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summary

The problem of estimating the parameters of logistic regression model is consid-
ered when it is known from extraneous sources that the uncertain prior infor-
mation in the form of the hypothesis H0 : β0 = . . . = βk−1 = β0 (pivot) may
hold. Five estimators, namely, the unrestricted maximum likelihood estimator
(UMLE), the shrinkage restricted estimator (SRE), the shrinkage preliminary test
estimator (SPTE), the shrinkage estimator (SE) and the positive-rule shrinkage
estimator (SE+) are considered. The SE and SE+ are the Stein-type estimators
based on the preliminary test approach of Saleh and Sen. In the light of derived
MSE matrices and distributional risks, the relative performance of the five esti-
mators under local alternatives are studied in detail. These analyses reveal that
when k ≥ 3, we should use the SE or SE+ and for k ≤ 2 it is advisable to use the
preliminary test estimator (PTE).
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type estimator, Quadratic risk, Pitman alternatives, Wald test.
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1 Introduction

In problems of statistical inference, the use of prior information on some (all) of the param-
eters in a statistical model usually leads to an improved inference procedure for other (all)
parameters of interest. The prior information may be known or uncertain. The known prior
information is generally incorporated in the model in the form of a constraint, giving rise
to restricted models. The analysis of such restricted models leads to improved statistical
procedures compared with the unrestricted model case when such constraints hold. (The
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estimators resulting from the restricted (unrestricted) model is known as the restricted (un-
restricted) estimators of the parameters of the model.) The validity and efficiency of the
restricted model analysis retains its properties over the restricted parameter space induced
by the constraint, while the same holds for the unrestricted model analysis over the entire
parameter space. Therefore, the results of an analysis of the restricted and unrestricted
models need to weigh against loss of efficiency and validity of the constraints in order to
choose between two extreme inference techniques, when a full confidence may not be put in
the prior information.

When we encounter problems with uncertain prior information in a statistical model,
we may impose some prior information (which may be available from some extraneous
considerations) on the model. However, there may be reasons to suspect their validity as a
recommendation for restricted model analysis. This uncertain prior information considered
in the form of a constraint may be regarded as “nuisance parameter” in the statistical
inference of the model. To ameliorate this uncertainty of the prior information in the model
one could naturally follow “Fisher’s recipe” of elimination of the nuisance parameter by a
preliminary test on the validity of the uncertain prior information in the form of a parametric
constraint and then choose either the restricted or the unrestricted inference depending on
the fate of the preliminary test. This theme brings home a compromised inference procedure
between two extremes. (It could be looked upon as a happy marriage between two extremes.)
This line of thought was pioneered by Bancroft (1944) in the study of the consequences of
incorporating a preliminary test in pooling several estimates of variances in an analysis
of variance table. This idea of preliminary test estimation has been developed further in
a series of papers by Bancroft, Bancroft and Han (see Bancroft and Han (1980) for an
excellent review) among others.

In 1956, Charles Stein (Stein, 1956) discovered an unexpected but surprising result (in
the form of a counter example) that the sample mean was an inadmissible estimator of the
mean of a normal distribution under squared error loss in three or higher dimension. After-
wards, James and Stein (1961) provided an explicit estimator dominating the sample mean.
This work was like a shock for the whole statistical world and profoundly affected the course
of statistical theory. Virtually, the James-Stein work attacked all good properties of statis-
tical estimators viz: least squares, maximum likelihood, unbiasedness, invariance and the
minimax principle. The usual estimator of the sample mean is uniformly minimum covari-
ance unbiased, maximum likelihood, best invariant, and minimax, and yet its performance
in terms of expected squared error loss is demonstratively inferior to that of the James-Stein
estimator. The last fifty years or so of statistical science witnessed a fundamental growth of
the literature in this fruitful area of research. See Berger (1985) for a detail account of some
of these developments, mostly related to the classical multinomial and some specific types
of exponential families of distributions. For further development in multivariate Stein-type
estimation see Ghosh and Lin (1986).

The estimators which uniformly improve on standard estimators are usually called Stein-
type estimators as a gesture of honor to Professor Charles Stein. Basically, the Stein-type
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estimators may be obtained via a decision theoretic approach for the normal theory models
and empirical Bayes approach as propounded by Efron and Morris (1973). However, Casella
(1985) pointed out that the Stein-type estimators need appropriate test statistics for testing
out the adequacy of the uncertain prior information that is incorporated in the actual
formation of the estimators. Stein-type estimators adjust the unrestricted estimator by
an amount equal to the difference (= the restricted estimator - the unrestricted estimator)
multiplied by a shrinkage factor times the reciprocal of the relevant test-statistics (for testing
the uncertain prior information). Generally, these test-statistics measure the normalized
distance between the restricted and unrestricted estimators and follow a noncentral chi-
squared (or noncentral F) distribution with appropriate degrees of freedom. The risks of
Stein-type estimators (including other estimators) depend on the noncentrality parameter
of the chi-square (or F) distribution. In an asymptotic setup the computation of the risk of
the Stein-type estimators (as well as the other estimators) may be obtained from their non-
degenerate asymptotic distributions. The derivation of these non-degenerate asymptotic
distributions depends on the sequence of local alternatives (known as Pitman alternatives).
Note that the local alternatives mean the alternatives which are in close proximity of the
null hypothesis. In other words, we may concieve of a sphere of radius, rn with the null
hypothesis as the centre such that the sphere reduces to a point in k-dimension as n →∞.
With such alternatives the aim is to have a steeper power function of the preliminary test
near the null hypothesis. The risks obtained via asymptotic technique under the local
alternatives are termed as the asymptotic distributional risks (ADRs). The ADR provides
an easy and meaningful access to the study of the Stein-type estimators (as well as the
other estimators) in a much broader setup. (For more on the ADR see Sen (1979, 1986),
and Saleh and Sen (1987).)

Though Stein-type estimators achieved a big theoretical success they are really under-
achievers in a number of practical applications and least affected by the enriched develop-
ment of state-of-art computer facilities. So, it is ripe for a computer-intensive treatment that
brings the substantial benefits of James-Stein estimation to bear on complicated, realistic
problems (Efron, 1995).

It is not hard for one to find a close relation between Robbins (1956)’s empirical Bayes
theory and the James-Stein phenomenon. The ultimate gain (whatever theory we use) is
to have considerably better inference than a classical one. Moreover, in both the cases, the
statisticians get advantage of using a Bayes estimation rule, without trouble of choosing
a Bayes prior distribution. The data effectively choose the correct prior. For a better
understanding of the empirical Bayes interpretation of the James-Stein estimator see Efron
and Morris (1973). In his lucid introduction written for the James-Stein (James and Stein,
1961) article Efron (1992) described how the Bayesian theme works behind the James-Stein
theorem and the exactness of the empirical Bayes estimator of the sample mean to the
James-Stein estimator.

Given the benefit of the above discussion, it is a legitimate question to ask (or the same
question frequently asked by the Bayesians, empirical Bayesians and mostly by practitioners
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in these areas of research): how much do we gain from the Stein-type phenomenon compared
to the Bayes and empirical Bayes? We may recall here the mathematical complications in
obtaining the posterior distribution in the Bayes approach and the numerical difficulty
and computer-intensiveness (e.g., Gibbs sampling) in obtaining Stein-type estimators via
empirical Bayes approach in non-standard problems. The reader may see Albert and Chib
(1993)’s article to have a glimpse of how much mathematical derivation they have done and
what is the ultimate gain?

Saleh and Sen (Saleh and Sen, 1978, 1983, 1984a,b, 1985a,b,c,d, 1986a,b) took the
frequentist path of improving standard estimators regarding non-parametric problems on
location and linear regression parameters by developing Stein-type estimators. (The path
they have chosen actually combined the idea of the preliminary test approach and the
concept of shrinkage in the James-Stein estimation setup. See Saleh and Sen (1984b) for
an overview.) Using their approach, it is possible to obtain explicit expressions for the
Stein-type estimators which is usually not possible by the empirical Bayes approach in non-
standard problems as mentioned above. However, this type of approach has never been used
in the development of the analysis of binary data based on logistic regression. This work is
the first attempt to apply the developments in Stein-type estimators due to the aforesaid
authors and see the consequences of positive or negative results.

Section 2 introduces the preliminaries on the inference of logistic regression model pa-
rameters. In section 3 we proposes new estimators. Section 4 contains the asymptotic bias,
MSE matrix and risk expression for the newly proposed estimators in section 3. In sec-
tion 5, risk and MSE analyses of the estimators are given side by side. Section 6 includes
illustrative example and graph analysis. Section 7 concludes with some remarks.

2 Preliminaries on the Estimation of Logistic Regres-
sion Model Parameters

Let Yi ∈ {0, 1} denote a dichotomous dependent variable, and let xi = (1, x1, x2, . . . , xk−1)
be a k dimensional vector of explanatory variables, for the ith observation. The probability
that Yi = 1, given the value of xi, is assumed to be P (Yi = 1) = π(xi) and is defined by the
logistic regression model as

π(x) = [1 + e−βT x]−1 (2.1)

where βT = (β0, β1, . . . , βk−1) is a vector of k parameters of interest. The logit transforma-
tion in terms of π(x) is given by

log
π

1− π
= β0 + β1x1 + . . . + βk−1xk−1. (2.2)

The maximum likelihood estimate of β can be obtained from the likelihood equation

XT (Y − π) = 0 (2.3)
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where X is an n×k matrix of explanatory variables, Y is an n×1 vector values of dependent
variable, π is an n×1 vector of πi’s and 0 is a k×1 vector of zeros. The likelihood equation
is non-linear in β0, β1, . . . , βk−1 and is solved by suitable iterative methods (Hosmer and
Lemeshow, 1989). The formula used for (t + 1)-th iteration based on the t-th result is given
by

β(t+1) = β(t) + {XT Diag[π(t)
i (1− π

(t)
i )]X}−1XT (Y −m(t)) (2.4)

where m(t) = (π(t)
1 , π

(t)
2 , . . . , π

(t)
k ).

The estimated information matrix can be formulated as

Î(β) = XT V X (2.5)

where V is an n × n diagonal matrix with element π̂i(1 − π̂i) in the main-diagonal and 0
otherwise. The variances and covariances of the estimated coefficients are obtained from
the inverse of the matrix defined in (2.5).

In order to test the significance of the parameter vector β = (β0, β1, . . . , βk−1)T the
usual test procedures like the likelihood ratio, score and Wald are used in practice. These
procedures have optimal asymptotic properties, but the small-sample behavior is less well
known (see some detail results in Matin (2005)).

3 The Proposed Estimators

Our primary objective is to estimate the parameter vector β = (β0, β1, . . . , βk−1)T when it
is known from extraneous sources that the uncertain prior information in the form of the
hypothesis H0 : β0 = . . . = βk−1 = β0 (pivot) may hold. For example, if β0 = 0, then
the probabilities are equal to 1/2. Under this situation, we first consider (begin with) the
maximum likelihood estimator (MLE) which is already described in section 2. We designated
this as the unrestricted maximum likelihood estimator (UMLE), β̃n, of β.

If the hypothesis H0 is true, then it is worthwhile to consider β01k as the estimate of β.
However, the presence of sample data dictates that we combine β01k with the UMLE β̃n as

β̂(c)
n = cβ01k + (1− c)β̃n (3.1)

0 < c ≤ 1 where c is appropriately determined from some conviction on the degree of
confidence on H0. If c = 1, we arrive at the usual estimator β01k (not based on the
sample). We designate the estimator in (3.1) as the shrinkage restricted estimator (SRE) of
β.

Now, for fixed c, the performance of β̂
(c)
n is optimal when H0 is true but disastrous (as

the risk of the estimator increases unboundedly) when H0 does not hold. The SRE will
perform poorly in this event and may even be inconsistent.

Thus, there is compelling reason to combine β01k and β̃n in some other way. One such
method is due to Bancroft (1944) and Han and Bancroft (1968) known as the preliminary
test estimation. Treating the null hypothesis H0 : β0 = . . . = βk−1 = β0 (pivot) as the
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nuisance parameter for the problem one applies the “Fisher’s recipie” to test it out and on
the result of the test chooses β01k or β̃n at a certain level α of significance. This estimator
via the preliminary test is known as the preliminary test estimator (PTE). The result is
that we obtain a simple estimator which controls the problem (regarding risk) inherited by
the shrinkage restricted estimator β̂

(c)
n .

In order to test the null hypothesis we consider the test statistic Wn defined by

Wn = n(β̃n − β01k)T (XT V X)(β̃n − β01k). (3.2)

This allows us to combine the SRE and UMLE as follows:

β̂SPT
n = β̂(c)

n I(Wn < wn,α) + β̃nI(Wn ≥ wn,α) = β̃n − c(β̃n − β01k)I(Wn < wn,α) (3.3)

where wn,α is the α level critical value using the distribution of Wn and I(A) is the indicator
function for the set A (I(A) = 1 if A happens and 0 otherwise). The expression (3.3) is a
convex combination of β̂

(c)
n and β̃n. The estimator is called the shrinkage preliminary test

estimator (SPTE). For c = 1 in (3.3), we obtain the ordinary preliminary test estimator
(PTE) of β, β̂PT

n .
Note that the test statistic in (3.3) is the Wald statistic. One can use the score statistic as

well as the likelihood ratio statistic. These three test statistics are asymptotically equivalent,
while in small samples they behave differently. (For their detail use see Matin and Saleh
(2005)).

The preliminary test estimator has its own problem. Though it combines the SRE and
UMLE convexly, it depends on the level α (0 < α < 1) of significance. Thus, what would
be the optimal value of α remains a burning question. On

the other hand, the mean square error of the estimator at certain points of the parameter
space may not be acceptable being too high even with optimal α.

The SPTE has the same disadvantage as the PTE in that it depends on the level of
significance α (0 < α < 1) and also results in two extreme estimators, namely, β̂

(c)
n and β̃n

depending on the outcome of the preliminary test (PT).
This encourages one to find alternative estimators. One may try to develop Stein-type

estimators based on the preliminary test approach of Saleh and Sen (Saleh and Sen, 1978,
1983, 1984a,b, 1985a,b,c,d, 1986a,b). There are two types of Stein-type estimators we shall
consider, namely the ordinary shrinkage estimator (SE) and the positive-rule shrinkage
estimator (SE+).

Thus, a shrinkage estimator (SE) of β is defined by

β̂S
n = β01k +{1− (k−2)W−1

n }(β̃n−β01k) = β̃n− (k−2)(β̃n−β01k)W−1
n , for k ≥ 3. (3.4)

Comparing (3.3) and (3.4) we note that they are similar except that c has been replaced by
k − 2 and I(Wn < wn,α) has been replaced by a smooth function W−1

n . For large values
of Wn, W−1

n → 0 giving the estimate β̃n as in the case of PTE, β̂PT
n . For small values of

Wn, β̂PT
n = β̂

(c)
n but β̂S

n remains unsettled as W−1
n → ∞ the estimator β̂S

n → −∞. Thus,
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near the origin of Wn, the two estimators β̂PT
n and β̂S

n behave differently. The SE has
been defined for k ≥ 3 while the PTE has no such restriction. However, we note that if
Wn = k − 2, then β̂S

n = β01k which is the result for small Wn. This means that a better
situation is to define a truncated shrinkage estimator known as the positive-rule shrinkage
estimator (SE+) defined by

β̂S+

n = β01k + {1− (k − 2)W−1
n }I(Wn > k − 2)(β̃n − β01k). (3.5)

Thus, we have proposed five estimators:

Estimator Full name Defined in

UMLE Unrestricted maximum likelihood estimator Section 2

SRE Shrinkage restricted estimator Equation 3.1

SPTE Shrinkage preliminary test estimator Equation 3.3

SE Shrinkage estimator Equation 3.4

SE+ Positive-rule shrinkage estimator Equation 3.5

4 Asymptotic Bias, MSE Matrix and Risk of the Esti-
mators

In this section, first we formulate the asymptotic distributional risk and local alternatives
which we need in the sequel and then, we move on to the asymptotic distributional properties
of the estimators.

Let β∗n be any estimator of the vector parameter β, Q be a positive semi-definite matrix,
and consider the quadratic loss function

Ln(β∗n, β) = n(β∗n − β)T Q(β∗n − β) = ntr(Q(β∗n − β)(β∗n − β)T ). (4.1)

Then, the risk of β∗n is given by

Rn(β∗n, β) = ELn(β∗n, β) = tr(QDn) (4.2)

where Dn = ntrE(β∗n − β)(β∗n − β)T . Note that if Q = I (where I is an identity matrix)
then Rn(β∗n, β) equals the usual summed mean squared error.

It is well-known that the Wn-statistic defined in (4.2) is a consistent test statistic since,
for any fixed β (6= β01k) the power of Wn converges in probability to 1 as n →∞. Now, by
virtue of the consistency of the Wn, the estimators β̃n, β̂SPT

n , β̂S
n and β̂S+

n are equivalent in
probability as n →∞ for any fixed alternative while β̂

(c)
n will have unbounded risk or MSE.

(Hence, in the asymptotic setup, we need not consider a fixed alternative.) So, following
Saleh and Sen (1987), this is determined in the setting of a more sensible and interesting
sequence of local alternatives to avoid the asymptotic degeneracy. (For more on the local
alternatives see Puri and Sen (1985), Agresti (1991).) We consider a sequence {K(n)} of
local alternatives to H0 :

K(n) : β(n) = β01k + n−1/2δ (4.3)
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where δ = (δ1, δ2, . . . , δk) and δi’s are fixed numbers for i = 1, 2, . . . , k. This sequence of
alternatives allows one to derive the non-degenerate asymptotic distribution of the various
estimators in question. Note that, for δ = 0, K(n) reduces to the null hypothesis, H0 :
β = β01k. Further, the sequence {K(n)} of alternatives converges to the null hypothesis as
n →∞. Next, we note that under {K(n)},

√
n(β̃n − β(n)) ∼ Nk(0, (XT V X)). (4.4)

In general, the asymptotic distribution function of β∗n is given by

G∗(β∗)(x) = lim
n→∞

P{n1/2(β∗n − β(n)) ≤ x|K(n)} (4.5)

whenever the limit exists; while the asymptotic dispersion matrix is given by

V ∗(β∗)(x) =
∫

...

∫
xxT dG∗(β∗)(x).

Then, the asymptotic distributional risk of β∗ is defined by

R∗(β∗, δ) = tr(QV ∗(β∗)). (4.6)

On the basis of the above one may determine the asymptotic distribution of β̂SPT
n and the

asymptotic representation of β̂S
n and β̂S+

n under {K(n)} routinely follows from Saleh and
Sen (1987). In our problem, the following theorem details out the results.

Theorem 1 Under {K(n)} in (4.3) and usual regularity conditions, the following holds:

(a)
lim

n→∞
P{Wn ≤ x|K(n)} = Hk(x;∆),∆ = δT D−1

1 δ (4.7)

where D1 = (XT V X)−1 and Hm(x;∆) stands for the CDF of a non-central chi-squared
distribution with m degrees of freedom;

(b)
lim

n→∞
P{n1/2(β̂(c)

n − β(n)) ≤ x} = Gk(x;−cδ, (1− c)2D1) (4.8)

where Gk(x;µ,
∑

) stands for the CDF of a k-variate normal distribution with mean
µ and covariance matrix

∑
;

(c)

lim
n→∞

P{n1/2(β̂SPT
n − β(n)) ≤ x} = Gk(x− cδ;0, (1− c)2D1)Hk(χ2

k,α)

+
∫

E(δ)

Gk(x;−cz,0, (1− c)2D1)dGk(z;0, D1)
(4.9)

where E(δ) = {z : (z + δ)T D−1
1 (z + δ) ≥ χ2

k,α};
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(d) asymptotic distributional representation of n1/2(β̂S
n − β(n)) is given by

z− (k − 2)
(z + δ)

(z + δ)T D−1
1 (z + δ)

(4.10)

where z ∼ Nk(0, D−1
1 ) and

(e) that of n1/2(β̂S+

n − β(n)) is given by

z− (k − 2)
(z + δ)

(z + δ)T D−1
1 (z + δ)

− (z + δ)I{(z + δ)T D−1
1 (z + δ) < k − 2}

+ (k − 2)
(z + δ)I{(z + δ)T D−1

1 (z + δ) < k − 2}
(z + δ)T D−1

1 (z + δ)
.

(4.11)

Using the above theorem and some of the results (in Appendix B) of Judge and Bock
(1978) we derive the asymptotic distributional biases, MSE matrices and quadratic risks
(based on the loss function defined in (4.1)) for the five estimators considered. They are as
follows.

First, the biases of the estimators are

E
√

n(β̃n − β) = 0. (4.12)

E
√

n(β̂(c)
n − β) = − cδ. (4.13)

E
√

n(β̂SPT
n − β) = − cδHk+2(χ2

k,α;∆). (4.14)

E
√

n(β̂S
n − β) = − (k − 2)δE(χ−2

k+1(∆)). (4.15)

E
√

n(β̂S+

n − β) = − (k − 2)δ{E(χ−2
k+1(∆)) + Hk+2(χ2

k,α;∆)

− E[(χ−2
k+1(∆))I((χ2

k+2(∆)) < k − 2)]}.
(4.16)

The biases in 4.12-4.16 can be written in terms of the non-centrality parameter ∆ to facil-
itate the comparisons among them. These are known as normalized biases of the estimators.
They are given below:

B1 = 0. (4.17)

B2 = c2∆. (4.18)

B3 = c2∆{Hk+2(χ2
k,α;∆)}2. (4.19)

B4 = (k − 2)2∆{E(χ−2
k+2,α(∆))}2. (4.20)

B5 = (k − 2)2∆[{E(χ−2
k+2,α(∆)) + Hk+2(χ2

k,α;∆)

− E[(χ−2
k+2,α(∆))I((χ2

k+2(∆)) < k − 2)]}]2.
(4.21)

Now, the MSE matrices of the estimators are

D1 = (XT V X)−1. (4.22)
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D2 = (1− c)2D1 + c2δδT. (4.23)

D3 = D1−c(2−c)D1Hk+2(χ2
k,α;∆)+cδδT{2Hk+2(χ2

k,α;∆)−(2−c)Hk+4(χ2
k,α;∆)}. (4.24)

D4 = D1 − (k − 2)D1{E(χ−2
k+2(∆)) + ∆E(χ−4

k+4(∆))}+ (k2 − 4)δδTE(χ−4
k+4(∆)). (4.25)

D5 = D4 + (k − 2)D1[2E{(χ−2
k+2(∆))I(χ2

k+2(∆) < k − 2)}
− (k − 2)E(χ−4

k+2(∆))I(χ2
k+2(∆) < k − 2)}]

− [D1Hk+2(k − 2;∆)− δδT{2Hk+2(k − 2;∆)−Hk+4(k − 2;∆)}]
− (k − 2)δδT[2E{(χ−2

k+2(∆))I(χ2
k+2(∆) < k − 2)}

− 2E(χ−4
k+2(∆))I(χ2

k+2(∆) < k − 2)}
+ (k − 2)E(χ−4

k+4(∆))I(χ2
k+4(∆) < k − 2)}].

(4.26)

Finally, the risks of the estimators are

R(β̃n, Q) = tr(QD1). (4.27)

R(β̂(c)
n , Q) = (1− c)2tr(QD1) + c2δTQδ. (4.28)

R(β̂SPT
n , Q) = tr(QD1)− c(2− c)tr(QD1)Hk+2(χ2

k,α;∆)

+ c(δTQδ){2Hk+2(χ2
k,α;∆)− (2− c)Hk+4(χ2

k,α;∆)}.
(4.29)

R(β̂S
n , Q) = tr(QD1)− (k − 2)tr(QD1){E(χ−2

k+2(∆)) + ∆E(χ−4
k+4(∆))}

+ (k2 − 4)E(χ−4
k+4(∆)).

(4.30)

R(β̂S+

n , Q) = tr(QD4) + (k − 2)tr(QD1)[D4

+ (k − 2)D1[2E{(χ−2
k+2(∆))I(χ2

k+2(∆) < k − 2)}
− (k − 2)E{(χ−4

k+2(∆))I(χ2
k+2(∆) < k − 2)}]

− [D1Hk+2(k − 2;∆)− δδT{2Hk+2(k − 2;∆)−Hk+4(k − 2;∆)}]
− (k − 2)δδT[2E{(χ−2

k+2(∆))I(χ2
k+2(∆) < k − 2)}

− 2E{(χ−4
k+2(∆))I(χ2

k+2(∆) < k − 2)}
+ (k − 2)E{(χ−4

k+4(∆))I(χ2
k+4(∆) < k − 2)}]]

− [tr(QD1)Hk+2(k − 2;∆)− (δTQδ){2Hk+2(k − 2;∆)

− Hk+2(k − 2;∆)}]− (k − 2)(δTQδ)[D4

+ (k − 2)D1[2E{(χ−2
k+2(∆))I(χ2

k+2(∆) < k − 2)}
− (k − 2)E{(χ−4

k+2(∆))I(χ2
k+2(∆) < k − 2)}]

− [D1Hk+2(k − 2;∆)− δδT{2Hk+2(k − 2;∆)−Hk+4(k − 2;∆)}]
− (k − 2)δδT[2E{(χ−2

k+2(∆))I(χ2
k+2(∆) < k − 2)}

− 2E{(χ−4
k+2(∆))I(χ2

k+2(∆) < k − 2)}
+ (k − 2)E{(χ−4

k+4(∆))I(χ−2
k+4(∆) < k − 2)}]].

(4.31)
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If Q = D−1
1 in 4.27-4.31, we have

R(β̃n, Q) = k. (4.32)

R(β̂(c)
n , Q) = (1− c)2k + c2∆. (4.33)

R(β̂SPT
n , Q) = {1− c(2− c)Hk+2(χ2

k,α;∆)}k + c∆{2Hk+2(χ2
k,α;∆)

− (2− c)Hk+4(χ2
k,α;∆)}.

(4.34)

R(β̂S
n , Q) = k − k(k − 2){E(χ−2

k+2(∆)) + ∆E(χ−4
k+4(∆))}+ (k2 − 4)E(χ−4

k+4(∆)). (4.35)

R(β̂S+

n , Q) = R(β̂S
n , Q)− [kHk+2(k − 2;∆)

− D{2Hk+2(k − 2;∆)−Hk+4(k − 2;∆)}]
− (k − 2)∆[2E{(χ−2

k+2(∆))I((χ2
k+2(∆)) < k − 2)}

− 2E{(χ−2
k+4(∆))I(χ2

k+2(∆) < k − 2)}
+ E{(χ−4

k+4(∆))I((χ2
k+2(∆) < k − 2)}]

+ k(k − 2)[2E{(χ−2
k+2(∆))I((χ2

k+2(∆)) < k − 2)}
− (k − 2)E{(χ−4

k+2(∆))I(χ2
k+2(∆) < k − 2)}],

(4.36)

respectively.

5 Asymptotic Distributional Risk and MSE Analysis
for the Estimators

In this section, we carry out the analysis of the asymptotic distributional risk (ADR) and
MSE to compare the five estimators proposed in section 3. First, we compare β̃n (unre-
stricted estimator) with the rest.

Comparison of β̃n and β̂
(c)
n : The risk difference is given by

R(β̃n, Q)−R(β̂(c)
n , Q) = tr(QD1)− (1− c)2tr(QD1)− c2δT Qδ. (5.1)

The expression R(β̂(c)
n , Q)−R(β̃n, Q) T 0 according as

δT Qδ S (
2
c
− 1)tr(QD1). (5.2)

In terms of the noncentrality parameter, we obtain

R(β̃n, Q)−R(β̂(c)
n , Q) > 0 if ∆ < (

2
c
− 1)

tr(QD1)
Chmax(QD1)

and

R(β̃n, Q)−R(β̂(c)
n , Q) < 0 if ∆ > (

2
c
− 1)

tr(QD1)
Chmin(QD1)
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where Chmax(A) (Chmin(A)) stands for the maximum (minimum) characteristic root of a
given matrix A. If Q = D−1

1 , then tr(QD1) = k and Chmax(A) = Chmin(A) = 1. Hence

R(β̃n, Q)−R(β̂(c)
n , Q) T 0 whenever ∆ S (

2
c
− 1)k. (5.3)

The analysis means that the restricted estimator β̂
(c)
n is superior to the unrestricted estimator

β̃n whenever ∆ < ( 2
c − 1) tr(QD1)

Chmax(QD1)
and inferior whenever ∆ > ( 2

c − 1) tr(QD1)
Chmin(QD1)

. For

Q = D−1
1 the same result hold whenever ∆ S ( 2

c − 1)k. Finally, for c = 1, we obtain a

smaller range on the superiority of β̂
(1)
n . Thus, β̂

(c)
n is preferred over β̂

(1)
n compared to β̃n.

For the MSE comparison of β̃n and β̂
(c)
n we consider the MSE difference

D1 −D2 = D1 − (1− c)2D1 − c2δδT . (5.4)

This difference is positive semi-definite whenever for any non-zero vector l = (l1, . . . , lk)T ,
we have lT (D1 −D2)l ≥ 0. That is to say,

(
2
c
− 1)lT D1l ≥ lT δδT l. (5.5)

Since D1 is positive definite, (5.5) is equivalent to the requirement that

lT δδT l
( 2

c − 1)lT D1l
≤ 1. (5.6)

Now, max
l

lT δδT l
lT D1l

= δT D−1
1 δ = ∆. Hence, (5.6) is equivalent to

∆ ≤ (
2
c
− 1). (5.7)

Thus, the restricted estimator β̂
(c)
n is superior to the unrestricted estimator β̃n whenever

∆ ≤ ( 2
c − 1), otherwise β̃n is superior. Notice that the range of ∆ for the superiority of β̂

(c)
n

is smaller here compared to the range of ∆ based on ADR analysis.
Comparison of β̃n and β̂SPT

n : Considering the risk difference we have

R(β̃n, Q)−R(β̂SPT
n , Q) = c(2− c)tr(QD1)Hk+2(χ2

k,α;∆)

− c(δT Qδ){2Hk+2(χ2
k,α;∆)− (2− c)Hk+4(χ2

k,α;∆)}.

This risk difference is positive, whenever

∆ <
(2− c)kHk+2(χ2

k,α;∆)
Chmax(QD1){2Hk+2(χ2

k,α;∆)− (2− c)Hk+4(χ2
k,α;∆)}

≤ (
2
c
−1)

tr(QD1)
Chmax(QD1)

(5.8)

and negative whenever

∆ >
(2− c)kHk+2(χ2

k,α;∆)
Chmin(QD1){2Hk+2(χ2

k,α;∆)− (2− c)Hk+4(χ2
k,α;∆)}

≥ (
2
c
−1)

tr(QD1)
Chmin(QD1)

(5.9)
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That is to say, β̂SPT
n is superior to β̃n whenever (5.8) holds and inferior whenever (5.9)

holds. Under the null hypothesis H0,

R(β̃n, Q)−R(β̂SPT
n , Q) = c(2− c)tr(QD1)Hk+2(χ2

k,α; 0) > 0,∀ α ∈ (0, 1).

Further, R(β̂SPT
n , Q) takes the smallest value tr(QD1){1− c(2− c)Hk+2(χ2

k,α; 0)} > 0, then
increases crossing the ADR of β̃n to a maximum at ∆ = ∆max

α thereafter decreases gradually
towards the ADR of β̃n as ∆ → ∞. This feature of β̂SPT

n and β̃n indicates that neither
β̃n nor β̂SPT

n is admissible with respect to each other. Notice further that the range of ∆
(5.8) with c = 1 is smaller than (5.8) for any c ∈ (0, 1). Thus SPTE, β̂

(SPT )
n is superior to

PTE(c = 1) under ADR criterion.
Similarly, we obtain the MSE difference

D1 −D3 = c(2− c)D1Hk+2(χ2
k,α;∆)

− c(δT δ){2Hk+2(χ2
k,α;∆)− (2− c)Hk+4(χ2

k,α;∆)}.
(5.10)

This difference is positive semi-definite whenever for any nonzero vector l = (l1, . . . , lk)T ,
we have

c(2− c)lT D1lHk+2(χ2
k,α;∆)− clT δδTl{2Hk+2(χ2

k,α;∆)− (2− c)Hk+4(χ2
k,α;∆)} ≥ 0 (5.11)

which implies that the MSE difference is positive semi-definite whenever

∆ ≤
(2− c)kHk+2(χ2

k,α;∆)
2Hk+2(χ2

k,α;∆)− (2− c)Hk+4(χ2
k,α;∆)

≤ (
2
c
− 1). (5.12)

Thus, β̂SPT
n is superior to β̃n in this range of ∆, otherwise β̃n is superior. Notice the

difference between (5.8) and (5.12).
Comparison of β̃n and β̂S

n : Here, the risk difference is given by

R(β̃n, Q)−R(β̂S
n , Q) = (k − 2)tr(QD1){E(χ−2

k+2; (∆))

+ ∆E(χ−4
k+4; (∆))} − (δT Qδ)(k2 − 4)E(χ−4

k+4(∆))
(5.13)

= (k − 2)tr(QD1)[2(k − 2)E(χ−4
k+2(∆)) + 2∆E(χ−4

k+4(∆)){1− δT Qδ(k − 2)
2∆tr(QD1)

}].

Thus, R(β̃n, Q)−R(β̂S
n , Q) ≥ 0 whenever for all Q satisfying

tr(QD1)
Chmax(QD1)

≥ k + 2
2

∀ ∆ (5.14)

holds. For Q = D−1
1 , tr(QD1) = k and (5.14) holds. Therefore, β̂S

n dominates β̃n uniformly
whenever (5.14) is satisfied.

Regarding the MSE difference, we obtain
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D1 −D4 = (k − 2)D1{E(χ−2
k+2(∆)) + ∆E(χ−4

k+4(∆))} − (δδT)(k2 − 4)E(χ−4
k+4(∆)). (5.15)

This difference is positive semi-definite whenever for any nonzero vector l = (l1, . . . , lk)T ,
we have

lT D1l{E(χ−2
k+2(∆)) + ∆E(χ−4

k+4(∆))} − (lT δδT l)(k + 2)E(χ−4
k+4(∆)) ≥ 0. (5.16)

This implies that we must have (after simplification)

(k + 1)(k − 2)E(χ−4
k+2(∆)) ≥ kE(χ−2

k+2(∆)) (5.17)

which holds for all ∆ ∈ (0,∞). Thus, β̂S
n is uniformly better than β̃n when we consider the

MSE criterion.
Comparison of β̃n and β̂S+

n : In this case, the risk difference turns out to be

R(β̂S
n , Q)−R(β̂S+

n , Q) = tr(QD1)[2Hk+2(k − 2;∆)

− (k − 2){2
∞∑

r=0

e−1/2∆(1/2∆)r 1
r!

1
k + 2r

Hk+2r(k − 2; 0)}

− (k − 2)2{
∞∑

r=0

e−1/2∆(1/2∆)r 1
r!

1
(k + 2r)(k + 2 + 2r)

Hk+2r(k − 2; 0)}]

− δT Qδ[2Hk+2r(k − 2;∆)− 2(k − 2){
∞∑

r=0

e−1/2∆(1/2∆)r 1
r!

1
k + 2r

Hk+2r(k − 2; 0)}

− {Hk+4(k − 2;∆)− 2(k − 2)(
∞∑

r=0

e−1/2∆(1/2∆)r 1
r!

1
(k + 2r)(k + 2 + 2r)

Hk+2r(k − 2; 0))

+ 2(k − 2)(
∞∑

r=0

e−1/2∆(1/2∆)r 1
r!

1
(k + 2 + 2r)(k + 4 + 2r)

Hk+2+2r(k − 2; 0))}].

(5.18)

The right hand side of (5.18) is non-negative for all ∆. Hence, β̂S+

n is uniformly superior
to β̂S

n . Therefore, when we consider the three estimators β̃n, β̂S
n and β̂S+

n we find the risk
ordering as

R(β̂S+

n , Q) < R(β̂S
n , Q) < R(β̃n, Q) (5.19)

for all ∆. The risk of R(β̂S
n , Q) (R(β̂S+

n , Q)) tends to R(β̃n, Q) as ∆ →∞ from below while
the risk of R(β̂SPT

n , Q) → R(β̃n, Q) as ∆ → ∞ from above. Similar conclusion holds with
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respect to the MSE criterion since

D4 −D5 = D1[2Hk+2(k − 2;∆)− (k − 2){2
∞∑

r=0

e−1/2∆(1/2∆)r 1
r!

1
k + 2r

Hk+2r(k − 2; 0)}

− (k − 2)2{
∞∑

r=0

e−1/2∆(1/2∆)r 1
r!

1
(k + 2r)(k + 2 + 2r)

Hk+2r(k − 2; 0)}]

− δδT[2Hk+2(k − 2;∆)− 2(k − 2){
∞∑

r=0

e−1/2∆(1/2∆)r 1
r!

1
k + 2r

Hk+2r(k − 2; 0)}

− {Hk+4(k − 2;∆)− 2(k − 2)(
∞∑

r=0

e−1/2∆(1/2∆)r 1
r!

1
(k + 2r)(k + 2 + 2r)

Hk+2r(k − 2; 0))

+ 2(k − 2)(
∞∑

r=0

e−1/2∆(1/2∆)r 1
r!

1
(k + 2r)(k + 2 + 2r)

Hk+4+2r(k − 2; 0))}].

(5.20)

We know max
α

lT δδT l
lT D1l

= ∆. Therefore, lT (D1−D2)l ≥ 0 for all ∆ as before. Hence, D1−D4 ≥
0 and D4 −D5 ≥ 0 and we can order the MSE matrices as

D1 ≥ D4 ≥ D5

where ≥ stands for D1 −D4 ≥ 0 and D4 −D5 ≥ 0.
Comparison of β̂

(c)
n and β̂SPT

n : The risk difference and MSE difference are given by

R(β̂(c)
n , Q)−R(β̂SPT

n , Q) = − c(2− c)tr(QD1){1−Hk+2(χ2
k,α;∆)}

+ c(δT Qδ){c− 2Hk+2(χ2
k,α;∆)− (2− c)Hk+4(χ2

k,α;∆)}
(5.21)

and

D2 −D3 = −c(2− c)D1{1−Hk+2(χ2
k,α;∆)}

+ cδδT{c− 2Hk+2(χ2
k,α;∆)− (2− c)Hk+4(χ2

k,α;∆)
(5.22)

respectively. Now, R(β̂(c)
n , Q)−R(β̂SPT

n , Q) T 0 whenever

(δTQδ) T
(2− c){1−Hk+2(χ2

k,α;∆)}tr(QD1)
{c− 2Hk+2(χ2

k,α;∆)− (2− c)Hk+4(χ2
k,α;∆)}

. (5.23)

In terms of ∆, we have R(β̂(c)
n , Q)−R(β̂SPT

n , Q) > 0 whenever

∆ >
( 2

c − 1)tr(QD1){1−Hk+2(χ2
k,α;∆)}

Chmin(QD1){1− 2
cHk+2(χ2

k,α;∆)− ( 2
c − 1)Hk+4(χ2

k,α;∆)}
(5.24)

and R(β̂(c)
n , Q)−R(β̂SPT

n , Q) < 0 whenever

∆ <
( 2

c − 1)tr(QD1){1−Hk+2(χ2
k,α;∆)}

Chmax(QD1){1− 2
cHk+2(χ2

k,α;∆)− ( 2
c − 1)Hk+4(χ2

k,α;∆)}
. (5.25)
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For Q = D−1
1 , (5.24) and (5.25) equal each other, and for c = 1, we get the analysis

for usual PTE. This analysis implies that β̂
(c)
n is superior to β̂SPT

n whenever (5.25) holds,
otherwise (5.24) implies that β̂SPT

n is superior. So near the null hypothesis β̂
(c)
n dominates

β̂SPT
n and outside the interval β̂SPT

n dominates β̂
(c)
n . Under H0, we note that R(β̂(c)

n , Q)−
R(β̂SPT

n , Q) < 0 since

R(β̂(c)
n , Q)−R(β̂SPT

n , Q) = − c(2− c)tr(QD1){1−Hk+2(χk,α; 0)} < 0. (5.26)

Similarly, the MSE analysis tells us that (5.22) is positive semi-definite and for any
nonzero vector l = (l1, . . . , lk)T , we have

clT δδT l{c− 2Hk+2(χ2
k,α;∆)− (2− c)Hk+4(χ2

k,α;∆)

− c(2− c)lT D1l{1−Hk+2(χ2
k,α;∆)} ≥ 0

(5.27)

which implies that (5.27) holds whenever

∆ >
( 2

c − 1){1−Hk+2(χ2
k,α;∆)}

{1− 2
cHk+2(χ2

k,α;∆)− ( 2
c − 1)Hk+4(χ2

k,α;∆)}
(5.28)

since max
α

lT δδT l
lT D1l

= ∆. If ∆ < the right hand side of (5.28) the expression (5.27) is negative

definite. Hence, β̂
(c)
n is superior to β̂SPT

n whenever (5.28) holds and inferior otherwise,
compared to β̂

(c)
n . Naturally, under the null hypothesis β̂

(c)
n is superior to β̂SPT

n .
Comparison of β̂

(c)
n and β̂S

n (β̂S+

n ): Considering the risk difference and MSE difference
we get

R(β̂(c)
n , Q)−R(β̂S

n , Q) = − c(2− c)tr(QD1) + (k − 2)tr(QD1){E(χ−2
k+2(∆))

+ ∆E(χ−4
k+4(∆))} − (δT Qδ){c2 − (k2 − 4)E(χ−4

k+4(∆))}
(5.29)

and

D2 −D4 = −c(2− c)D1 + (k − 2)D1{E(χ−2
k+2(∆))

+ ∆E(χ−4
k+4(∆))} − (δδT){c2 − (k2 − 4)E(χ−4

k+4(∆))}
(5.30)

respectively.
The risk difference is T 0 according as

(δT Qδ) S
tr(QD1)[c(2− c)− (k − 2){E(χ−2

k+2(∆)) + ∆E(χ−4
k+4(∆))}]

{c2 − (k2 − 4)E(χ−4
k+4(∆))}

. (5.31)

In terms of ∆, we get R(β̂(c)
n , Q)−R(β̂S

n , Q) > 0 whenever

∆ >
tr(QD1)[c(2− c)− (k − 2){E(χ−2

k+2(∆)) + ∆E(χ−4
k+4(∆))}]

Chmin(QD1){c2 − (k2 − 4)E(χ−4
k+4(∆))}

(5.32)
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and < 0 whenever

∆ <
tr(QD1)[c(2− c)− (k − 2){E(χ−2

k+2(∆)) + ∆E(χ−4
k+4(∆))}]

Chmax(QD1){c2 − (k2 − 4)E(χ−4
k+4(∆))}

. (5.33)

Thus, β̂
(c)
n is superior to β̂S

n whenever (5.33) is satisfied and is inferior to β̂S
n whenever (5.32)

is satisfied. Under the null hypothesis, the risk difference equals

{(1− 2
k

)− c(2− c)}tr(QD1) < 0 for c = 1. (5.34)

Thus, the usual restricted estimator is better than the shrinkage estimator. Similar conclu-
sion holds for the positive-rule shrinkage estimator β̂S+

n . Thus, ordering of the risks under
the null hypothesis is given by

R(β̂(c)
n , Q) < R(β̂S+

n , Q) < R(β̂S
n , Q) < R(β̃n, Q). (5.35)

The position of the preliminary test estimator may shift from “in between” R(β̂(c)
n , Q) and

R(β̂S+

n , Q) to “in between” R(β̂S
n , Q) and R(β̃n, Q). (See the graph of risks of the five

estimators in Figure 1, subsetion 6.2.)
Similar conclusion holds for the MSE matrix analysis. Thus, from these analyses we see

that when k ≥ 3, we should use the shrinkage or positive-rule shrinkage estimator and for
k ≤ 2, it is advisable to use the PTE with α∗ = P (χ2

k > 2) as optimum value of α by the
Akaike Information Criterion (AIC).

6 Illustration

6.1 Numerical Example

We want to illustrate (provide some idea of) how the proposed estimators actually act in
practice. We show three replicates, each of sample size 40, of simulation experiments (see for
detail Matin and Saleh (2005)). The parameter values for βi i = 0, 1, 2, 3, 4 were taken to be
equal to 2. Further, in order to test the null hypothesis H0 : β0 = β1 = β2 = β3 = β4 = 2 we
considered the Wald test statistic. The logistic regression model parameters were estimated
by the ML method and then the SRE(c = .50), SPTE(c = .50), SPTE(c = 1.00), SE
and SE+ were computed. In order to assess the performance of the various estimators the
squared error loss (= (β̃∗ − 2)2/var(β̃∗), β̃∗ standing for any estimator) for each of the
estimators were also computed. Results are given in Table 1.

For sample 1, the test statistic Wald = 0.88 and χ2
5,.10 = 9.24. Thus we are unable to

reject the null hypothesis. It is clear that SPTE(c = 1.00) and SE+ equal the hypothesized
value. Furthermore, SRE(c = .50) and SPTE(c = .50) are exactly equal. For sample
2, the test statistic Wald = 4.20 and χ2

5,.10 = 9.24. Again we are unable to reject the null
hypothesis. It is clear that SPTE(c = 1.00) is equal to the hypothesized value. Furthermore,
SRE(c = .50) and SPTE(c = .50) are exactly equal. Also, the estimator SE and SE+ are
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exactly equal. For sample 3, the test statistic Wald = 12.38 and χ2
5,.10 = 9.24. We reject

the null hypothesis. It is clear that SPTE(c = .50) and SPTE (c = 1.00) are exactly equal.
Also, the estimators SE and SE+ are exactly equal.

Table 1: Estimator with Squared Error Loss

Estimator Squared error loss

UMLE SRE SPTE SPTE SE SE+ UMLE SRE SPTE SPTE SE SE+

(c=.5) (c=.5) (c=1) (c=.5) (c=.5) (c=1)

Sample 1 k = 5 Wald = 0.88 χ2
5,.10 = 9.24 H0 accepted

β0 2.302 2.150 2.150 2.000 1.330 2.000 0.121 0.030 0.030 0.000 0.597 0.000

β1 1.974 1.987 1.987 2.000 2.059 2.000 0.001 0.0002 0.0002 0.000 0.004 0.000

β2 2.499 2.249 2.249 2.000 0.892 2.000 0.217 0.054 0.054 0.000 1.068 0.000

β3 1.607 1.803 1.803 2.000 2.873 2.000 0.233 0.058 0.058 0.000 1.148 0.000

β4 1.882 1.941 1.941 2.000 2.261 2.000 0.017 0.004 0.004 0.000 0.082 0.000

Sample 2 k = 5 Wald = 4.20 χ2
5,.10 = 9.24 H0 accepted

β0 2.942 2.471 2.471 2.000 2.305 2.305 0.600 0.150 0.150 0.000 0.063 0.063

β1 2.161 2.080 2.080 2.000 2.052 2.052 0.018 0.004 0.004 0.000 0.002 0.002

β2 4.882 3.441 3.441 2.000 2.934 2.934 1.329 0.332 0.332 0.000 0.140 0.140

β3 4.738 3.369 3.369 2.000 2.888 2.888 1.337 0.334 0.334 0.000 0.141 0.141

β4 4.951 3.475 3.475 2.000 2.957 2.957 0.150 0.487 0.487 0.000 0.205 0.205

Sample 3 k = 5 Wald = 12.38 χ2
5,.10 = 9.24 H0 rejected

β0 1.257 1.628 1.257 1.257 1.427 1.427 0.977 0.245 0.977 0.977 0.581 0.581

β1 1.576 1.788 1.576 1.576 1.673 1.673 0.238 0.060 0.238 0.238 0.142 0.142

β2 2.168 2.084 2.168 2.168 1.673 1.673 0.034 0.008 0.034 0.034 0.020 0.020

β3 1.989 1.994 1.989 1.989 1.993 1.993 0.0002 0.0006 0.0002 0.0002 0.0001 0.0001

β4 0.693 1.374 0.693 0.693 0.993 0.993 5.564 1.389 5.564 5.564 3.303 3.303

It is clear that in sample 1 with a small value of the Wald statistic, the squared error
loss is better for the SRE (= SPTE) for c = .50 compared to the SE. In sample 2, with a
moderately large value of the Wald statistic the SE (= SE+) is better compared to the SRE
(= SPTE) for c = .50. In sample 3, with a large value of the Wald statistic the SE (= SE+)
is better compared to the SPTE but not to the SRE. In general, in all three samples the
unrestricted estimator has the higher loss compared to the other estimators.

6.2 Graph Analysis

From the formulas (4.27-4.31) of the risks of the proposed estimators it is clear that their
values depend on the two matrices Q and D−1

1 . For an ideal situation, we let Q = D−1
1

so that tr(QD1) = tr(Ik) = k. Thus the risk of the unrestricted estimator becomes k and
the other formulas in 4.28-4.31 changed accordingly. (These risk formulas are given in 4.32-
4.36.) Now, it is easier to compare the other risks with this fixed value k. In doing so the
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Figure 1: Risk of the Five Estimators

graph of risks of the five estimators are given in Figure 1.
The risk graphs are drawn as a function of the non-centrality parameter ∆ when k = 5.

For the risk of the unrestricted estimator we observe a parallel line to the X-axis which cuts
the Y -axis at y = 5 (that is, the risk possesses a constant value 5 for all ∆). Let us call
this line the risk line. The graph in (a) portrays the risks for SRE(c = .50). This risk curve
starts at zero, however with the increase in ∆ it increases unboundedly. The graph in (b)
displays the risk for SPTE(c = .50). Note that the SPTE(c = .50) begins at a risk level
above 2 and increases sharply as the ∆ level increases; crosses the risk line at a certain level
of ∆ and moves slowly along the risk line but never crosses the line again. The risk curves
for SE and SE+ are given in (c) and (d) respectively. We observe that the risk for SE (SE+)
initiates at 2 (below 2, actually starts almost from zero) and slowly increases as the ∆ level
increases but never crosses the risk line at 5.

7 Conclusions

We have presented and discussed (under quadratic loss with local alternatives) five estima-
tors for estimating a parameter vector of interest in logistic regression model in presence of
uncertain prior information. Our recommendations as to the choice of estimator are:

(i) if the dimension of the parameter vector is greater than or equal to 3 one should use
the shrinkagre estimator or positive-rule shrinkage estimator;

(ii) if the dimension of the parameter vector is less than or equal to 2 the use of the
preliminary test estimator is advisable with the optimal level of significance.

A small sample study Matin and Saleh (2005) follows to confirm the same preferences
towards the application of the estimators.
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