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Table 8: Sample efficiency table of estimators under Hansens method

PTE
P a2 LSE RLSE/LASSO (a = 0.15) (o = 0.2) (a = 0.25) JSE PRSE Ridge
0 1.00 oo 2.68 3.38 4.03 5.00 7.03 oo
0.1 1.00 100.00 2.84 3.54 4.18 4.81 6.56 101.00
0.5 1.00 20.00 3.46 4.15 4.78 4.19 5.23 21.00
1 1.00 10.00 4.20 4.87 5.47 3.65 4.25 11.00
10 2 1.00 5.00 5.56 6.17 6.69 2.97 3.21 6.00
5 1.00 2.00 8.59 8.90 9.13 2.09 2.12 3.00
10 1.00 1.00 10.63 10.52 10.43 1.61 1.61 2.00
20 1.00 0.50 10.43 10.29 10.20 1.32 1.32 1.50
50 1.00 0.20 10.00 10.00 10.00 1.13 1.13 1.20
100 1.00 0.10 10.00 10.00 10.00 1.04 1.04 1.10
0 1.00 oo 4.62 5.91 7.13 10.00 15.04 o
0.1 1.00 200.00 4.80 6.10 7.32 9.57 13.90 201.00
0.5 1.00 40.00 5.53 6.84 8.07 8.20 10.73 41.00
1 1.00 20.00 6.44 7.76 8.97 6.99 8.46 21.00
20 2 1.00 10.00 8.19 9.50 10.68 5.48 6.09 11.00
5 1.00 4.00 12.80 13.91 14.82 3.54 3.63 5.00
10 1.00 2.00 17.80 18.31 18.68 2.46 2.47 3.00
20 1.00 1.00 20.45 20.34 20.26 1.78 1.78 2.00
50 1.00 0.40 20.01 20.00 20.00 1.32 1.32 1.40
100 1.00 0.20 20.00 20.00 20.00 1.09 1.09 1.20
0 1.00 ) 6.45 8.31 10.08 15.00 23.41 )
0.1 1.00 300.00 6.66 8.52 10.30 14.33 21.55 301.00
0.5 1.00 60.00 7.46 9.36 11.15 12.20 16.45 61.00
1 1.00 30.00 8.47 10.40 12.20 10.33 12.80 31.00
20 2 1.00 15.00 10.46 12.43 14.23 7.99 9.04 16.00
5 1.00 6.00 16.06 17.94 19.54 4.97 5.15 7.00
10 1.00 3.00 23.29 24.58 25.57 3.30 3.32 4.00
20 1.00 1.50 29.49 29.66 29.77 2.24 2.24 2.50
50 1.00 0.60 30.02 30.01 30.01 1.52 1.52 1.60
100 1.00 0.30 30.00 30.00 30.00 1.14 1.14 1.30
0 1.00 ) 8.23 10.65 12.97 20.00 31.99 oo
0.1 1.00 400.00 8.45 10.88 13.20 19.10 29.39 401.00
0.5 1.00 80.00 9.32 11.79 14.14 16.20 22.28 81.00
1 1.00 40.00 10.41 12.93 15.31 13.66 17.23 41.00
40 2 1.00 20.00 12.59 15.18 17.58 10.49 12.03 21.00
5 1.00 8.00 18.91 21.52 23.80 6.41 6.68 9.00
10 1.00 4.00 27.86 29.96 31.64 4.14 4.18 5.00
20 1.00 2.00 37.57 38.23 38.68 2.70 2.70 3.00
50 1.00 0.80 40.04 40.03 40.02 1.71 1.71 1.80
100 1.00 0.40 40.00 40.00 40.00 1.18 1.18 1.40
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A Appendix

We now apply Hansen’s method for ANOVA when it is suspected that @ may be 0. In
this case, the estimators are: LSE of 0 is 0,,; RLSE (6,,) and LASSO (éi) as 0 vector;
PTE of 6, éf = 0,I(L, > c4); JSE of 6, 0 = 0,(1 — (p— 2)L1); PRSE of 0,
05" = 8,(1— (p—2)L)", ridge estimator of 6, é”d“’e(k) - 19

1+k
Accordingly, the Ls-risks are

R(0,,N) =c2A*2, A*2 = %GTNO
(o2

R(O", N) = 02A*2,
R(0), \N) =0p (1 - Hyiz(ca, A2)) + 0202 {2H,,  5(Car A*2) — Hyya(ca, A*2)}
RO, N) = 0? (p— (p— 2)°E [x;2,5(872)])
RO, N) = R0, N) = 0*pE [(1- (0= 2x,22(87) 10, .2(A7) < p—2)]
+ 02 AP 2B [(1— (p = 2)x,, 1 2(A)) I(x3, 1 2(A™) < p - 2)]
~B[(1- (0= 29:G24(A") 10, (A < p-2) |}
RO ) = A

p+A*2

The efficiency table is given in Table 8.

Note that the LASSO solution always puts some (say pz) parameters equal to 0 and
others (p;) as 6;,. Then, the oracle solution of the risk is 02(p; + A?) where A*2 > A? so
that efficiency is p/(p1 + A?). This happens under our assumptions and not under Hansen’s
assumption. We get A*? corresponding to the infeasible estimator, 0. Our assumptions are
the right for the study of LASSO and related.
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