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summary

This paper considers the estimation of the parameters of an ANOVA model
when sparsity is suspected. Accordingly, we consider the least square estima-
tor (LSE), restricted LSE, preliminary test and Stein-type estimators, together
with three penalty estimators, namely, the ridge estimator, subset selection rules
(hard threshold estimator) and the LASSO (soft threshold estimator). We com-
pare and contrast the L2-risk of all the estimators with the lower bound of L2-
risk of LASSO in a family of diagonal projection scheme which is also the lower
bound of the exact L2-risk of LASSO. The result of this comparison is that nei-
ther LASSO nor the LSE, preliminary test, and Stein-type estimators outperform
each other uniformly. However, when the model is sparse, LASSO outperforms
all estimators except “ridge” estimator since both LASSO and ridge are L2-risk
equivalent under sparsity. We also find that LASSO and the restricted LSE are
L2-risk equivalent and both outperform all estimators (except ridge) depending
on the dimension of sparsity. Finally, ridge estimator outperforms all estimators
uniformly. Our finding are based on L2-risk of estimators and lower bound of the
risk of LASSO together with tables of efficiency and graphical display of efficiency
and not based on simulation.
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1 Introduction

An important model belonging to the class of general linear hypothesis is the analysis of

variance (ANOVA) model. In this model, we consider the assessment of p treatment effects

by considering samples experiments of sizes n1, n2, . . . , np respectively with the responses{
(yi1, . . . , yini)

T ; i = 1, 2, . . . , p
}

which satisfy the model, yij = θi + eij (j = 1, 2, . . . , ni,

i = 1, 2, . . . , p). The main objective of the paper is the selection of the treatments which

would yield best results. Accordingly, we consider the penalty estimators, namely, ridge,

subset selection rule and LASSO together with the classical shrinkage estimators, namely,

the preliminary test estimator and the Stein-type estimators such as James-Stein estimator

(JSE) and positive-rule Stein-type estimator (PRSE) of θ = (θ1, . . . , θp)
T . For LASSO and

the related, see Breiman (1995), Fan and Li (2001), Zou and Hastie (2005), Zou (2006)

among others and for preliminary test and Stein-type estimators, see Saleh (2006).

The paper points to the useful “selection” aspect of LASSO and ridge estimators as

well as limitation found in other papers. Our conclusions are based on the ideal L2-risk of

LASSO of an oracle which would supply with an optimal coefficients in a diagonal projection

scheme given by Donoho and Johnstone (1994, Pg. 437). The comparison of the estimators

considered here are based on mathematical analysis as well as by tables of L2-risk efficiencies

and graphs and not by simulation.

In his pioneering paper, Tibshirani (1996) examined the relative performance of the

subset selection, ridge regression and LASSO in three different scenarios, under orthogonal

design matrix in a linear regression model: (a) Small number of large coefficients - subset

selection does the best here, the LASSO not quite as well, ridge regression does quite poorly,

(b) Small to moderate numbers moderate-size coefficients - LASSO does the best followed

by ridge regression and then subset selection, and (c) Large number of small coefficients -

ridge regression does best by a good margin, followed by LASSO and then subset selection.

These results refer to prediction accuracy.

Recently, Hansen (2016) considered the comparison of LASSO, Stein-type estimators

and subset selection based on the upper bounds of L2-risk under infeasible condition: all

parameters may be zero. His findings may be summarized as follows: (i) The condition above

yielded an infeasible estimate equal to 0-vector with the L2-risk equal to the divergence

parameter, ∆2. This led to doubt the “oracle properties” of LASSO. (ii) Neither LASSO

nor Stein-type estimators uniformly dominate one other, (iii) Via simulation studies, he

concludes that LASSO estimation is particularly sensitive to coefficient parametrization

and for a significant portion of the parameter space, LASSO has higher L2-risk than the

LSE. He did not specify the regions where one estimator or the other has lower L2-risk. In

his analysis, he used the normalized L2-risk bounds (NRB) to arrive at his conclusion with

a total sparse model.

In our study, we discovered the following conclusions:

(i) The ridge estimator outperforms the LSE, preliminary test, and Stein-type estima-

tors (JSE and PRSE) uniformly. The ridge dominates LASSO and restricted LSE
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uniformly for ∆2 > 0 and at ∆2 = 0, they are L2-risk equivalent where ∆2 is the

divergence parameter.

(ii) The restricted LSE (RLSE) and LASSO are L2-risk equivalent and satisfy “oracle

properties”.

(iii) Under the family of “Diagonal Linear Projection”, the “Ideal” L2- risk of LASSO and

subset rule (hard threshold estimator) are same and do not depend on the threshold

parameter (κ) under sparse condition.

(iv) Performance of estimators compared to the LSE depends on the size p1, p2, and the

divergence parameter, ∆2. RLSE, HTE and LASSO perform best compared to LSE on

the interval [0, p2]. On the other hand, LASSO approximately outperforms Stein-type

estimator inside the interval [0, p1]. LASSO is worse off beyond the interval, [0, p1].

The organization of the paper is as follows: Section 2 discusses various estimators and L2-risk

expressions using ANOVA model. Section 3 discusses the bias and L2-risks of the estima-

tors, multivariate normal decision theory and oracles for diagonal variant linear projection.

Section 4 deals with the comparisons of the estimators. To illustrate the methodologies of

this paper, a numerical data analysis is given in section 5. Section 6 presents summary of

our results along with superiority tables of efficiency and graphs related to the comparisons.

2 Model, Estimation and Tests

Consider the ANOVA model

Y = Bθ + ε = B1θ1 +B2θ2 + ε, (2.1)

where Y = (y11, . . . , y1n1
, . . . , yp1

, . . . , ypnp)ᵀ, θ = (θ1, . . . , θp1
, θp1+1, . . . , θp)

ᵀ is the un-

known vector can be partitioned as θ = (θᵀ1 ,θ
ᵀ
2)ᵀ where θ1 = (θ1, . . . , θp1

)ᵀ and θ2 =

(θp1+1, . . . , θp)
ᵀ. The error vector ε is (ε11, . . . , ε1n1

, . . . , εp1
, . . . , εpnp)ᵀ with ε ∼ Nn(0, σ2In).

The notation B stands for a block-diagonal vector of (1n1
, . . . ,1np) which can subdivide

into two matrices B1 and B2 as (B1 , B2) where 1ni = (1, . . . , 1)ᵀ is an ni tuples of 1s, In
is the n-dimensional identity matrix, where n = n1 + · · ·+ np and σ2 is the known variance

of the errors.

Our objective is to estimate and select the treatments θ = (θ1, . . . , θp)
ᵀ when we suspect

that the subset θ2 = (θp1+1, . . . , θp)
ᵀ may be 0, i.e. ineffective. Thus, we consider the model

(2.1) and discuss the LSE of θ in the Subsection 2.1.
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2.1 Estimation of Treatments Effects

First, we consider the unrestricted LSE of θ = (θᵀ1 ,θ
ᵀ
2)

ᵀ
given by

θ̃n = argminθ

{
(Y −B1θ1 −B2θ2)ᵀ(Y −B1θ1 −B2θ2)

}
=

Bᵀ
1B1 Bᵀ

1B2

Bᵀ
2B1 Bᵀ

2B2

−1Bᵀ
1Y

Bᵀ
2Y

 =

N1 0

0 N2

−1Bᵀ
1Y

Bᵀ
2Y

 (2.2)

=

N−1
1 Bᵀ

1Y

N−1
2 Bᵀ

2Y

 =

θ̃1n

θ̃2n

 ,

whereN = BᵀB = diag(n1, . . . , np),N1 = diag(n1, . . . , np1), andN2 = diag(np1+1, . . . , np).

In case that σ2 is unknown, the BLUE of σ2 is given by

s2
n = (n− p)−1(Y −B1θ̃1n −B2θ̃2n)ᵀ(Y −B1θ̃1n −B2θ̃2n).

Clearly, θ̃n ∼ Np(θ, σ2N−1) is independent of ms2
n/σ

2 (m = n− p), which follows a central

χ2-distribution with m degrees of freedom (d.f.).

When θ2 = 0, then the restricted LSE (RLSE) of θR = (θᵀ1 , 0
ᵀ)

ᵀ
is given by θ̂R =(

θ̃
ᵀ
1n , 0

ᵀ
)ᵀ

, where θ̃1n = N−1
1 Bᵀ

1Y .

2.2 Test of Significance

For the test of Ho : θ2 = 0 versus HA : θ2 6= 0, we consider the statistic Ln given by

Ln =
1

σ2
θ̃
ᵀ
2nN2θ̃2n, if σ2 is known (2.3a)

=
1

p2s2
n

θ̃
ᵀ
2nN2θ̃2n, if σ2 is unknown (2.3b)

Under a null-hypothesis Ho, the null-distribution of Ln is the central χ2-distribution with

p2 d.f. when σ2 is known and the central F -distribution with (p2,m) d.f. in the case of

σ2 is unknown, respectively. Under the alternative hypothesis, HA, the test statistics Ln
follows the non-central version of the mentioned densities. In both cases, the non-centrality

parameter is ∆2 = θᵀ2N2θ2/σ
2. In this paper, we always assume that σ2 is known, then

Ln follows a chi square distribution with p2 d.f.

Further, we note that

θ̃jn ∼ N (θj , σ
2n−1
j ), j = 1, . . . , p

so that Zj =
√
nj θ̃jn/σ ∼ N (∆j , 1), where ∆j =

√
njθj/σ. Thus, one may use Zj to test

the null-hypothesis H(j)
o : θj = 0 versus H(j)

A : θj 6= 0, j = p1 + 1, . . . , p.

In this paper, we are interested in studying of three penalty estimators, namely, (i)

the subset rule called “hard threshold estimator” (HTE), (ii) LASSO or the “soft threshold
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estimator” (STE) and (iii) the “ridge regression estimator” (RRE) together with the classical

preliminary test estimator (PTE) and Stein-type estimators such as “James-Stein estimator”

(JSE) and “positive-rule Stein-type estimator” (PRSE).

2.3 Penalty Estimators

In this section, we shall discuss the penalty estimators. Define the HTE as

θ̂
HT

n (κ) =
(
θ̃jnI(|θ̃jn| > κσn

− 1
2

j )|j = 1, . . . , p
)ᵀ

=
(
σn
− 1

2
j ZjI(|Zj | > κ)|j = 1, . . . , p

)ᵀ
,

where κ is a positive threshold parameter.

This estimator is discrete in nature and may be extremely variables and unstable due to

the fact that small change in the data can result in a very different models and can reduce

the prediction accuracy. As such we obtain the continuous version of θ̂
HT

n (κ), the LASSO

is defined by

θ̂
L

n(λ) = arg min
θ

(Y −Bθ)ᵀ(Y −Bθ) + 2λσ

p∑
j=1

√
njκ|θj |,

where |θ| = (|θ1|, . . . , |θp|)ᵀ, yielding the equation

BᵀBθ −BᵀY + λσN
1
2 sgn(θ) = 0

or

θ̂
L

n(λ)− θ̃n +
1

2
λσN−

1
2 sgn(θ̂

L

n(λ)) = 0 (2.4)

Now, the jth component of (2.4) is given by

θ̂Ljn(λ)− θ̃jn + λσn
− 1

2
j sgn(θ̂Ljn(λ)) = 0. (2.5)

Then, we consider three cases:

(i) sgn(θ̂Ljn(λ)) = +1, then, (2.5) reduces to

0 <
θ̂Ljn(λ)

σn
− 1

2
j

− θ̃jn

σn
− 1

2
j

+ λ = 0

Hence,

0 < θ̂Ljn(λ) = σn
− 1

2
j (Zj − λ) = σn

− 1
2

j (|Zj | − λ) (2.6)

with clearly Zj > 0 and |Zj | > λ.
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(ii) sgn(θ̂Ljn(λ)) = −1, then we have

0 >
θ̂Ljn(λ)

σn
− 1

2
j

= Zj + λ = −(|Zj | − λ) (2.7)

with clearly Zj < 0 and |Zj | > λ, and

(iii) For θ̂Ljn(λ) = 0, we have −Zj+λγ = 0 for some γ ∈ (−1, 1). Hence, we obtain Zj = λγ

which implies |Zj | < λ.

Combining (2.6)-(2.7) and (iii), we obtain

θ̂Ljn(λ) = σn
− 1

2
j sgn(Zj)(|Zj | − λ)+, j = 1, . . . , p

where a+ = max(0, a). Hence, the LASSO is given by

θ̂
L

n(λ) =
(
σn
− 1

2
j sgn(Zj)(|Zj | − λ)+|j = 1, . . . , p

)ᵀ
.

Next, we consider the ridge regression estimator given by

θ̂
RR

n (k) =

 θ̃1n

1
1+k θ̃2n

 , κ ∈ R+ (2.8)

to accommodate sparse condition.

We may obtain θ̃
RR

n (k) equal to θ̃1n when θ2 = 0 and θ̃2n(k) = 1
1+k θ̃2n by minimizing

the objective function,

(Y −B1θ̃1n −B2θ2)ᵀ(Y −B1θ̃1n −B2θ2) + kθᵀ2N2θ2

with respect to θ2. Thus, Eq. (2.8) is “feasible estimator of θ” when θ2 consists of small

sized parameters.

2.4 Preliminary Test and Stein-type Estimators

We recall that the unrestricted estimator of θ = (θᵀ1 ,θ
ᵀ
2)ᵀ is given by (θ̃

ᵀ
1n, θ̃

ᵀ
2n)ᵀ with

marginal distribution θ̃1n ∼ Np1(θ1, σ
2N−1

1 ) and θ̃2n ∼ Np2(θ2, σ
2N−1

2 ), respectively. The

restricted estimator of (θᵀ1 ,0
ᵀ)ᵀ is (θ̃

ᵀ
1n,0

ᵀ)ᵀ. Similarly, the preliminary test estimator of θ

is given by

θ̂
PT

n (α) =

 θ̃1n

θ̃2nI(Ln > cα)

 ,

where I(A) is the indicator function of the set A, Ln is the test statistic given in section 2.2

and cα is the α-level critical value.
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Similarly, the James-Stein estimator (JSE) is given by

θ̂
JS

n =

 θ̃1n

θ̃2n(1− (p2 − 2)L−1
n )

 , p2 ≥ 3

and the positive-rule Stein-type estimator (PRSE) is given by

θ̂
S+

n =

 θ̃1n

θ̂
JS

2n I(Ln > p2 − 2)

 .

3 Bias and Weighted L2-risks of Estimators

This section contains the bias and the weighted L2-risk expressions of the estimators. We

study the comparative performance of the seven estimators defined above based on the

weighted L2-risks defined by

R(θ∗n : W 1,W 2) = E
[
(θ∗1n − θ1)ᵀW 1(θ∗1n − θ1)] + E[(θ∗2n − θ2)ᵀW 2(θ∗2n − θ2)

]
, (3.1)

where θ∗n = (θ∗1n
ᵀ
,θ∗2n

ᵀ
)ᵀ is any estimator of θ = (θᵀ1 ,θ

ᵀ
2)ᵀ, and W 1 and W 2 are weight

matrices. For convenience, when W 1 = Ip1 and W 2 = Ip2 , we get the mean square error

(MSE) and write R(θ∗n : Ip) = E[‖θ∗n − θ‖2].

First, we note that for LSE,

B1(θ̃n) = 0 and R1(θ̃n : Ip) = σ2(p1 + p2)

and for RLSE, θ̂R =
(
θ̃
ᵀ
1n , 0

ᵀ
)ᵀ

, we have

B2(θ̂R) = (0ᵀ , θᵀ2) and R2(θ̂R; Ip) = σ2(p1 + ∆2).

3.1 Hard Threshold Estimator (Subset Selection Rule)

The bias of this estimator is given by

B(θ̂
HT

n (κ)) =
(
−σn−

1
2

j ∆jH3(κ2; ∆2
j )|j = 1, . . . , p

)ᵀ
,

whereHν(·; ∆2
j ) is the cumulative distribution function (c.d.f.) of a non-central χ2-distribution

with ν d.f. and non-centrality parameter ∆2
j (j = 1, . . . , p).

The MSE of θ̂
HT

n (κ) is given by

R(θ̂
HT

n (κ) : Ip) =

p∑
j=1

E[θ̃jnI(|θ̃jn| > κσn
− 1

2
j )− θj ]2

= σ2

p∑
j=1

n−1
j {(1−H3(κ2; ∆2

j )) + ∆2
j (2H3(κ2; ∆2

j )−H5(κ2; ∆2
j ))}.(3.2)
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Since [θ̃jnI(|θ̃jn| > κσn
− 1

2
j )− θj ]2 ≤ (θ̃jn − θj)2 + θ2

j , we obtain

R(θ̂
HT

n (κ) : Ip) ≤ σ2 trN−1 + θᵀθ (free of κ).

Following Donoho and Johnstone (1994), one can show that the following holds.

Lemma 3.1. Under the assumed regularity conditions

R(θ̂
HT

n (κ) : Ip) ≤


(i) σ2(1 + κ2) trN−1 ∀ θ ∈ Rp, κ > 1,

(ii) σ2 trN−1 + θᵀθ ∀ θ ∈ Rp,

(iii) σ2ρHT (κ, 0) trN−1 + 1.2θᵀθ 0 < θ < κ1ᵀ
p

where ρHT (κ, 0) = 2[(1 − Φ(κ)) + κϕ(κ)], and ϕ(·) and Φ(·) are the probability density

function (p.d.f.) and c.d.f. of standard normal distribution, respectively.

Theorem 1. Under the assumed regularity conditions, the weighted L2-risk bounds are given

by

R(θ̂
HT

n (κ) : N1,N2) ≤



(i) σ2(1 + κ2)(p1 + p2) κ > 1,

(ii) σ2(p1 + p2) + θᵀ1N1θ1 + θᵀ2N2θ2 ∀θ ∈ Rp

(iii) σ2ρHT (κ, 0)(p1 + p2)

+1.2{θᵀ1N1θ1 + θᵀ2N2θ2} 0 < θ < k1ᵀ
p .

If the solution of θ̂
HT

n (κ) has the configuration
(
θ̃
ᵀ
1n, 0

ᵀ
)ᵀ

, then the L2-risk of θ̂
HT

n (κ)

is given by

R3(θ̂
HT

n (κ) : N1,N2) = σ2[p1 + ∆2],

independent of κ.

3.2 LASSO Estimator

The bias expression of LASSO estimator is given by

B(θLn(λ)) =
(
σn
− 1

2
j [λ(2Φ(∆j)− 1); j = 1, . . . , p1;−∆p1+1 . . .∆p

)ᵀ
The MSE of the LASSO estimator has the form

R(θ̂
L

n(λ) : Ip) = σ2

p1∑
j=1

n−1
j ρST (λ,∆j) + ∆2,
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where

ρST (λ,∆j) = (1 + λ2){1− Φ(λ−∆j) + Φ(−λ−∆j)}+ ∆2
j{Φ(λ−∆j)− Φ(−λ−∆j)}

− {(λ−∆j)ϕ(λ+ ∆j) + (λ+ ∆j)ϕ(λ−∆j)}

Thus due to Donoho and Johnstone (1994, appendix 2), we have the following result.

Lemma 3.2. Under the assumed regularity conditions

R(θ̂
L

n(λ) : Ip) ≤


(i) σ2(1 + λ2) trN−1 ∀ θ ∈ Rp, κ > 1

(ii) σ2 trN−1 + θᵀθ ∀ θ ∈ Rp

(iii) σ2ρST (λ, 0) trN−1 + 1.2θᵀθ ∀θ ∈ Rp

where ρST (λ, 0) = 2
[
(1 + λ2)(1− Φ(λ))− κφ(λ)

]
.

If the solution of θ̂
L

n(λ) has the configuration
(
θ̂
ᵀ
1n, 0

ᵀ
)

, then the L2-risk of θ̂
L

n(λ) is

given by

R4(θ̂
L

n(λ) : N1,N2) = σ2(p1 + ∆2). (3.3)

Thus, we note that

R2(θ̂n : N1,N2) = R3(θ̂
HT

n (κ) : N1,N2) = R4(θ̂
L

n(λ) : N1,N2) = σ2(p1 + ∆2).

To proof L2 risk of LASSO, we consider the multivariate decision theory. We are given

the LSE of θ as θ̃n = (θ̃1n, . . . , θ̃pn)ᵀ according to

θ̃jn = θj + σn
− 1

2
j Zj , Zj ∼ N (0, 1),

where σn
− 1

2
j is the marginal variance of θ̃jn and noise level, and {θj}j=1,...,p are the treatment

effects of interest. We measure the quality of the estimators based on the L2-risk, R(θ̃n :

Ip) = E[‖θ̃n − θ‖2]. Note that, for sparse solution, we use (3.1).

Consider the family of diagonal linear projections,

TDP (θ̂
L

n(λ) : δ) = (δ1θ̂
L
1n(λ), . . . , δpθ̂

L
pn(λ))ᵀ (3.4)

with δ = (δ1, . . . , δp)
ᵀ, δj ∈ (0, 1), j = 1, . . . , p. Such estimators “kill” or “keep” the

coordinates.

Suppose we had available an oracle which would supply for us the coefficients δj op-

timal for use in the diagonal projection scheme (3.4). These “ideal” coefficients are δj =

I
(
|θj | > σn

− 1
2

j

)
, ideal diagonal projections consist of estimating only those θj , larger than

its noise, σn
− 1

2
j (j = 1, 2, . . . , p). These yield the “ideal” L2-risk given by (3.5) below.
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Then, the ideal diagonal coordinates in our study are I(|θj | > σn
− 1

2
j ). These coordinates

estimate those treatment effects θj which are larger than the noise level σn
−1/2
j , yielding

the “ideal” L2-risk as

R(θ̂
L

n(λ) : Ip) =

p∑
j=1

min(θ2
j , σ

2n−1
j ) =

σ
2 trN−1 ∀ |θj | > σn

− 1
2

j , j = 1, . . . , p,

θᵀθ ∀ |θj | < σn
− 1

2
j , j = 1, . . . , p.

(3.5)

Thus, we find that ideal lower bound of the L2-risk of θ̂
L

n(λ) leading to “keep” or “kill”

solution is
(
θ̃
ᵀ
1n, 0

ᵀ
)ᵀ

. Thus, R(DP;N1,N2) = σ2(p1 + ∆2) which is the same as (3.5).

In general, the L2-risk given by (3.5) cannot be achieved for all θ by any linear or

nonlinear estimator of treatment effects. However, in the sparse case, if p1 treatment effects

|θj | exceed σn
−1/2
j and p2 coefficients are null, then we obtain the ideal L2-risk given by

R(θ̂
L

n(λ) : Ip) = σ2 trN−1
1 + θᵀ2θ2.

This ideal L2-risk happen to be the lower bound of L2-risk given by (3.2). We shall use

this ideal L2-risk to compare with the L2-risk of other estimators. Consequently, the lower

bound of the weighted L2-risk is given by

R(θ̂
L

n(λ) : N1,N2) = σ2(p1 + ∆2).

3.3 Ridge Regression Estimator

Recall that the ridge regression estimator is given by

θ̂
RR

n (k) =

 θ̃1n

1
1+k θ̃2n

 , k ∈ R+.

The bias and MSE of θ̂
RR

n (k) have forms

B(θ̂
RR

n (k)) =

 0

− k
1+kθ2


and

R(θ̂
RR

n (k) : Ip) = σ2 trN−1
1 +

1

(1 + k)2
(σ2 trN−1

2 + k2θᵀ2θ2).

Hence, the weighted L2-risk is obtained as

R(θ̂
RR

n (k) : N1,N2) = σ2p1 +
σ2

(1 + k)2
(p2 + k2∆2).

One may find the optimum value k = ko = p2∆−2, yielding

R5(θ̂
RR

n (ko) : N1,N2) = σ2

(
p1 +

p2∆2

p2 + ∆2

)
.
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4 Comparison of Estimators

In this section, we compare various estimators with respect to the unrestricted estimator

(LSE), in term of relative weighted L2-risk efficiency (RWRE).

We recall that for sparse solution, the L2-risk of LASSO is σ2(p1 + ∆2) (Eq. 3.3) which

is also the “ideal” L2-risk in an “ideal” diagonal projection scheme. Therefore, we shall use

σ2(p1 + ∆2) to compare the L2-risks function of other estimators.

4.1 Comparison of LSE with RLSE

Recall that the restricted LSE (RLSE) is given by θ̂n = (θ̃
ᵀ
1n,0

ᵀ)ᵀ. In this case, the relative

weighted L2-risk efficiency (RWRE) of RLSE versus LSE is given by

RWRE(θ̂n : θ̃n) =
p1 + p2

p1 + ∆2
=

(
1 +

p2

p1

)(
1 +

∆2

p1

)−1

,

which is a decreasing function of ∆2. So, 0 ≤ RWRE(θ̂n : θ̃n) ≤
(

1 + p2

p1

)
.

4.2 Comparison of LSE with PTE

Here, it is easy to see that

R6(θ̂
PT

n (α) : N1,N2) = p1+p2

(
1−Hp2+2(cα; ∆2)

)
+∆2

[
2Hp2+2(cα; ∆2)−Hp2+4(cα; ∆2)

]
.

Then, the RWRE expression for PTE versus LSE is given by

RWRE(θ̂
PT

n (α) : θ̃n) =
p1 + p2

p1 + p2 (1−Hp2+2(cα; ∆2)) + ∆2 [2Hp2+2(cα; ∆2)−Hp2+4(cα; ∆2)]
.

Then, the PTE outperforms the LSE for

0 ≤ ∆2 ≤ p2Hp2+2(cα; ∆2)

2Hp2+2(cα; ∆2)−Hp2+4(cα; ∆2)
= ∆2

PT . (4.1)

Otherwise, LSE outperforms the PTE in the interval (∆2
PT ,∞). We may mention that

RWRE(θ̂
PT

n (α) : θ̃n) is a decreasing function of ∆2 with a maximum at ∆2 = 0, then

decreases crossing the 1-line to a minimum at ∆2 = ∆2
PT (min) with a value MPT (α) then

increases toward 1-line. This means the gains in efficiency of PTE is the highest in the

interval given by Eq. (4.1) and loss in efficiency can be noticed outside it.

The RWRE
(
θ̂
PT

n ; θ̃n

)
belongs to the interval

MPT (α) ≤ RWRE
(
θ̂
PT

n (α); θ̃n

)
≤
(

1 +
p2

p1

)(
1 +

p2

p1
[1−Hp2+2(cα; 0)]

)−1

,
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where MPT (α) depends on the size α and given by

MPT (α) =

(
1 +

p2

p1

){
1 +

p2

p1

[
1−Hp2+2(cα; ∆2

PT (min))
]

+
∆2
PT (min)

p1

[
2Hp2+2

(
cα; ∆2

PT (min)
)
−Hp2+4

(
cα; ∆2

PT (min)
)]}−1

.

The quantity ∆2
PT (min) is the value ∆2 at which the RWRE value is minimum.

4.3 Comparison of LSE with JSE and PRSE

Since JSE and PRSE need p2 ≥ 3 to express their weighted L2-risk (WL2R) expressions, we

assume always p2 ≥ 3. First, note that

R7(θ̂
JS

n : N1,N2) = p1 + p2 − (p2 − 2)2E
[
χ−2
p2

(∆2)
]
.

As a result, we obtain

RWRE
(
θ̂
JS

n ; θ̃n

)
=

(
1 +

p2

p1

)(
1 +

p2

p1
− (p2 − 2)2

p1
E
[
χ−2
p2

(∆2)
])−1

.

It is a decreasing function of ∆2. At ∆2 = 0, its value is
(

1 + p2

p1

)(
1 + 2

p1

)−1

and when

∆2 →∞, its value goes to 1. Hence, for ∆2 ∈ R+,

1 ≤
(

1 +
p2

p1

)(
1 +

p2

p1
− (p2 − 2)2

p1
E
[
χ−2
p2

(∆2)
])−1

≤
(

1 +
p2

p1

)(
1 +

2

p1

)−1

.

Hence, the gains in efficiency is the highest when ∆2 is small and drops towards 1 when ∆2

is the largest. Also,

RWRE
(
θ̂
S+

n ; θ̃n

)
=

(
1 +

p2

p1

)(
1 +

p2

p1
− (p2 − 2)2

p1
E
[
χ−2
p2

(∆2)
]

− p2

p1
E
[(

1− (p2 − 2)χ−2
p2+2(∆2)

)2
I
(
χ2
p2+2(∆2) < (p2 − 2)

)]
+

∆2

p1

{
2E
[(

1− (p2 − 2)χ−2
p2+2(∆2)

)
I
(
χ2
p2+2(∆2) < (p2 − 2)

)]
−E

[(
1− (p2 − 2)χ−2

p2+4(∆2)
)2
I
(
χ2
p2+4(∆2) < (p2 − 2)

)]})−1

.

So that,

RWRE(θ̂
S+

n ; θ̃n) ≥ RWRE(θ̂
JS

n ; θ̃n) ≥ 1 ∀∆2 ∈ R+.

We also provide graphical representation (Figure 1) of RWRE of the estimators.

In the next subsection, we show that RRE uniformly dominates all other estimators

although it does not select variables.
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Figure 1: RWRE for the restricted, preliminary test, Stein-type and its positive rule esti-
mators.

4.4 Comparison of LSE and RLSE with RRE

First we consider weighted L2-risk difference of LSE and RRE given by

σ2(p1 + p2)− σ2p1 − σ2 p2∆2

p2 + ∆2
= σ2p2

(
1− ∆2

p2 + ∆2

)
=

σ2p2
2

p2 + ∆2
> 0, ∀ ∆2 ∈ R+

Hence, RRE outperforms the LSE uniformly. Similarly, for the RLSE and RRE, the weighted

L2-risk difference is given by

σ2
(
p1 + ∆2

)
−
(
σ2p1 +

σ2p2∆2

p2 + ∆2

)
=

σ2∆4

p2 + ∆2
> 0.

Therefore, RRE performs better than RLSE uniformly.

In addition, the RWRE of RRE versus LSE equals

RWRE(θ̂
RR

n (ko) : θ̃n) =
p1 + p2

p1 + p2∆2

p2+∆2

=

(
1 +

p2

p1

)(
1 +

p2∆2

p1 (p2 + ∆2)

)−1

,

which is a decreasing function of ∆2 with maximum
(

1 + p2

p1

)
at ∆2 = 0 and minimum 1

as ∆2 →∞. So,

1 ≤
(

1 +
p2

p1

)(
1 +

p2

p1

(
1 + p2

∆

))−1

≤ 1 +
p2

p1
; ∀∆2 ∈ R+.
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4.5 Comparison of RRE with PTE, JSE and PRSE

Here, the weighted L2-risk difference of PTE and RRE is given by

σ2

[
p2 − p21−Hp2+2(cα; ∆2) + ∆2

{
2Hp2+2(cα; ∆2)−Hp2+4(cα; ∆2)

} ]
− σ2p2∆2

p2 + ∆2

= σ2

[
p2

p2 + ∆2
−
{
p2Hp2+2(cα; ∆2)−∆2

(
2Hp2+2(cα; ∆2)−Hp2+4(cα; ∆2)

)} ]
≥ 0. (4.2)

Since the first term is a decreasing function of ∆2 with a maximum value p2 at ∆2 = 0

and tends to 0 as ∆2 → ∞. The second function in the bracket is also decreasing in ∆2

with maximum p2Hp2+2(cα; 0) at ∆2 = 0 which is less than p2 and the function tends to

0 as ∆2 → ∞. Hence, Eq. (4.2) is non-negative for ∆2 ∈ R+. Thus, the RRE uniformly

performs better than PTE.

Similarly, we show that RRE uniformly performs better than the JSE, i.e.,

WL2R(θ̂
RR

n (ko)) ≤WL2R(θ̂
JS

n ), ∀ ∆2 ∈ R+.

The weighted L2-risk difference of JSE and RRE is given by

σ2

[
p2

2

p2 + ∆2
− p2

{
E
[
χ−2
p2+2(∆2)

]
+ ∆2E

[
χ−4
p2+2(∆2)

]}
− (p2

2 − 4)E
[
χ−4
p2+4(∆2)

] ]
≥ 0

∀∆2 ∈ R+,

since the first function decreases with a maximum value p2 at ∆2, also the second function

decreases with a maximum value 1(≤ p2) and tends to 0 as ∆2 →∞. For that reason, the

two functions are one below other one and the difference is non-negative for ∆2 ∈ R+.

Next, we show that the weighted L2-risk (WL2R) of the two estimators may be ordered

as

WL2R(θ̂
RR

n (ko)) ≤WL2R(θ̂
S+

n ), ∀∆2 ∈ R+.

Note that

R8(θ̂
S+

n : N1,N2) = R7(θ̂
JS

n : N1,N2)− R∗, (4.3)

where

R∗ = σ2p2E
[(

1− (p2 − 2)χ−2
p2+2(∆2)

)2
I
(
χ−2
p2+2(∆2) < p2 − 2

)]
+ ∆2

{
2E
[(

1− (p2 − 2)χ−2
p2+2(∆2)

)
I
(
χ−2
p2+2(∆2) < p2 − 2

)]
− E

[(
1− (p2 − 2)χ−2

p2+4(∆2)
)2
I
(
χ−2
p2+4(∆2) < p2 − 2

)]}
. (4.4)

Thus, we find that the WL2R-difference is given by

WL2R(θ̂
S+

n )−WL2R(θ̂
RR

n (ko)) =
{

WL2R(θ̂
JS

n )−WL2R(θ̂
RR

n (ko))
}
−R∗ (4.5)

=
{
·
}

is negative−R∗(non-negative) ≤ 0.

Hence, the RRE uniformly performs better than the PRSE.
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4.6 Comparison of LASSO with LSE and RLSE

First note that if we have for p1 coefficients, |βj | > σn
−1/2
j and also p2 coefficients are zero

in a sparse solution, then the “ideal” weighted L2-risk is given by σ2(p1 + ∆2). Thereby, we

compare all estimators relative to this quantity. Hence, weighted L2-risk difference between

LSE and LASSO is given by

σ2(p1 + p2)− σ2(p1 + ∆2) = σ2
[
p2 −∆2

]
.

Hence, if ∆2 ∈ (0, p2), the LASSO performs better than the LSE, while if ∆2 ∈ (p2,∞) the

LSE performs better than the LASSO. Consequently, neither LSE nor the LASSO performs

better than the other, uniformly.

Next, we compare the RLSE and LASSO. In this case, the weighted L2-risk difference is

given by

σ2(p1 + ∆2)− σ2(p1 + ∆2) = 0.

Hence, LASSO and RLSE are L2-risk equivalent. And consequently, the LASSO satisfies

the oracle properties.

4.7 Comparison of LASSO with PTE, JSE and PRSE

We first consider the PTE versus LASSO. In this case, the weighted L2-risk difference is

given by

R6(θ̂
PT

n (α) : N1,N2)− R4(θ̂
L

n(λ) : N1,N2) (4.6)

= σ2
[
p2(1−Hp2+2(cα; ∆2))−∆2

{
1− 2Hp2+2(cα; ∆2) +Hp2+4(cα; ∆2)

} ]
(4.7)

≥ σ2p2(1−Hp2+2(cα; 0)) ≥ 0, if ∆2 = 0.

Hence, the LASSO outperform the PTE when ∆2 = 0. But, when ∆2 6= 0, the LASSO

outperforms the PTE for

0 ≤ ∆2 ≤
p2

[
1−Hp2+2(cα; ∆2)

]
1− 2Hp2+2(cα; ∆2) +Hp2+4(cα; ∆2)

.

Otherwise, PTE outperforms the LASSO. Hence, neither LASSO nor PTE outmatches the

other uniformly.

Next, we consider JSE and PRSE versus the LASSO. In these two cases, we have weighted

L2-risk differences given by

R7(θ̂
JS

n : N1,N2)− R4(θ̂
L

n(λ);N1,N2)

= σ2

[
p1 + p2 − (p2 − 2)2E

[
χ−2
p2+2(∆2)

]
− (p1 + ∆2)

]
(4.8)

= σ2

[
p2 − (p2 − 2)2E

[
χ−2
p2+2(∆2)

]
−∆2

]
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and from (4.3),

R8(θ̂
S+

n : N1,N2)− R4(θ̂
L

n(λ) : N1,N2) = R(θ̂
JS

n : N1,N2)−R(θ̂
L

n(λ) : N1,N2)−R∗,

where R∗ is given by (4.4). Therefore, the LASSO outperforms the JSE as well as the PRSE

in the interval
[
0, p2 − (p2 − 2)2E

[
χ−2
p2

(∆2)
]]

. Thus, neither JSE nor the PRSE outperform

the LASSO uniformly.

4.8 Comparison of LASSO with RRE

Here, the weighted L2-risk difference is given by

R4(θ̂
L

n(λ);N1,N2)− R5(θ̂
RR

n (ko);N1,N2) = σ2

[
(p1 + ∆2)−

(
p1 +

p2∆2

p2 + ∆2

)]
=

σ2∆2

p2 + ∆2
≥ 0.

Hence the RRE outperforms the LASSO uniformly.

In the Figure 2, the comparisons of LASSO with other estimators are showed.
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Figure 2: RWRE for the LASSO, ridge, restricted, preliminary test, Stein-type and its
positive rule estimators.
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5 Application

To illustrate the methodologies in Sections 4 and 5, we will consider the following numerical

example in this section. The data were generated from N(θi, 1.25) distribution, where

θi = (3, 1.5, 2.5, 0, 0, 4, 0, 0, 4.5, 0)′ and σ = 1.25. The respective sample sizes are ni =

(10, 15, 12, 20, 10, 15, 12, 20, 10, 16)′. The generated data and some summary statistics are

presented in the following Table 1.

Table 1: One way ANOVA table

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

1 3.963 2.754 2.156 -0.776 0.589 5.134 0.050 2.372 1.984 -0.817

2 2.557 2.878 3.173 -0.516 -2.100 1.963 -1.055 1.475 3.358 0.953

3 0.948 1.364 1.440 -0.469 -1.447 2.120 0.928 0.435 7.123 -0.174

4 4.254 2.426 2.635 -0.192 0.078 3.385 -0.747 -2.213 3.843 -1.403

5 2.496 2.391 3.280 0.983 -1.605 3.997 1.095 1.409 5.122 -0.276

6 2.684 -0.168 6.687 -2.806 0.857 4.102 -1.857 0.985 3.814 0.819

7 3.684 1.104 0.973 0.729 -0.619 5.161 0.795 -0.376 5.232 -0.345

8 1.807 3.429 0.755 1.269 -2.191 3.661 0.578 0.161 5.310 1.000

9 2.029 1.744 2.511 1.106 -0.136 3.519 -0.445 0.662 3.897 0.362

10 0.466 3.411 0.186 -1.891 -2.289 5.997 -0.627 -0.555 4.066 0.632

11 2.264 3.382 1.192 3.502 -0.515 -0.552 0.458

12 3.445 4.780 -0.060 2.444 -2.082 -0.604 1.317

13 1.444 -1.658 5.942 0.272 -0.690

14 -0.154 -1.187 2.200 0.001 1.291

15 1.451 -0.659 3.270 -1.739 -0.860

16 1.144 -1.125 1.559

17 1.468 -2.784

18 -0.014 0.572

19 -0.243 -0.012

20 0.652 0.719

ȳi 2.489 1.986 2.663 -0.096 -0.886 3.760 -0.323 -0.45 4.375 0.239

si 1.243 1.168 1.815 1.185 1.190 1.320 1.048 1.264 1.390 0.906

First we compute the LASSO estimator and find the following

θ̂LASSOn = (2.535, 1.120, 2.075, 0.000, 0.000, 3.620, 0.000, 0.000, 4.035, 0.000)′

Since, LASSO kills θ̂4, θ̂5, θ̂7, θ8, and θ10, we will be testing the following hypothesis

H0 : θ2 = 0, vs Ha : θ2 6= 0

where θ2 = (θ4, θ5, θ7, θ8, θ10)′.

Note that the estimate of the overall mean is θ̂0 = 1.250. The computed value of the test

statistic for known σ = 1.25 is 6.561, which is less than the critical value of χ2
0.95,5 = 9.488,

hence the null hypothesis will not be rejected. The estimated values of different estimators
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Table 2: Estimated values of different estimators

θ̃ RE PT Lasso SE PR

1 2.489 2.489 2.489 2.535 2.489 2.489

2 1.986 1.986 1.986 1.120 1.986 1.986

3 2.663 2.663 2.663 2.075 2.663 2.663

4 3.760 3.760 3.760 0.000 3.760 3.760

5 4.375 4.375 4.375 0.000 4.375 4.375

6 -0.096 0.000 0.000 3.620 -0.067 -0.067

7 -0.886 0.000 0.000 0.000 -0.616 -0.616

8 -0.323 0.000 0.000 0.000 -0.225 -0.225

9 -0.045 0.000 0.000 4.035 -0.031 -0.031

10 0.239 2.489 2.489 0.000 0.166 0.166

for θ are given in the following Table 2. For the computation of the estimators we used

formulas in Section 2 and prepared the Table 1. For the comparison of weighted risks

among the estimators, see Tables 3 to 8.

6 Summary and Concluding Remarks

In this section, we discuss the contents of the Tables 3 - 7 presented as confirmatory evidence

of the theoretical findings of the estimators.

First, we note that we have two classes of estimators, namely, the traditional PTE and

Stein-type estimators and the penalty estimators. The restricted LSE plays an important

role due to the fact that LASSO belongs to the class of restricted estimators. We have the

following conclusions from our study.

(i) Since the inception of the ridge regression estimator by Hoerl and Kennard (1970),

there have been articles comparing ridge with PTE and Stein-type estimators. From

this study, we conclude that the ridge regression estimator dominates the LSE, PTE

and Stein-type estimators uniformly. The ridge estimator dominates the LASSO esti-

mator uniformly for ∆2 greater than 0. They are L2-risk equivalent at ∆2 = 0 and at

this point LASSO dominates all other estimators. The ridge estimator does not select

variables but the LASSO estimator does. See Table 3 and graphs there of in Figure 3.

(ii) The Restricted LSE (RLSE) and LASSO are L2-risk equivalent. Hence, LASSO sat-

isfies “oracle properties ”.

(iii) The “ideal” L2-risk of HTE and LASSO does not depend on the threshold parameter,

but the upper bound does. See Donoho and Johnstone (1994).

(iv) The RWRE of estimators compared to the LSE depends upon the size of p1, p2 and

divergence parameter, ∆2. LASSO/RLSE and ridge outperform all of estimators when

∆2 is 0.
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(v) The LASSO satisfies the “oracle properties” and it dominates LSE, PTE, JSE, and

PRSE in the sub-interval of [0, p1). In this case, with a small number of active pa-

rameters, the LASSO and HTE performs best followed by ridge as pointed out by

Tibshirani (1996).

(vi) If p1 is fixed and p2 increases, the RWRE of all estimators increases. See Table 6.

(vii) If p2 is fixed and p1 increases, the RWRE of all estimators decreases. Then, for a given

p2 small and p1 large, the LASSO, PTE, JSE, and PRSE are competitive. See Table

7.

(viii) The PRSE is always outperform JSE. See Tables 3-7.

(ix) We illustrated the findings of the paper by an numeral application in Section 5.
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Figure 3: RWRE of estimates of a function of ∆2 for p1 = 5, and different p2.
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Table 3: RWRE for the estimators

PTE

(p1, p2,∆
2) LSE RLSE/LASSO α = 0.15 α = 0.2 α = 0.25 JSE PRSE Ridge

(5, 15, 0) 1 4.00 2.30 2.07 1.89 2.86 3.22 4.00

(5, 15, 0.1) 1 3.92 2.26 2.03 1.85 2.82 3.16 3.92

(5, 15, 0.5) 1 3.64 2.10 1.89 1.74 2.69 2.93 3.64

(5, 15, 1) 1 3.33 1.93 1.76 1.63 2.56 2.71 3.36

(5, 15, 2) 1 2.86 1.67 1.55 1.45 2.33 2.40 2.96

(5, 15, 3) 1 2.50 1.49 1.40 1.33 2.17 2.19 2.67

(5, 15, 5) 1 2.00 1.26 1.21 1.17 1.94 1.92 2.26

(5, 15, 7) 1 1.67 1.13 1.10 1.08 1.78 1.77 2.04

(5, 15, 10) 1 1.33 1.02 1.02 1.01 1.62 1.60 1.81

(5, 15, 15) 1 1.00 0.97 0.97 0.98 1.46 1.45 1.60

(5, 15, 20) 1 0.80 0.97 0.98 0.98 1.36 1.36 1.47

(5, 15, 30) 1 0.57 0.99 0.99 0.99 1.25 1.25 1.33

(5, 15, 50) 1 0.36 0.99 0.99 1.00 1.16 1.16 1.21

(5, 15, 100) 1 0.19 1.00 1.00 1.00 1.05 1.05 1.11

(7, 33, 0) 1 5.71 2.86 2.50 2.23 4.44 4.92 5.71

(7, 33, 0.1) 1 5.63 2.82 2.46 2.20 4.40 4.84 5.63

(7, 33, 0.5) 1 5.33 2.66 2.34 2.10 4.23 4.57 5.34

(7, 33, 1) 1 5.00 2.49 2.20 1.98 4.03 4.28 5.02

(7, 33, 2) 1 4.44 2.21 1.97 1.80 3.71 3.84 4.50

(7, 33, 3) 1 4.00 1.99 1.79 1.65 3.45 3.51 4.10

(7, 33, 5) 1 3.33 1.67 1.53 1.43 3.05 3.05 3.53

(7, 33, 7) 1 2.86 1.46 1.36 1.29 2.76 2.74 3.13

(7, 33, 10) 1 2.35 1.26 1.20 1.16 2.46 2.44 2.72

(7, 33, 15) 1 1.82 1.09 1.07 1.05 2.13 2.11 2.31

(7, 33, 20) 1 1.48 1.02 1.02 1.01 1.92 1.91 2.06

(7, 33, 30) 1 1.08 0.99 0.99 0.99 1.67 1.67 1.76

(7, 33, 33) 1 1.00 0.99 0.99 0.99 1.62 1.62 1.70

(7, 33, 50) 1 0.70 0.99 0.99 0.99 1.43 1.43 1.49

(7, 33, 100) 1 0.37 1.00 1.00 1.00 1.12 1.12 1.25
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Table 4: RWRE of the estimators for p ∈ {10, 20} and different ∆2-value for varying p1

p = 10

∆2 = 0 ∆2 = 1

Estimators p1 = 2 p1 = 3 p1 = 5 p1 = 7 p1 = 2 p1 = 3 p1 = 5 p1 = 7

LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

RLSE/LASSO 5.00 3.33 2.00 1.43 3.33 2.50 1.67 1.25

PTE (α = 0.15) 2.34 1.98 1.51 1.23 1.75 1.55 1.27 1.09

PTE (α = 0.2) 2.06 1.80 1.43 1.19 1.60 1.45 1.22 1.07

PTE (α = 0.25) 1.86 1.66 1.36 1.16 1.49 1.37 1.18 1.06

JSE 2.50 2.00 1.43 1.11 2.14 1.77 1.33 1.08

PRSE 3.03 2.31 1.56 1.16 2.31 1.88 1.38 1.10

Ridge 5.00 3.33 2.00 1.43 3.46 2.58 1.71 1.29

∆2 = 5 ∆2 = 10

LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

RLSE/LASSO 1.43 1.25 1.00 0.83 0.83 0.77 0.67 0.59

PTE (α = 0.15) 1.05 1.01 0.95 0.92 0.92 0.92 0.92 0.94

PTE (α = 0.2) 1.03 1.00 0.95 0.93 0.94 0.93 0.94 0.95

PTE (α = 0.25) 1.02 0.99 0.96 0.94 0.95 0.95 0.95 0.97

JSE 1.55 1.38 1.15 1.03 1.33 1.22 1.09 1.01

PRSE 1.53 1.37 1.15 1.03 1.32 1.22 1.08 1.01

Ridge 1.97 1.69 1.33 1.13 1.55 1.40 1.20 1.07

∆2 = 20 ∆2 = 60

LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

RLSE/LASSO 0.45 0.43 0.40 0.37 0.16 0.16 0.15 0.15

PTE (α = 0.15) 0.97 0.97 0.98 0.99 1.00 1.00 1.00 1.00

PTE (α = 0.2) 0.98 0.98 0.99 0.99 1.00 1.00 1.00 1.00

PTE (α = 0.25) 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00

JSE 1.17 1.12 1.04 1.00 1.06 1.04 1.01 1.00

PRSE 1.17 1.12 1.04 1.00 1.05 1.04 1.01 1.00

Ridge 1.30 1.22 1.11 1.04 1.10 1.08 1.04 1.01

p = 20

∆2 = 0 ∆2 = 1

Estimators p1 = 2 p1 = 3 p1 = 5 p1 = 7 p1 = 2 p1 = 3 p1 = 5 p1 = 7

LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

RLSE/LASSO 10.00 6.67 4.00 2.85 6.67 5.00 3.33 2.50

PTE (α = 0.15) 3.20 2.84 2.31 1.95 2.50 2.27 1.93 1.68

PTE (α = 0.2) 2.70 2.45 2.07 1.80 2.17 2.01 1.76 1.56

PTE (α = 0.25) 2.35 2.17 1.89 1.67 1.94 1.82 1.63 1.47

JSE 5.00 4.00 2.86 2.22 4.13 3.42 2.56 2.04

PRSE 6.28 4.77 3.22 2.43 4.58 3.72 2.71 2.13

Ridge 10.00 6.67 4.00 2.86 6.78 5.07 3.37 2.52

∆2 = 5 ∆2 = 10

LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

RLSE/LASSO 2.86 2.50 2.00 1.67 1.67 1.54 1.33 1.18

PTE (α = 0.15) 1.42 1.36 1.25 1.17 1.08 1.06 1.02 0.99

PTE (α = 0.2) 1.33 1.29 1.20 1.14 1.06 1.04 1.02 0.99

PTE (α = 0.25) 1.27 1.23 1.17 1.11 1.04 1.03 1.01 0.99

JSE 2.65 2.36 1.94 1.65 2.03 1.87 1.62 1.43

PRSE 2.63 2.34 1.92 1.64 2.01 1.85 1.60 1.42

Ridge 3.38 2.91 2.28 1.88 2.37 2.15 1.82 1.58

∆2 = 20 ∆2 = 60

LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

RLSE/LASSO 0.91 0.87 0.80 0.74 0.32 0.32 0.31 0.30

PTE (α = 0.15) 0.97 0.97 0.97 0.97 1.00 1.00 1.00 1.00

PTE (α = 0.2) 0.98 0.98 0.98 0.98 1.00 1.00 1.00 1.00

PTE (α = 0.25) 0.99 0.98 0.98 0.99 1.00 1.00 1.00 1.00

JSE 1.58 1.51 1.36 1.26 1.21 1.18 1.13 1.09

PRSE 1.58 1.50 1.36 1.25 1.21 1.18 1.13 1.09

Ridge 1.74 1.64 1.47 1.34 1.26 1.23 1.18 1.13
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Table 5: RWRE of the estimators for p ∈ {40, 60} and different ∆2-value for varying p1

p = 40

∆2 = 0 ∆2 = 1

Estimators p1 = 2 p1 = 3 p1 = 5 p1 = 7 p1 = 2 p1 = 3 p1 = 5 p1 = 7

LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

RLSE/LASSO 20.00 13.33 8.00 5.71 13.33 10.00 6.67 5.00

PTE (α = 0.15) 4.05 3.74 3.24 2.86 3.32 3.12 2.77 2.49

PTE (α = 0.2) 3.29 3.09 2.76 2.50 2.77 2.64 2.40 2.20

PTE (α = 0.25) 2.78 2.65 2.42 2.23 2.40 2.30 2.13 1.98

JSE 10.00 8.00 5.71 4.44 8.12 6.75 5.05 4.03

PRSE 12.80 9.69 6.52 4.92 9.25 7.51 5.45 4.28

Ridge 20.00 13.33 8.00 5.71 13.45 10.07 6.70 5.02

∆2 = 5 ∆2 = 10

LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

RLSE/LASSO 5.71 5.00 4.00 3.33 3.33 3.08 2.67 2.35

PTE (α = 0.15) 1.9641 1.8968 1.7758 1.6701 1.3792 1.3530 1.3044 1.2602

PTE (α = 0.2) 1.75 1.70 1.61 1.53 1.29 1.27 1.24 1.20

PTE (α = 0.25) 1.60 1.56 1.50 1.44 1.23 1.22 1.19 1.16

JSE 4.87 4.35 3.59 3.05 3.46 3.20 2.78 2.46

PRSE 4.88 4.36 3.59 3.05 3.42 3.16 2.75 2.44

Ridge 6.23 5.40 4.27 3.53 4.03 3.68 3.13 2.72

∆2 = 20 ∆2 = 60

LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

RLSE/LASSO 1.82 1.74 1.60 1.48 0.64 0.63 0.61 0.60

PTE (α = 0.15) 1.05 1.05 1.03 1.02 0.99 0.99 0.99 0.99

PTE (α = 0.2) 1.04 1.03 1.02 1.02 0.99 0.99 0.99 0.99

PTE (α = 0.25) 1.03 1.02 1.02 1.01 0.99 0.99 1.00 1.00

JSE 2.41 2.2946 2.09 1.92 1.52 1.48 1.42 1.36

PRSE 2.41 2.29 2.08 1.91 1.52 1.48 1.42 1.36

Ridge 2.65 2.50 2.26 2.06 1.58 1.54 1.47 1.41

p = 60

∆2 = 0 ∆2 = 1

LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

RLSE/LASSO 30.00 20.00 12.00 8.57 20.00 15.00 10.00 7.50

PTE (α = 0.15) 4.49 4.23 3.79 3.43 3.80 3.62 3.29 3.02

PTE (α = 0.2) 3.58 3.42 3.14 2.91 3.10 2.99 2.78 2.59

PTE (α = 0.25) 2.99 2.89 2.70 2.54 2.64 2.56 2.42 2.29

JSE 15.00 12.00 8.57 6.67 12.12 10.09 7.55 6.03

PRSE 19.35 14.63 9.83 7.40 13.99 11.34 8.22 6.45

Ridge 30.00 20.00 12.00 8.57 20.11 15.06 10.03 7.52

∆2 = 5 ∆2 = 10

LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

RLSE/LASSO 8.57 7.50 6.00 5.00 5.00 4.61 4.0000 3.53

PTE (α = 0.15) 2.35 2.28 2.16 2.05 1.63 1.60 1.55 1.50

PTE (α = 0.2) 2.04 1.99 1.91 1.83 1.49 1.47 1.43 1.39

PTE (α = 0.25) 1.83 1.79 1.73 1.67 1.39 1.37 1.34 1.31

JSE 7.10 6.35 5.25 4.47 4.89 4.53 3.94 3.50

PRSE 7.17 6.41 5.28 4.50 4.84 4.48 3.91 3.47

Ridge 9.09 7.90 6.26 5.19 5.70 5.21 4.45 3.89

∆2 = 20 ∆2 = 60

LSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

RLSE/LASSO 2.73 2.61 2.40 2.22 0.97 0.95 0.92 0.89

PTE (α = 0.15) 1.15 1.14 1.13 1.11 0.99 0.99 0.99 0.99

PTE (α = 0.2) 1.11 1.10 1.09 1.08 0.99 0.99 0.99 0.99

PTE (α = 0.25) 1.08 1.08 1.07 1.06 0.99 0.99 0.99 0.99

JSE 3.25 3.09 2.82 2.60 1.83 1.79 1.72 1.65

PRSE 3.23 3.08 2.81 2.59 1.83 1.79 1.72 1.65

Ridge 3.55 3.37 3.05 2.79 1.90 1.86 1.78 1.71
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Table 6: RWRE values of estimators for p1 ∈ {5, 7}, different values of p2 and ∆2

PTE

(p1, p2,∆
2) LSE RLSE/LASSO α = 0.15 α = 0.2 α = 0.25 JSE PRSE Ridge

(5, 5 1.00 2.00 1.76 1.51 1.36 1.43 1.56 2.00

(5, 15, 0) 1.00 4.00 3.11 2.31 1.89 2.86 3.22 4.00

(5, 25, 0) 1.00 6.00 4.23 2.84 2.20 4.28 4.87 6.00

(5, 35, 0) 1.00 8.00 5.18 3.24 2.42 5.71 6.52 8.00

(5, 55, 0) 1.00 12.00 6.71 3.79 2.70 8.57 9.83 12.00

(5, 5, .5) 1.00 1.82 1.58 1.37 1.26 1.37 1.46 1.83

(5, 15, .5) 1.00 3.64 2.79 2.10 1.74 2.70 2.93 3.65

(5, 25, .5) 1.00 5.45 3.81 2.61 2.05 4.03 4.43 5.46

(5, 35, .5) 1.00 7.27 4.68 2.98 2.26 5.36 5.93 7.28

(5, 55, .5) 1.00 10.91 6.11 3.52 2.55 8.02 8.94 10.92

(5, 5, 1) 1.00 1.67 1.43 1.27 1.18 1.33 1.38 1.71

(5, 15, 1) 1.00 3.33 2.53 1.93 1.63 2.56 2.71 3.37

(5, 25, 1) 1.00 5.00 3.46 2.41 1.92 3.80 4.08 5.03

(5, 35, 1) 1.00 6.67 4.27 2.77 2.13 5.05 5.45 6.70

(5, 55, 1) 1.00 10.00 5.61 3.29 2.42 7.55 8.22 10.03

(5, 5, 5) 1.0000 1.00 0.93 0.95 0.96 1.15 1.15 1.33

(5, 15, 5) 1.00 2.00 1.47 1.26 1.17 1.94 1.92 2.28

(5, 25, 5) 1.00 3.00 1.98 1.54 1.35 2.76 2.75 3.27

(5, 35, 5) 1.00 4.00 2.44 1.77 1.50 3.59 3.59 4.27

(5, 55, 5) 1.00 6.00 3.27 2.16 1.73 5.25 5.28 6.26

(7, 5, 0) 1.00 1.43 1.33 1.23 1.16 1.11 1.16 1.43

(7, 15, 0) 1.00 2.86 2.41 1.94 1.67 2.22 2.43 2.86

(7, 25, 0) 1.00 4.28 3.35 2.46 2.00 3.33 3.67 4.28

(7, 35, 0) 1.00 5.71 4.17 2.86 2.23 4.44 4.92 5.71

(7, 55, 0) 1.00 8.57 5.54 3.43 2.53 6.67 7.40 8.57

(7, 5, .5) 1.00 1.33 1.23 1.15 1.10 1.09 1.13 1.35

(7, 15, .5) 1.00 2.67 2.22 1.80 1.56 2.12 2.27 2.67

(7, 25, .5) 1.00 4.00 3.08 2.29 1.87 3.17 3.41 4.00

(7, 35, .5) 1.00 5.33 3.84 2.66 2.10 4.23 4.57 5.34

(7, 55, .5) 1.00 8.00 5.13 3.21 2.40 6.33 6.89 8.00

(7, 5, 1) 1.00 1.25 1.15 1.09 1.06 1.08 1.10 1.29

(7, 15, 1) 1.00 2.50 2.05 1.68 1.47 2.04 2.13 2.52

(7, 25, 1) 1.00 3.75 2.85 2.13 1.77 3.03 3.20 3.77

(7, 35, 1) 1.00 5.00 3.56 2.49 1.98 4.03 4.28 5.01

(7, 55, 1) 1.00 7.50 4.77 3.02 2.29 6.03 6.45 7.52

(7, 5, 5) 1.00 0.83 0.87 0.92 0.94 1.03 1.03 1.13

(7, 15, 5) 1.00 1.67 1.32 1.17 1.11 1.65 1.64 1.88

(7, 25, 5) 1.00 2.50 1.78 1.44 1.29 2.34 2.34 2.70

(7, 35, 5) 1.00 3.33 2.20 1.67 1.44 3.05 3.05 3.53

(7, 55, 5) 1.00 5.00 2.98 2.05 1.67 4.47 4.50 5.19
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Table 7: RWRE values of estimators for p2 ∈ {5, 7}, different values of p1 and ∆2

PTE

(p1, p2,∆
2) LSE RLSE/LASSO α = 0.15 α = 0.2 α = 0.25 JSE PRSE Ridge

(5, 5, 0) 1.00 2.00 1.76 1.51 1.36 1.43 1.56 2.00

(15, 5, 0) 1.00 1.33 1.27 1.20 1.15 1.18 1.22 1.33

(25, 5, 0) 1.00 1.20 1.17 1.127 1.10 1.11 1.14 1.20

(35, 5, 0) 1.00 1.14 1.12 1.09 1.07 1.08 1.10 1.14

(55, 5, 0) 1.00 1.09 1.08 1.06 1.04 1.05 1.06 1.09

(5, 5, 0.5) 1.00 1.82 1.58 1.37 1.26 1.34 1.46 1.83

(15, 5, 0.5) 1.00 1.29 1.22 1.16 1.11 1.16 1.19 1.29

(25, 5, 0.5) 1.00 1.18 1.14 1.10 1.07 1.10 1.12 1.18

(35, 5, 0.5) 1.00 1.13 1.10 1.07 1.05 1.07 1.08 1.13

(55, 5, 0.5) 1.00 1.08 1.06 1.05 1.03 1.05 1.05 1.08

(5, 5, 1) 1.00 1.67 1.43 1.27 1.18 1.33 1.38 1.71

(15, 5, 1) 1.00 1.25 1.18 1.12 1.08 1.14 1.16 1.26

(25, 5, 1) 1.00 1.15 1.11 1.08 1.05 1.09 1.10 1.16

(35, 5, 1) 1.00 1.11 1.08 1.06 1.04 1.07 1.07 1.12

(55, 5, 1) 1.00 1.07 1.05 1.04 1.03 1.04 1.05 1.07

(5, 5, 5) 1.00 1.00 0.93 0.95 0.96 1.15 1.15 1.33

(15, 5, 5) 1.00 1.00 0.97 0.97 0.98 1.07 1.07 1.14

(25, 5, 5) 1.00 1.00 0.98 0.98 0.98 1.05 1.04 1.09

(35, 5, 5) 1.00 1.00 0.98 0.99 0.99 1.03 1.03 1.07

(55, 5, 5) 1.00 1.00 0.99 0.99 0.99 1.02 1.02 1.04

(3, 7, 0) 1.00 3.33 2.60 1.98 1.66 2.00 2.31 3.33

(13, 7, 0) 1.00 1.54 1.44 1.33 1.24 1.33 1.40 1.54

(23, 7, 0) 1.00 1.30 1.26 1.20 1.15 1.20 1.23 1.30

(33, 7, 0) 1.00 1.21 1.18 1.14 1.11 1.14 1.16 1.21

(53, 7, 0) 1.00 1.13 1.11 1.09 1.07 1.09 1.10 1.13

(3, 7, 0.5) 1.00 2.86 2.21 1.73 1.49 1.87 2.06 2.88

(13, 7, 0.5) 1.00 1.48 1.38 1.27 1.20 1.30 1.35 1.48

(23, 7, 0.5) 1.00 1.28 1.22 1.16 1.12 1.18 1.20 1.28

(33, 7, 0.5) 1.00 1.19 1.16 1.12 1.09 1.13 1.15 1.19

(53, 7, 0.5) 1.00 1.12 1.10 1.07 1.06 1.08 1.09 1.12

(3, 7, 1) 1.00 2.50 1.93 1.55 1.37 1.77 1.88 2.58

(13, 7, 1) 1.00 1.43 1.32 1.22 1.16 1.28 1.31 1.44

(23, 7, 1) 1.00 1.25 1.19 1.13 1.10 1.17 1.18 1.26

(33, 7, 1) 1.00 1.18 1.14 1.10 1.07 1.12 1.13 1.18

(53, 7, 1) 1.00 1.11 1.09 1.06 1.05 1.08 1.08 1.11

(3, 7, 5) 1.00 1.25 1.04 1.01 0.99 1.38 1.372 1.69

(13, 7, 5) 1.00 1.11 1.02 1.00 0.99 1.16 1.15 1.26

(23, 7, 5) 1.00 1.07 1.01 1.00 0.99 1.10 1.10 1.16

(33, 7, 5) 1.00 1.05 1.01 1.00 0.99 1.07 1.07 1.11

(53, 7, 5) 1.00 1.03 1.01 1.00 0.99 1.05 1.05 1.07
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Table 8: Sample efficiency table of estimators under Hansens method

PTE

p ∆2 LSE RLSE/LASSO (α = 0.15) (α = 0.2) (α = 0.25) JSE PRSE Ridge

10

0 1.00 ∞ 2.68 3.38 4.03 5.00 7.03 ∞

0.1 1.00 100.00 2.84 3.54 4.18 4.81 6.56 101.00

0.5 1.00 20.00 3.46 4.15 4.78 4.19 5.23 21.00

1 1.00 10.00 4.20 4.87 5.47 3.65 4.25 11.00

2 1.00 5.00 5.56 6.17 6.69 2.97 3.21 6.00

5 1.00 2.00 8.59 8.90 9.13 2.09 2.12 3.00

10 1.00 1.00 10.63 10.52 10.43 1.61 1.61 2.00

20 1.00 0.50 10.43 10.29 10.20 1.32 1.32 1.50

50 1.00 0.20 10.00 10.00 10.00 1.13 1.13 1.20

100 1.00 0.10 10.00 10.00 10.00 1.04 1.04 1.10

20

0 1.00 ∞ 4.62 5.91 7.13 10.00 15.04 ∞

0.1 1.00 200.00 4.80 6.10 7.32 9.57 13.90 201.00

0.5 1.00 40.00 5.53 6.84 8.07 8.20 10.73 41.00

1 1.00 20.00 6.44 7.76 8.97 6.99 8.46 21.00

2 1.00 10.00 8.19 9.50 10.68 5.48 6.09 11.00

5 1.00 4.00 12.80 13.91 14.82 3.54 3.63 5.00

10 1.00 2.00 17.80 18.31 18.68 2.46 2.47 3.00

20 1.00 1.00 20.45 20.34 20.26 1.78 1.78 2.00

50 1.00 0.40 20.01 20.00 20.00 1.32 1.32 1.40

100 1.00 0.20 20.00 20.00 20.00 1.09 1.09 1.20

30

0 1.00 ∞ 6.45 8.31 10.08 15.00 23.41 ∞

0.1 1.00 300.00 6.66 8.52 10.30 14.33 21.55 301.00

0.5 1.00 60.00 7.46 9.36 11.15 12.20 16.45 61.00

1 1.00 30.00 8.47 10.40 12.20 10.33 12.80 31.00

2 1.00 15.00 10.46 12.43 14.23 7.99 9.04 16.00

5 1.00 6.00 16.06 17.94 19.54 4.97 5.15 7.00

10 1.00 3.00 23.29 24.58 25.57 3.30 3.32 4.00

20 1.00 1.50 29.49 29.66 29.77 2.24 2.24 2.50

50 1.00 0.60 30.02 30.01 30.01 1.52 1.52 1.60

100 1.00 0.30 30.00 30.00 30.00 1.14 1.14 1.30

40

0 1.00 ∞ 8.23 10.65 12.97 20.00 31.99 ∞

0.1 1.00 400.00 8.45 10.88 13.20 19.10 29.39 401.00

0.5 1.00 80.00 9.32 11.79 14.14 16.20 22.28 81.00

1 1.00 40.00 10.41 12.93 15.31 13.66 17.23 41.00

2 1.00 20.00 12.59 15.18 17.58 10.49 12.03 21.00

5 1.00 8.00 18.91 21.52 23.80 6.41 6.68 9.00

10 1.00 4.00 27.86 29.96 31.64 4.14 4.18 5.00

20 1.00 2.00 37.57 38.23 38.68 2.70 2.70 3.00

50 1.00 0.80 40.04 40.03 40.02 1.71 1.71 1.80

100 1.00 0.40 40.00 40.00 40.00 1.18 1.18 1.40



On shrinkage and selection . . . 191

A Appendix

We now apply Hansen’s method for ANOVA when it is suspected that θ may be 0. In

this case, the estimators are: LSE of θ is θ̃n; RLSE (θ̂n) and LASSO (θ̂
L

n) as 0 vector;

PTE of θ, θ̂
PT

n = θ̃nI(Ln ≥ cα); JSE of θ, θ̂
JS

n = θ̃n(1 − (p − 2)L−1
n ); PRSE of θ,

θ̂
S+

n = θ̃n(1− (p− 2)L−1
n )−1, ridge estimator of θ, θ̂

ridge

n (k) = 1
1+k θ̃n.

Accordingly, the L2-risks are

R(θ̃n,N) = σ2p,

R(θ̂n,N) = σ2∆∗2, ∆∗2 =
1

σ2
θTNθ

R(θ̂
L
,N) = σ2∆∗2,

R(θ̂
PT

n ,N) = σ2p
(
1−Hp+2(cα,∆

∗2)
)

+ σ2∆2
{

2Hp+2(cα,∆
∗2)−Hp+4(cα,∆

∗2)
}

R(θ̂
JS

n ,N) = σ2
(
p− (p− 2)2E

[
χ−2
p2+2(∆∗2)

])
R(θ̂

S+

n ,N) = R(θ̂
JS

n ,N)− σ2pE
[(

1− (p− 2)χ−2
p2+2(∆∗2)

)2
I(χ2

p2+2(∆∗2) ≤ p− 2)
]

+ σ2∆∗2
{

2E
[(

1− (p− 2)χ−2
p2+2(∆∗2)

)
I(χ2

p2+2(∆∗2) ≤ p− 2)
]

−E
[(

1− (p− 2)χ−2
p2+4(∆∗2)

)2
I(χ2

p2+4(∆∗2) ≤ p− 2)
]}

R(θ̂
RR

n ,N) =
p∆∗2

p+ ∆∗2

The efficiency table is given in Table 8.

Note that the LASSO solution always puts some (say p2) parameters equal to 0 and

others (p1) as θ̃jn. Then, the oracle solution of the risk is σ2(p1 + ∆2) where ∆∗2 > ∆2 so

that efficiency is p/(p1 + ∆2). This happens under our assumptions and not under Hansen’s

assumption. We get ∆∗2 corresponding to the infeasible estimator, 0. Our assumptions are

the right for the study of LASSO and related.
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