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summary

In genomics (SNP and RNA amino acid studies), typically, we encounter enor-
mously large dimensional qualitative categorical data models without an ordering
of the categories, thus preempting the use of conventional measures of dispersion
(variation or diversity) as well as other measures which assume some latent trait
variable(s). The Gini-Simpson diversity measure, often advocated for diversity
analysis in one-dimensional models, has been adapted to formulate measures of
diversity and co-diversity based on the Hamming distance in the multidimensional
setup. Based on certain (molecular) biologically interpretable monotone diversity
perspectives, an ordering of the Gini-Simpson measures across the genome (posi-
tions) is formulated in a meaningful way. Motivated by this feature, nonparamet-
ric inference for such ordered measures is considered here, and their applications
stressed.

Keywords and phrases: Gini-Simpson diversity index; Hamming distance; High-
diemensional qualitative data models; U-statistics.
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1 Introduction

For qualitative categorical data models, conventional measures of variation and covariation
are not meaningful. Hence, diversity and co-diversity analyses have been advocated for
such models. As an example, consider a SNP (single neucleotide polymorphism) model for
the DNA nucleotides (A,C, G, T ) encompassing a large number (K) of positions (or genes).
Without any interpretable ordering of the labels A,C,G, T (and even a plausible latent-
effect model), we encounter a (large) K-dimensional categorical data model with 4K possible
response category combinations. For RNA codons, there being 20 amino acids, the number
of possible response category combinations jumps to 20K . There is apparently diversity or
qualitative variation of the response in each position, and also possibly co-diversity among
the positions, and these can not be interpreted in terms of product moments or even by some
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latent variables, accounting for plausible dependence. For simplicity and manageability of
statistical alalysis, it is often assumed that the positions exhibit independent responses, and
sometimes, it is even assumed that they have the same probability law for the K positions;
in reality, neither the independence nor the identical distribution assumption may not be
taken for granted. Therefore it is of considerable interest to formulate suitable measures of
diversity and co-diversity, and relate them to the molecular biological undercurrents so as
to gain some meaningful insight of the overall biodiversity picture.

The celebrated Gini-Simpson diversity index (Gini 1912, Simpson 1949) has found some
very useful applications in genetics and bioinformatics, and in particular genomics. For SNP
with a large number of positions, there is a practical difficulty in using directly the Gini-
Simpson index. In that respect, Hamming distance based measures have been advocated in
the literature (Pinheiro et al. 2000, 2005), Tzeng et al. (2003), Schaid et al. (2005), and
others. Basically the Hamming distance is an unweighted average (over the K positions) of
the marginal Gini-Simpson indexes. As such, it may not be very sensitive to inter-positions
covariability or co-diversity, although it takes into account the stochastic dependence among
the positions as well as possible heterogeneity of their marginal distributions. Faced with
this limitation, we are to examine the diversity-codiversity perspectives in a detailed manner.
In that context, based on suitable genomic (and polygenic) interpretation, we propose some
monotone diversity-codiversity perspectives, and for that we formulate some nonparametric
estimation as well as testing procedures.

Along with the preliminary notion, these measures are introduced in Section 2. The
monotone diversity features are then outined in Section 3. Section 4 is devoted to sample
counterparts and formulation of suitable testing procedures. The concluding section deals
with some illustrations of the methodology developed in earlier sections.

2 Preliminary Notion

A multinomial probability law is completely characterized by its cell probabilities. In high-
dimensional models, the number of cells may be so large that incorporating the set of all
cell probabilities in modeling and statistical analysis could be an impractical or dreadful
task, unless the number of observations (or sample size n ) is also very large. A measure of
variability in one-dimensional models, usually formulated solely in terms of the cell proba-
bilities, needs considerably scrutiny in the multidimensional case, as such diversity analysis
needs to be based on the set of all (joint) probabilities. Further, as these categories differ
only qualitatively, the usual measures of variation or dispersion for quantitative data models
are not usable. Even latent variable (effects) models may not be generally appropriate in
such studies. Gini (1912) came up with a very interesting measure of diversity or lack of
concentration; almost after 4 decades, Simpson (1949), apparently unaware of Gini’s work,
considered the same measure for biodiversity in some ecological studies. This Gini-Simpson
index (GSI), as it is referred to in the literature, has been extensively used in many applied
fields (economics, social sciences, psychometry, and genetics, among others) and genomics
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is no exception. A significant amount of work on diversity and dissimilarity coefficients is
due to C. R. Rao (1982 a,b,c), rich with statistical interpretations and inferential tools.
However, in most of these usages, there are multiple response variables (often, too many),
and hence, the GSI needs extensions to suit such more complex models. In genomics, as we
shall discuss later on, the problem is much more acute due to an abundance of positions,
leading to a genuine curse of dimensionality problem.

Consider a simple multinomial distribution for a C cell (labelled as 1, . . . , C) model, with
respective cell probabilities π1, . . . , πC , and let π = (π1, . . . , πC)′. Note that π′1 = 1, so
that π bdlongs to the simplex:

SC−1 = {x ∈ [0, 1]C : x′1 = 1}. (2.1)

Note that the concentration is least when the πc are all equal, and it is the maximum when
one of the C cell probabilities is 1 while the others are all 0; the GSI has been posed as

IGS(π) = 1− π′π = 1−
C∑

c=1

π2
c . (2.2)

If we draw two independent observations (say, X and Y ), each assuming one of the C labels
1, . . . , C with the common probabilities π1, . . . , πC , then

P{X 6= Y } =
C∑

c=1

πc(1− πc) = 1−
C∑

c=1

π2
c = IGS(π). (2.3)

The IGS(π) is an estimable parameter (Hoeffding 1948) admitting an unbiased estimator, a
U -statistic, which possesses some nonparametric optimality properties. In a K-dimensional
case, assume that in each of the K positions, the number of categories is the same which we
label as 1, . . . , C. Thus, each observation X = (X1, . . . , XK)′ has K coordinates with Xk

can taking on each of the labels 1, . . . , C, there being a totality of CK possible realizations.
Typically in genomics, C is fixed (viz., 4 for DNA nucleotides and 20 for RNA amino acids)
but K is very large, so that CK may be so large compared to the number of observations
(n) that conventional discrete multivariate analysis may be of little assistance. The main
difficulty arises from this curse of dimensionality (i.e., K >> n ) problem. For a K-
variate normal distribution, the variation - covariation is completely characterized by its
(positive semi-definite (p.s.d.)) dispersion matrix having K(K + 1)/2 unknown elements.
For multidimensional categorical data models, though belonging to the exponential family,
the diversity-codiversity (of various orders) can not be simply charaterized by marginal and
two-factor joint probabilities.

Borrowing analogy with the classical multinormal case, albeit little less emphatically, we
may define co-disagreement or codiversity among a pair of positions (k, q) : 1 ≤ k < q ≤ K,
as

CDGS(k, q) = P{Xk 6= Xq} = 1−
C∑

c=1

πkq,cc, (2.4)
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where πkq,cc = P{Xk = Xq = c}, c = 1, . . . , C; k 6= q = 1, . . . ,K denote the set of all
possible two-factor concordance probabilities. Note that for k = q, CD∗

GS(k, k) = 0, as it
should be, so that if we consider the K ×K matrix of these codiversity measures, we have
all null diagonal elements. Note that these codiversity indexes depend on the two-factor cell
probabilities and are not simply based on the marginals. On the other hand, by analogy
with the Gini-Simpson indexes, we may define

IGS(k, q) = P{Xk 6= Yq} = 1−
C∑

c=1

πkcπqc (2.5)

for k, q = 1, . . . ,K. However, note that the product of the marginal probabilities fails to
capture any information on their joint probability, and further

C∑
c=1

πkcπqc ≤ 1
2
{

C∑
c=1

π2
k,c +

C∑
c=1

π2
q,c}, (2.6)

for every pair k 6= q = 1, . . . ,K, we obtain that

IGS(k, q) ≥ {IGS(k) + IGS(q)}/2, ∀k 6= q, (2.7)

where the equality sign holds only when πk = πq. Thus, if we want to gather information on
the homogeneity of the marginal IGS then these IGS(k, q) provide additional information.
Our main interest corners some marginal indexes exhibiting some order relationship in a
meaningful way, incorporating additional information from the intersites diversity measures.

The Hamming distance based on the K vector of marginal IGS is a summaritative mea-
sure of this marginal diversity, without accounting for the codiversity indexes, although it
takes into account, to a certain extent, possible stochastic hetergeneity and dependence
among the positions. If two response vectors X and Y are from the common multi-
dimensional multinomial law, the Hamming distance is defined as

HD(Π) = K−1
K∑

k=1

P{Xk 6= Yk}

= K−1
K∑

k=1

[
C∑

c=1

πkc(1− πkc)]

= K−1
K∑

k=1

[1−
C∑

c=1

π2
kc]

= K−1
K∑

k=1

IGS(πk), (2.8)

where the K×C matrix Π consists of the K marginal probability vectors πk = (πk1, . . . , πkC), k =
1, . . . ,K. Note that Π is not the original CK probability vector of all possible realizations
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of the X but a projection of that into its K marginal vectors. All these measures would
be useful in drawing statistical inference on the diversity pattern across the K positions,
as we sometimes encounter in genomic studies. These will be elaborated in the subsequent
sections.

3 Monotone Diversity

In genomics, the Central Dogma (Crick 1970) states that once information (i.e., the precise
determination of sequence, either of bases in the nucleic acid or of amino acid residues
in the protein) passes into protein, it can not get out again. The transfer of information
from nucleic acid to nucleic acid, or from nucleic acid to protein, may be possible, but the
transfer from protein to protein, or protein to nucleic acid is not possible. The central
dogma has been extended in later years. In some genetic system, RNA templates RNA.
Also, retroviruses (which have the ability ro reverse the normal flow of genetic information)
can copy their RNA genomes into DNA by a mechanism called reverse transcription (RT).
The genetic variability of HIV is relatively high compared to other retroviruses. Stochastic
evolutionary forces act on genomes (molecular evolution), and the genes are not simple.

It makes no sense to assume that the K positions have independent and identically dis-
tributed (i.i.d.) (categorical) responses, although for the sake of managability and simplicity
of statistical modeling and analysis, such i.i.d. clauses are often presumed. It is therefore
of interest to explore plausible departures from such i.i.d. clauses, supporting them from
molecular biological interpretations, and developing suitable statistical inference tools to
judge the feasibility of such models. Realizing that stochastic equilibrium is anticipated
following any signal to noise activity, it may be reasonable to consider some models where

IGS(πk) is monotone in k(≤ K). (3.1)

This immediately suggests two statistical problems:
(i) How to estimate the IGS(πk) subject to such isotonic constraints, and
(ii) How to test for such possible isotonic GSI’s?

In either case, it may not be reasonable to impose the independence clause.
It is possible to describe the joint probability law for X as

P{X = x} = P{X1 = x1}
K∏

k=2

P{Xk = xk|Xj = xj , 1 ≤ j ≤ k − 1}, (3.2)

where x = (x1, . . . , xK) with each xj taking on the C labels 1, . . . , C. Thus, there is a
possible transition from the state xk−1 to the state xk, at the kth site, for k = 1, . . . , C.
In some cases, it might be plausible to assume a first-order Markov chain, so that the
conditional probabilities can be expressed as

P{Xk = xk|Xj = xj , j < k} = P{Xk = xk|Xk−1 = xk−1}, k = 2, . . . ,K. (3.3)
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For a stationary Markov chain, these transition probabilities do not depend on k, so that
the independence of the positions can be relaxed to a stationay first-order Markov chain
property. In that case, we have C(C + 1) parameters consisting of C marginal probabilities
πc, c = 1, . . . , C and C2 transition probabilities πcd, c, d = 1, . . . , C,there being C(C − 1)
linearly independent parameters among them. Also, by definition,

P{Xk 6= Yk+1} = 1−
C∑

c=1

πcπcc, (3.4)

which does not depend on k. In general, for any m ≥ 1,

P{Xk 6= Yk+m} = 1−
C∑

c=1

πcπ
(m)
cc , (3.5)

where the π
(m)
cc are the mth order transition probabilities as can be obtained by the power

matrix form prevailing for Markov chains. Thus, for stationary Markov chains, the marginal
IGS are all the same, while the IGS(k, q) depend only on |k − q|.

With a monotone nondecreasing GSI across the positions, under a Markovian setup, the
stationarity of the chain may no longer hold, though it might be argued that for each k,

m2
k =

C∑
c=1

π2
k,c ≤

C∑
c=1

π2
k−1,c = m2

k−1. (3.6)

As a result, we have for every k,

IGS(k − 1, k) ≥ IGS(k − 1, k − 1). (3.7)

If πk−1 = πk then, of course, IGS(k − 1, k) = IGS(k, k) = IGS(k − 1, k − 1). On the other
hand, if the two points πk−1 and πk are very close to each other in the sense that

m2
k ≤

C∑
c=1

πk−1,cπk,c ≤ m2
k−1, (3.8)

then we have
IGS(k − 1, k − 1) ≤ IGS(k − 1, k) ≤ IGS(k, k). (3.9)

In a similar way, we may argue that the following inequality

C∑
c=1

{πk−1,k;cc − πk−1,cπk,c} ≤ 0 (3.10)

holds, then we have
CDGS(k − 1, k) ≥ IGS(k − 1, k), (3.11)
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where the equality sign holds when the events are independent. By chain-rule, we have
therefore

CDGS(k, q) ≥ IGS(πk), ∀k < q = 1, . . . ,K. (3.12)

However, in genomic sequences, the precise ordering of the positions may often be left to
honest statistical guess, and hence, the above inequality restraints may not be always sound
in terms of biological interpretations.

If we let π∗c = (πk,c + πq,c)/2, c = 1, . . . , C, and note that π∗ = (π∗1 , . . . , π∗C)′ belongs
to the simplex SC−1 and the contour on SC−1 marked by the intersection with the sphere
π∗′

π∗ = m2 corresponds to a value of m that lies between the radii of the two spheres
formed by the two πk and πq. Therefore, under the assumed monotonicity condition on the
IGS(k), we obtain that

C∑
c=1

πk,cπq,c ≤
C∑

c=1

(π∗c )2 ≤
C∑

c=1

π2
k,c, (3.13)

for every k < q. This, in turn, implies that

IGS(πk) ≤ IGS(k, q) ≤ IGS(πq), (3.14)

for every pair (k, q) : 1 ≤ k < q ≤ K. This is the basic set of inequality-restraints on the GSI
for each position as well as inter-position GSI’s. However, it does not utilize the information
contained in the CDGS(k, q). For reasons explained before, we shall not incorporate this
additional information; otherwise, the formulation could be quite cumbersome. As a matter
of fact, along the sameline, it follows that under the same regularity conditions,

CDGS(k, q) ≥ CDGS(k′, q′), ∀k ≥ k′, q ≥ q′. (3.15)

On the other hand, if positions k and q are far apart, for a first-order Markov chain, πk,q(c, c)
should behave like the product of the two marginal probabilities, so that in a stationary case,
CDGS(k, q) behaves like IGS(k, q). Therefore, we have more reasons to avoid the measures
CDGS(k, q) for additional information.

Thus, as a composite measure of the monotone diversity, we could pose the following:

J(K) =
∑

1≤k<q≤K

wkq{IGS(πq)− IGS(πk)}

+
∑

1≤k<q≤K

wkq{IGS(k, q)− 1
2
(IGS(πk) + IGS(πq))}

=
∑

1≤k<q≤K

1
2
wkq{IGS(πq) + 2IGS(k, q)− 3IGS(πk)}, (3.16)

where the wkq are nonnegative weights tuned to the distance between k and q. For example,
we could take the genetic distance in some genomic context where Euclidean distance may
not work out. Also, based on suitable biological interpretations, such (pseudo-)distance
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measures can be formulated in specific cases. As such, we let d(k, q) be a suitable distance
measure between the sites k and q, and let

wkq = d(k, q)/{
∑

1≤k<q≤K

d(k, q)}, ∀(k, q), (3.17)

then we have weights monotone increasing with the gap between the two positions; as
d(k, k) = 0, we may let (conventionally) that wkk = 0, ∀k. Whenever the Euclidean distance
is meaningful, we take d(k, q) = |q − k|,∀k, q = 1, . . . ,K, so that the weights simplify to

wkq = 6(q − k)/{K(K2 − 1)}, 1 ≤ k < q ≤ K. (3.18)

Under the null hypothesis of stochastic independence of the positions and homogeneity of
their marginal probability vectors, IGS(πk) = IGS(πq),∀k 6= q = 1, . . . ,K and IGS(k, q) =
IGS(πk), ∀k 6= q = 1, . . . ,K, and hence, J(K) = 0, and it is nonnegative otherwise. For
monotone nonincreading GSI’s, we need to work with the measure −J(K) which will be
zero under the null hypothesis and nonnegative under monotone nonincreasing alternatives.

4 Constrained Statistical Inference

Consider a set of n sequences, each one containing a stochastic K-vector with categorical
responses at each position, labelled as 1, . . . , C. Thus, we have a set of n i.i.d. stochastic
vectors X1, . . . ,Xn where Xi = (X1i, . . . , XKi)′, i = 1, . . . , n, and

Xki = c, if the response of the ith observation at the

kth position has the label c, c = 1, . . . , C, (4.1)

for k = 1, . . . ,K; i = 1, . . . , n. The probability of Xi = c (where c = (c1, . . . , cK)′ with each
ck ranging over the set {1, . . . , C}) follows a structured multinomial probability law over the
set of CK possible discrete realizations SK = {c : ck = 1, . . . , C, k = 1, . . . ,K}. In genomic
applications, typically, K is much larger than n, so that CK would be telescopically larger
than n.

There is therefore a genuine curse of dimensionality problem with statistical resolutions
for such high-dimensional low-sample size categorical data models. The first task is there-
fore to reduce the number of unknown parameters by suitable dimension-reduction tools.
Unfortunately, the classical projection pursuit tools are of very little use in this context.
In classical multivariate normal populations, multivariate analysis of variance (MANOVA)
models have been used extensively for external analysis or homogeneity of different groups.
This problem is also encountered in genomics study (Pinheiro et al. 2000, 2005). For ex-
ample, if we consider several groups of people in different geographical parts of the World
(viz., Africa, South Asia, Europe, North America, Australia), depending on the extent of
the HIV (human immunodeficiency virus) invasion and the type, the AIDS retrovirus might
have reverse transcription to different extents, resulting in mutation in the genome pos-
sibly to different extent, so that classical MANOVA concepts are genuinely appealing in
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drawing statistical inference on their possible homogeneity. The success of statistical tools
in MANOVA primarily lies with the fundamental sub-group or additive decomposability
of measures of dispersions, classically known as the (M)ANOVA decomposability. Even in
normal theory models, with the increase in the dimension, the effectiveness of statistical
tests rapidly breakes down unless the sample sizes increase at a very rapid rate. This is the
basic curse of dimensionality problem.

The problem is more acute for purely qualitative categorical data models, as in here,
where K >> n. Ordered alternatives are not easy to formulate unless suitable measures
are used to reduce the dimension drastically. The Hamming distance is a first step in this
direction, and has come out with a nice and interpretable statistical way for MANOVA
in categorical data models. Decomposability of Hamming distance based sample measures
has been extensively studied in the literature (Sen 1999, 2004; Pinheiro et al. 2000, 2005).
As has been discussed before, the Hamming distance does not presume that the positions
have independent and identically distributed response distribution. Nevertheless, it attaches
equal weight to all the positions. For this reason, in the preceding section, we have considered
some variants of the Hamming distance which have more natural appleal if there are some
aprior information on the overall type of stochastic dependence among the positions.

We consider now two related ordered alternative problems for such high- dimensional
genomic data models. First an internal analysis problem in the light of the findings in the
preceding section. We want to test the null hypothesis that the different positions have the
same Gini-Simpson index, against monotone alternatives in (3.1). For the kth position, an
optimal unbiased nonparametric estimator of IGS(πk) is the sample U -statistic (Hoeffding
1948):

Un,k =
(

n

2

)−1 ∑
1≤i<j≤n

I(Xki 6= Xkj)

=
C∑

c=1

{nkc(n− nkc)}/{n(n− 1)}, k = 1, . . . ,K, (4.2)

where nkc is the number of observations having the label c in the kth position, for c =
1, . . . , C. These U -statistics are generally dependent and possibly nonidentically distributed.
Further, we have noted in (2.5 - (2.7) that by virtue of (2.7) and the monotone nature of
the marginal IGS , there is additional information that we need to take into account. The
sample counterpart of IGS(k, q) is a U -statistic too; it is given by

Un;k,q =
C∑

c=1

{nkc(n− nqc)}/{n(n− 1)}, (4.3)

for 1 ≤ k < q ≤ K. These U -statistics are also possibly not independent of each other or
of the marginal U -statistics. In passing, we may remark that in a similarl way, an unbiased
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estimator of CDGS(k, q) is

Mn;k,q = 1− n−1
C∑

c=1

nkq;cc, k 6= q = 1, . . . ,K, (4.4)

where nkq;cc is the number of observation having the label c in both the kth and qth positions.
In fact, Mn;k,q is also a U -statistic corresponding to a kernel of degree 1 (as such having
independent and identically distributed summands).

To test for the hypothesis of homogeneity of the IGS(πk), k = 1, . . . ,K, against a
monotone nondecreasing pattern, under the assumption (3.14), can be based on the sample
counterpart of (3.16). This is given by

Ĵn(K) =
∑

1≤k<q≤K

1
2
wkq{Un,q + 2Un;k,q − 3Un,k}

=
∑

1≤k<q≤K

wkq

2n(n− 1)
{nqc(n− nqc) + 2nkc(n− nqc)− 3nkc(n− nkc)}

=
∑

1≤k<q≤K

wkq{(nqc − nkc)(n− nqc − 3nkc(nqc − nkc)}/{2n(n− 1)}

=
∑

1≤k<q≤K

wkq{(nqc − nkc)(n− 4nqc + 3nkc)}/{2n(n− 1)}. (4.5)

It may be noted that Ĵn(K) is itself a U -statistic based on a kernel of degree 2, which we
denote by φw(Xi,Xj). Therefore the asymptotic normality results follow from the classical
results of Hoeffding (1948). There is, however, something more to note in this context.

By definition, the kernel is an weighted average of K(K + 1)/2 kernels, which for any
pair of observations (vectors) may not be all stochastically independent. If they were in-
dependent, the variance of kernel would have been O(K−1). Even without such a strong
assumption of independence of all the K positions, it can be shown that under fairly general
inter-position stochastic dependence, especially under a suitable mixing dependence condi-
tion, when K is large, the kernel φw(.) has variance O(K−1). As such, if K is large, as is
generally the case in genomics, we would have an advantage that the standardizing factor
in the asymptotic distribution of Ĵn(K) would be

√
Kn instead of

√
n. This also makes

it possible to have smaller values of n eligible for the good asymptotic normality approxi-
mation when K is not small. In the contemplated situation where K >> n, this not only
makes the result applicable in a broader setup but also leads to a faster rate of convergence.
On the other hand, the variance of the statistic Ĵn(K) (even under the null hypothesis of
homogeneity) depends in an intricate way on the interposition stochastic dependence pat-
tern. Hence there is a genuine need to estimate this variance from the sample data in a
suitable way. Although, technically, it can be shown that the variance functional is itself
a U -statistic of degree 4, and hence can be unbiasedly estimated from the sample, such an
estimator would be in general quite computationally cumbersome. For this reason, we use
the classical jackknife method to estimate this variance.
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Note that Ĵn(K) being a U -statistic unbiasedly estimates J(K). If we denote the entire
set of n sequences by X = (X1, . . . ,Xn) then on taking out Xi, the ith column of X we
denote the resulting set of sequences by X(−i), for i = 1, . . . , n; the corresponding statistics
are denoted by Ĵ

(−i)
n−1 , i = 1, . . . , n. Each of these statistics is an unbiased estimator of the

common J(K). Let then

Ĵn,i(K) = nĴn(K)− (n− 1)Ĵ (−i)
n−1 , i = 1, . . . , n. (4.6)

These are the so called pseudo-values, and in the present case, they are all unbiased for
J(K). As such, the jackknife vesrion of Ĵn(K), the average of these pseudo-values, agrees
with the estimate itself; because of unbiasedness, there is no question of bias reduction.
However, these pseudo-values can be incorporated in the variance estimation. We define
then the Tukey variance estimator by

V̂n(K) = (n− 1)−1
n∑

i=1

{Ĵn,i − Ĵn(K)}2. (4.7)

It follows that V̂n(K) is a consistent estimator of the variance of
√

n{Ĵn(K) − J(K)}, in
the sense that the ratio of the two converges stochastically (in fact, almost surely) as n

increases. Therefore, under quite general regularity conditions and without being restricted
to the null hypothesis, we claim that as n increases,

Zn =
√

n(Ĵn(K)− J(K))/
√

V̂n(K) L⇒ N (0, 1). (4.8)

Now under the null hypothesis, J(K) = 0 while under the contemplated alternatives, J(K)
is positive. Hence, a one-sided test appears to be the natural case. With that in mind, we
consider the test statistic as

Tn =
√

nĴn(K)/
√

V̂n(K) (4.9)

and reject the null hypothesis when Tn exceeds a critical level τn(α) corresponding to a level
of significance α(0 < α < 1). We can approximate well τn(α) by the upper α-quantile of
the standard normal distribution.

It might be interesting to note that in genomic studies, usually K is large while n, albeit
large, is usually much smaller than K, i.e., we have the situation where K >> n. Although
individually each indicator function is zero-one valued, the statistic Ĵn(K) involves a kernel
which is an weigted average of K(K + 1)/2 such indicator function. As such, under a
suitable weak dependence condition, the kernel when properly standardized (by the scale
factor K1/2 and centering J(K) ) is asymptotically (in K) normal with zero mean and a finite
variance. It is also worth noting that we are not assuming the homogeneity of the marginal
multinomial laws (nor their independence). Hence, though it might be tempting to use a
double-jackknife method that incorporates jackknifing on the K positions in addition to the
jackknifing on the individual sequences, a theoretical justification is still mot established.
If, however, the positions in a sequence exhibit a stationary process, then such a double-
jackknife method would work out to our advantage. We have not discussed the bootstrap
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methodology. That is also routinely applicable on the sequences. On the other hand, as the
weighted kernel is asymptotically (in K) normal, small sample adjustments for bootstrap
methods (to improve the approximation) can also be made effectively. This feature enables
us to use the jackknife variance estimator V̂n(K) even for moderate values of n when K

is large. This interesting feature is unique with this Hamming-type distance measures as
contrasted with conventional measures that run into the curse of dimensionality problem to
a much greater extent.

5 Some Illustrations

While the curse of dimensionality is prevalent in many fields of application, here, we confine
ourselves to genomic studies where such a formulation of weighted Hamming distance has
a lot of useful applications. As illustrative examples, we consider the following.

Consider a SNP (single nucleotide polymorphism) data model where there are K (usually
very large) positions, and at each position the response is one of the 4 nucleotides A,
C, G and T. Typically, we have a number (n) of such sequences where n << K. The
responses at these positions can not be generally taken to be independent nor identically
distributed. In the context of AIDS and HIV (human immunodeficiency virus) studies, the
scientific focus is on the genetic variability of SNP’s. We may note that retrovirus, like HIV,
has the ability to reverse the normal flow of genetic information from genomic DNA, and
that the genetic variability of HIV is relatively high compared to other retroviruses (Coffin
1986). This way, we encounter a typically high-dimensional purely qualitative multivariate
stochastic process, and the covariability aspects are of considerable study-importance. The
HIV retrovirus also distorts plausible stationarity of the responses over the positions. For
the special case of a pair of positions, Karnoub et al. (1999) considered some conditional
tests of independence of mutations, and studied their large sample perspectives. It is not
uncommon to have smaller sequence sizes and a large number of positions. It remains to
see how their proposed methodology provides satisfactory resolutions in such a large K

and small n case. Conventional internal (multivariate) analysis tools (such as the canonical
correlation, principal component model, factor analysis) are of limited utility in this high-
dimensional discrete set-up. Also, the modern data miniting tools, although very much used
in genomics studies, need more statistical foundations to facilitate at least the statistical
modeling and analysis perspectives (Durbin et al. 1998, Ewens and Grant 2001, Waterman
1995).

Motivated by the immense need of identification of disease genes in human diseases,
there is a challenging problem of mapping the genetic basis which is characterized by high-
heterogeneity accompanied by multiple causative loci with probably multiple alleles at these
causative loci. Association of multiple genes with specific human disease(s) is therefore very
much in the mind of genomic researchers. Use of multiple markers has been an important
genomic approach to this mapping of disease genes. However, from statistical modeling and
analysis perspectives of such complex association (and causative relations), there remains
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a lot to accomplish. Schaid et al. (2005) have incorporated the Hamming distance type
measures, and this approach needs more appraisal in the light of monotone dependence in
some meaningful ways. There is some incompleteness in dealing with the complex statistical
distribution theory of such compound measures, as typically, K >> n, and even n could
be small. In the same vein, Tzeng et al. (2003) virtually used the Gini-Simpson index
and compounded them over the loci or positions. The pertinent fact is that these positions
may not have independent responses, and in combining the locus-specific measures into one
is therefore subject to the same question of very high-dimension and low sample size. The
present study, done independently of their work, provides some complementary methodology.
It is hoped that it would bridge the gap to a certain extent.

As of now, researchers confronted with this curse of dimensionality problems in genomic
studies, mostly assume that the positions have independent and identically distributed re-
sponses. At the rampage of HIV, it is expected that a monotone genetic variability (diver-
sity) across the positions is more likely to be the case (whenever the positions are ordered
in an accessible manner. As such, the methodology discussed in the last two sections should
be of immense help in statistical spatial-analysis of SNP’s in the presence of retroviruses.
In genetics, multi-factorial genetics is coming up as a natural contender of the classical
Mendelian genetics in many polygenic models. Pharmacogenomics and the drug-discovery
ventures associated with disease genes have raised the necessity of looking into genetic vari-
ation in a much broader setup. It is our hope that the proposed methodology would find its
way into statistical analysis and modeling of such enormously large dimensional categorical
data models.
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