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summary

In this paper we consider the problem of estimating the common mean µ of two
independent normal populations with unknown and possibly unequal variances.
The purpose of this paper is to compare four unbiased estimates of µ based
on Multiple Criteria Decision Making (MCDM) procedure in order to rank the
estimates from the best to the worst in terms of their variances. A simulation
study is also used to compare the competing estimates in small samples.

Keywords and phrases: Common mean, multiple criteria decision making

AMS Classification: 62C25, 62G05

1 Introduction

One of the interesting problems in statistical inference is the estimation of a common mean
of two independent normal populations with unknown and unequal variances. It has been
extensively discussed by Graybill and Deal [2], Sinha [7], and Pal and Sinha [5]. The
objective of this paper is to compare various estimates of a common mean based on Multiple
Criteria Decision Making (MCDM) which has been advocated by Hwang and Yoon [3],
Zeleny [10], and Yoon and Hwang [9]. A lot of research work has been concerned with
MCDM problem such as Filar et al. [1] and Maitra et al. [4]. The MCDM method is briefly
described in Section 2 and Section 3 contains the main results for our problem.
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2 A brief description of MCDM procedure

In the context of a ‘discrete’ data matrix X = (xij) : K × N where x′ijs represent ‘risk ’
of ith ‘source’ for jth ‘category ’, and we need to compare the K rows simultaneously with
respect to all the N columns, MCDM is a novel statistical procedure to integrate the multiple
indicators (xi1, . . . , xiN ) for row i across all indicators into a single meaningful and overall
index. This is done by defining an Ideal Row (IDR) with the smallest observed value for
each column as

IDR = (min
i

xi1, . . . , min
i

xiN ) = (u1 , . . . , uN )

and a Negative-ideal Row (NIDR) with the largest observed value for each column as

NIDR = (max
i

xi1, . . . , max
i

xiN ) = (v1 , . . . , vN ).

For any given rowi,we now compute the distance of each row from Ideal row and from
Negative Ideal row based on a suitably chosen norm. Under L1-norm, we compute

L1( i , IDR) =
N∑

j = 1

[xij − uj ] wj

L1( i , NIDR) =
N∑

j = 1

[ vj − xij ] wj

where w′
js are appropriate weights. The various rows are now compared based on an overall

index computed as

L1(Indexi) =
L1(i , IDR)

L1(i , IDR) + L1(i , NIDR)
, i = 1 , . . . , K. (2.1)

Similarly, under L2-norm, we compute

L2( i , IDR) = [
N∑

j = 1

(xij − uj)2wj ]1/2

L2( i , NIDR) = [
N∑

j = 1

(xij − vj)2wj ]1/2

and compare the rows based on

L2(Index i) =
L2(i , IDR)

L2(i , IDR) + L2(i , NIDR)
, i = 1 , . . . , K. (2.2)

A ‘continuous’ version of this setup would involve x′ijs where the index j would vary ‘contin-
uously ’. In the context of our problem of comparing four unbiased estimates for estimation
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of a common mean µ of two normal populations with unknown variances σ2
1 and σ2

2 (see Sec-
tion 3 below), obviouslyK = 4, x′ijs are chosen to represent variances of the four estimates
for various value of τ = σ2

2/σ2
1 . L1-norm and L2-norm would be redefined as

L1( i , IDR) =

∞∫
0

[xi(τ)− u(τ)] w (τ) dτ (2.3)

L1( i , NIDR) =

∞∫
0

[v(τ)− xi(τ)] w (τ) dτ (2.4)

L2( i , IDR) =

√√√√√ ∞∫
0

(xi(τ)− u(τ))2 w (τ) dτ (2.5)

L2( i , NIDR) =

√√√√√ ∞∫
0

(v(τ)− xi(τ))2 w (τ) dτ (2.6)

where u(τ) = min
i
{xi(τ)} and v(τ) = max

i
{xi(τ)}.

3 Main results

Let x1, x2, ..., xn and y1, y2, ..., yn be iid observations from N(µ, σ2
1) and N(µ, σ2

2), respec-
tively. Let x̄, ȳ,s2

1, s2
2 be sample means and sample variances based on sample size n. Define

D = ȳ − x̄. The following four unbiased estimates of µ are quite standard in the literature:
µ̂1 =

(
x̄
s2
1

+ ȳ
s2
2

)/(
1
s2
1

+ 1
s2
2

)
(Graybill and Deal [2]),

µ̂2 = x̄ + D
(

s2
1+D2

s2
1+s2

2+D2

)
(Sinha and Mouqadem [8]),

µ̂3 = x̄ + D min
{

s2
1

s2
1+s2

2
,

s2
2

s2
1+s2

2

}
(Sinha [6]),

µ̂4 = x̄ + D
(

s1
s1+s2

)
(Sinha and Mouqadem [8]).

To compare the above four unbiased estimate of µ based on their variances, it should
be noted that exact analytical expression for the variances are quite complicated. We do
this by simulation. It should also be noted that, apart from a common factor σ2

1 , all the
variances depend on τ = σ2

2/σ2
1 . We have generated 50 sets of values for µ̂1, µ̂2, µ̂3 and

µ̂4,when n = 5, 10, 15 with τ = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, taking µ = 0and
σ2

1 = 1,and computed their variances. We report below the simulated values of variance for
each estimate in Tables 1-3 for different values of n.

Finally, we apply MCDM to these four estimates. Figures 1-3 depict the variances of
these estimates.

Write x1k(τ) = V ark(µ̂1), . . .,x4k(τ) = V ark(µ̂4) for interval k, k = 1,2,. . . ,9. We ob-
serve from the graphs that there are 9 intervals of τ(0.2<0.4<0.6<0.8<1.0<1.2<1.4<1.6<1.8<2.0).
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Table 1: Values of variances for n = 5

τ Var(µ1) Var(µ2) Var(µ3) Var(µ4)

0.2 0.05725 0.05427 0.16221 0.07517

0.4 0.04082 0.04555 0.09103 0.04090

0.6 0.10196 0.08436 0.13951 0.09152

0.8 0.10867 0.10417 0.12325 0.10336

1.0 0.11361 0.11292 0.14471 0.10631

1.2 0.07718 0.10339 0.08236 0.06705

1.4 0.09673 0.13547 0.08218 0.08971

1.6 0.14825 0.15990 0.13636 0.13831

1.8 0.15172 0.15305 0.13705 0.12479

2.0 0.13989 0.16571 0.15138 0.13040

Table 2: Values of variances for n = 10

τ Var(µ1) Var(µ2) Var(µ3) Var(µ4)

0.2 0.01609 0.01584 0.06086 0.01879

0.4 0.02162 0.02216 0.04282 0.02138

0.6 0.03330 0.03186 0.05040 0.03348

0.8 0.03887 0.03745 0.05115 0.03794

1.0 0.03853 0.03909 0.04945 0.03456

1.2 0.05163 0.04965 0.05379 0.05091

1.4 0.06254 0.06406 0.06375 0.05846

1.6 0.05246 0.05547 0.05215 0.04650

1.8 0.07246 0.07301 0.07360 0.06951

2.0 0.07904 0.08147 0.07557 0.07346
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Table 3: Values of variances for n = 15

τ Var(µ1) Var(µ2) Var(µ3) Var(µ4)

0.2 0.01092 0.01090 0.04406 0.01322

0.4 0.01738 0.01716 0.03362 0.01790

0.6 0.03029 0.03070 0.03512 0.02972

0.8 0.02946 0.02992 0.02808 0.02837

1.0 0.03455 0.03480 0.03549 0.03186

1.2 0.03462 0.03627 0.03281 0.03221

1.4 0.03666 0.04187 0.03421 0.03528

1.6 0.05323 0.05579 0.04896 0.04914

1.8 0.05029 0.05450 0.05016 0.04833

2.0 0.04629 0.05257 0.04677 0.04682
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Figure 1: Graphical illustration of variances for four estimates when n = 5
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Figure 2: Graphical illustration of variances for four estimates when n = 10
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Figure 3: Graphical illustration of variances for four estimates when n = 15
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Moreover some intervals have intersection point between graphs so we can subdivide these
intervals. The main Ideal row and Negative-ideal row are as follows:

IDR : u(τ) = {u1(τ) : 0.2 < τ < 0.4, u2(τ) : 0.4 < τ < 0.6, u3(τ) : 0.6 < τ < 0.8,

u4(τ) : 0.8 < τ < 1.0, u5(τ) : 1.0 < τ < 1.2, u6(τ) : 1.2 < τ < 1.4,

u7(τ) : 1.4 < τ < 1.6, u8(τ) : 1.6 < τ < 1.8, u9(τ) : 1.8 < τ < 2.0},

NIDR : v(τ) = {v1(τ) : 0.2 < τ < 0.4, v2(τ) : 0.4 < τ < 0.6, v3(τ) : 0.6 < τ < 0.8,

v4(τ) : 0.8 < τ < 1.0, v5(τ) : 1.0 < τ < 1.2, v6(τ) : 1.2 < τ < 1.4,

v7(τ) : 1.4 < τ < 1.6, v8(τ) : 1.6 < τ < 1.8, v9(τ) : 1.8 < τ < 2.0}.
Since we are dealing with a continuous parameter τ,(0.2<0.4<0.6<0.8<1.0<1.2<1.4<1.6<

1.8 < 2.0), a proper formulation of the MCDM procedure can be given as follows.

4 Analysis based on L1-norm

For i = 1,2,3,4, we get

L1(i, IDR) =

0.4∫
0.2

(xi1(τ)− u1(τ)) w (τ ) dτ +
0.6∫
0.4

(xi2(τ)− u2(τ)) w (τ ) dτ

+
0.8∫
0.6

(xi3(τ)− u3(τ)) w (τ ) dτ +
1.0∫
0.8

(xi4(τ)− u4(τ)) w (τ ) dτ

+
1.2∫
1.0

(xi5(τ)− u5(τ)) w (τ ) dτ +
1.4∫
1.2

(xi6(τ)− u6(τ)) w (τ ) dτ

+
1.6∫
1.4

(xi7(τ)− u7(τ)) w (τ ) dτ +
1.8∫
1.6

(xi8(τ)− u8(τ)) w (τ ) dτ

+
2.0∫
1.8

(xi9(τ)− u9(τ)) w (τ ) dτ

L1(i, NIDR) =

0.4∫
0.2

(v1(τ)− xi1(τ)) w (τ ) dτ +
0.6∫
0.4

(v2(τ)− xi2(τ)) w (τ ) dτ

+
0.8∫
0.6

(v3(τ)− xi3(τ)) w (τ ) dτ +
1.0∫
0.8

(v4(τ)− xi4(τ))w (τ ) dτ

+
1.2∫
1.0

(v5(τ)− xi5(τ)) w (τ ) dτ +
1.4∫
1.2

(v6(τ)− xi6(τ)) w (τ ) dτ

+
1.6∫
1.4

(v7(τ)− xi7(τ)) w (τ ) dτ +
1.8∫
1.6

(v8(τ)− xi8(τ)) w (τ ) dτ

+
2.0∫
1.8

(v9(τ)− xi9(τ)) w (τ ) dτ

The overall index can then be computed. It is clear that for the purpose of comparison of
the four estimates, we can work with

L1(Indexi) = L1(i , IDR)
L1(i , IDR)+L1(i , NIDR) , i = 1,2,3,4.
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5 Analysis based on L2-norm

For i = 1,2,3,4, we get

L2(i, IDR) =

√√√√√√√√√√√√√√√√√√√√

0.4∫
0.2

(xi1(τ)− u1(τ))2 w (τ ) dτ +
0.6∫
0.4

(xi2(τ)− u2(τ))2 w (τ ) dτ

+
0.8∫
0.6

(xi3(τ)− u3(τ))2 w (τ ) dτ +
1.0∫
0.8

(xi4(τ)− u4(τ))2 w (τ ) dτ

+
1.2∫
1.0

(xi5(τ)− u5(τ))2 w (τ ) dτ +
1.4∫
1.2

(xi6(τ)− u6(τ))2 w (τ ) dτ

+
1.6∫
1.4

(xi7(τ)− u7(τ))2 w (τ ) dτ +
1.8∫
1.6

(xi8(τ)− u8(τ))2 w (τ ) dτ

+
2.0∫
1.8

(xi9(τ)− u9(τ))2 w (τ ) dτ

L2(i,NIDR) =

√√√√√√√√√√√√√√√√√√√√

0.4∫
0.2

(v1(τ)− xi1(τ))2 w (τ ) dτ +
0.6∫
0.4

(v2(τ)− xi2(τ))2 w (τ ) dτ

+
0.8∫
0.6

(v3(τ)− xi3(τ))2 w (τ ) dτ +
1.0∫
0.8

(v4(τ)− xi4(τ))2 w (τ ) dτ

+
1.2∫
1.0

(v5(τ)− xi5(τ))2 w (τ ) dτ +
1.4∫
1.2

(v6(τ)− xi6(τ))2 w (τ ) dτ

+
1.6∫
1.4

(v7(τ)− xi7(τ))2 w (τ ) dτ +
1.8∫
1.6

(v8(τ)− xi8(τ))2 w (τ ) dτ

+
2.0∫
1.8

(v9(τ)− xi9(τ))2 w (τ ) dτ

Under L2-norm also, the overall index can be computed.

6 Choice of weight functions

Our first weight function w1(τ) is defined by w1(τ) = 1 for every interval. Following Filar
et al.[1], we also consider two additional choices of w (τ). The first one, denoted by w2(τ),
is based on the notion of entropy among x1k(τ), x2k(τ), x3k(τ) and x4k(τ) for interval k

with various values of τ , denoted as w2k(τ),when k = 1,2,. . . ,9, and the second one, denoted
by w3(τ), is based on the coefficient of variation of x1k(τ), x2k(τ), x3k(τ) and x4k(τ) for
interval k with various values of τ , denoted as w3k(τ),when k = 1,2,. . . ,9. It turns out that

w2k(τ) =
1− φk(τ)

∞∫
0

[ 1− φk(τ) ] dτ
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where

φk(τ) = − 1
log 4

4∑
i=1


xik(τ)

4∑
i=1

xik(τ)
. log

 xik(τ)
4∑

i=1

xik(τ)


 , k = 1, 2, ..., 9

and

w3k(τ) =

√
1
4

4∑
i=1

(xik(τ)− x̄k(τ))2

1
4

4∑
i=1

xik(τ)

therefore,

w3(τ) =

√
3x2

1k(τ) + 3x2
2k(τ) + 3x2

3k(τ) + 3x2
4k(τ)− 2x3k(τ)x4k(τ)− 2x2k(τ)(x3k(τ) + x4k(τ))

4∑
i=1

xik(τ)

k = 1, 2, ..., 9.

7 Comparison of estimates

We report the ranks of the four estimates when compared on the basis of the weight functions
w1(τ), w2(τ)and w3(τ) using L1-norm and L2-norm in Tables 4-6.

8 Conclusion

Based on the above analysis under L1- and L2- norms, we conclude that our preference is
uniformly for Sinha and Mouqadem [9] estimate µ̂4 under three weights w1(τ), w2(τ) and
w3(τ). The familiar Graybill and Deal [3] estimate µ̂1 which often holds rank 2 is also a
good candidate for estimation of µ.
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