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summary

Two classes of sequential test procedures for detection of a change in linear re-
gression model are developed and their properties are studied when a training
set of data without any change is available. Asymptotic results are checked on
simulation study.
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1 Introduction

The paper concerns procedures for detection of a change in linear models when data arrive
sequentially and training (historical) data with no change are available. Such problems occur
in a number of applications, e.g., in economics and finance, geophysical sciences, statistical
quality control, medical care.
We assume that the data follow the linear regression model

Yi = XT
i βi + εi, 1 ≤ i < ∞, (1.1)

and concern only the changes in p-dimensional regression parameters βi, 1 ≤ i < ∞. The
stability of the historical data, represented by observations Y1, . . . , Ym, are described by the
so called noncontamination condition

β1 = . . . = βm.

The sequence {Xi, 1 ≤ i < ∞} are p-dimensional regression random vectors and the se-
quence {εi, 1 ≤ i < ∞} represents the random errors. It is assumed that the data are
arriving sequentially.
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Our problem of detection of a change in the linear model can be formulated as a sequential
hypothesis testing problem, where the null hypothesis corresponds to the model without any
change:

H0 : βi = β0, 1 ≤ i < ∞

and the alternative hypothesis says that the model is changing at some unknown point:

HA : there exists k∗ ≥ 1 such that

βi = β0, 1 ≤ i < m + k∗, βi = β0 + δm, m + k∗ ≤ i < ∞, δm 6= 0.

where β0, δm and k∗ are unknown parameters, and data are arriving sequentially.
The considered problem can be described also as follows. At the beginning we have a

training data Y1, . . . , Ym that follows the model (1.1) with βi = β0. Then the data are
arriving sequentially one by one and we want to reveal a change in the regression parameter
β as soon as it occurs. Such problems can be met not only in statistical quality control but
also in econometrics, financial time series or applications in medical research.

In the following we assume either δm = δ is a fixed nonzero vector or δm can change
with m (typically δm → 0 as m → ∞ at some rate). The aim of the paper is to develop
and to study procedures based on weighted residuals that have a small probability of false
alarm when there is no change and that detect the change as occurs.

Such problems have been considered in a few papers, e.g., Chu et al. [1996] consider test
procedures based on CUSUM type test statistics calculated from recursive residuals (see
below (2.5)) and a fluctuation test based on differences between estimates of the regression
coefficients. The later test statistic was generalized in Leisch et al. [2000] to the so called
generalized fluctuation test. Zeileis et al. [2005] suggest MOSUM type statistics based on
last h ordinary residuals (see below (2.4)). They also compare three mentioned test statistics
through a simulation study.

CUSUM type test statistics based on ordinary residuals (2.4) and on recursive residuals
(2.5) are studied in Horváth et al. [2004] (see below for more details). The results are
generalized in Aue [2003] to more complex data, but only for location model. Aue [2003]
also derives a limit distribution of the delay between the true change-point and its detection
for some particular cases. All the mentioned statistics use the OLS (ordinary least squares)
estimators of the regression parameter β. In the quoted papers, the limit distribution of the
suggested statistics under the null hypothesis of no change, as well as its limit behavior if a
change occurs are studied.

Koubková [2004] provides simulations to specify the behavior of the CUSUM type test
statistics based on ordinary L2-residuals and suggests statistics based on ordinary L1-
residuals.

Our procedures are related to those introduced in Horváth et al. [2004]. Here we
introduce other CUSUM type test statistics based on partial sums of weighted ordinary
(2.4) and recursive (2.5) residuals. In Section 2 test procedures are described and their
limit properties are stated both under the null as well as under alternatives. Results of a
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simulation study are presented in Section 3. The proofs of assertions from Section 2 are
contained in Appendix.

2 Main results

The test procedures for the testing problem H0 against HA in our sequential setup are
described through the stopping time τ(m) defined as follows

τ(m) =

 inf{k ≥ 1 : Q(m, k) ≥ c
√

mq(k/m), }

∞ if Q(m, k) < c
√

mq(k/m) for all k = 1, 2, . . . ,

(2.1)

where Q(m, k) are test statistics (detectors) based on Y1, . . . , Ym+k, k = 1, 2, . . . ; q(t), t ∈
(0,∞) is a (stopping) boundary function and the constant c = c(α) is chosen such that

lim
m→∞

PH0 [τ(m) < ∞] = α (2.2)

and
lim

m→∞
PHA

[τ(m) < ∞] = 1, (2.3)

where α ∈ (0, 1). In other words, our sequential test procedure rejects the null hypothesis
and stop observations as soon as

Q(m, k) > c
√

mq(k/m)

and we stop only when the data indicate that H0 is violated. In terms of hypothesis
testing the condition (2.2) requires the level of the test equals to α while the condition (2.3)
corresponds to the requirement that the probability of the type II error tends to zero as
m →∞ (or equivalently, the power of the test tends to 1, as m →∞).

We assume that the random sequences {εi, 1 ≤ i < ∞} and {XT
i , 1 ≤ i < ∞} satisfy

the following conditions:

(A.1) {εi}∞i=1 is a sequence of independent identically distributed (i.i.d.) random variables
with E ε1 = 0, 0 < Var ε1 = σ2 < ∞ and E |ε1|ν < ∞ for some ν > 2,

(A.2) {XT
i }∞i=1 is a strictly stationary sequence of p-dimensional vectors XT

i = (1, X2i, . . . , Xpi),
which is independent of {εi, 1 ≤ i < ∞},

(A.3) there exist a positive definite matrix C and a constant τ > 0 such that∣∣∣∣∣ 1n
n∑

i=1

XiXT
i −C

∣∣∣∣∣ = O(n−τ ), a.s.

where |.| denotes a maximum norm of vectors and matrices.
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The assumptions (A.2) and (A.3) are satisfied, e.g., {Xji}i, j = 2, . . . , p, are autore-
gressive sequences with finite moments of order higher than 2. In this case the elements
cjv, j, v = 1, . . . , p of C are

c11 = 1, c1j = E Xji, cjv = E XjiXvi, 1 < j, v ≤ p.

We consider the following two classes of the boundary functions q:

(B.1) q(t) = qγ(t) = (1 + t) (t/(t + 1))γ , t ∈ (0,∞), where γ is a tuning constant taking
values from the interval [0,min{1/2, τ}),

(B.2) q is a positive continuous function on (0,∞) such that

lim
t→0

tγ

q(t)
= 0, with 0 ≤ γ < min{τ, 1/2}

and

lim sup
t→∞

(t log log t)1/2

q(t)
< ∞.

The quantity γ plays a role of a tuning parameter that influences the stopping rule,
particularly it modifies the ability of the test procedure to detect better early or late changes
in the following way: γ = 0 is convenient when a late change is expected, while γ close to
1/2 is appropriate when an early change is expected.

For the considered testing problem, Horváth et al. [2004] propose standardized CUSUM
(cumulative sums) test procedure based on L2-residuals of the form either

êi = Yi −XT
i β̂m, (2.4)

or
ẽi = Yi −XT

i β̂i−1, (2.5)

where β̂n is the least square estimator of β based on the first n observations, i.e.,

β̂n =

(
n∑

i=1

XiX
T
i

)−1 n∑
i=1

XiYi.

Notice that the ordinary residuals êi are based on the estimator of β calculated from the
historical data while the recursive residuals ẽi based on all i − 1 previous observations,
i = m + 1, . . . . The related standardized CUSUM test statistics are defined as

Q̂(m, k) =
1

σ̂m

m+k∑
i=m+1

êi and Q̃(m, k) =
1

σ̂m

m+k∑
i=m+1

ẽi, (2.6)
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respectively, where the estimator, σ̂2
m of the variance of εi is calculated from the historical

period as

σ̂2
m =

1
m− p

m∑
i=1

(Yi −XT
i β̂m)2. (2.7)

Horváth et al. [2004] show that under the assumptions (A.1) – (A.3) and (B.1) and
under the null hypothesis

lim
m→∞

P

 sup
1≤k<∞

∣∣∣Q̂(m, k)
∣∣∣

σ̂m
√

mqγ(k/m)
≤ c

 = P

[
sup

0≤t≤1

|W (t)|
tγ

≤ c

]
, (2.8)

holds for all c > 0, where {W (t), 0 ≤ t ≤ 1} denotes a Wiener process. Moreover, they
showed that under the alternative HA and additional assumption on the amount of change
δm = δ

δT c1 6= 0, (2.9)

where c1 denotes the first row of the matrix C, the procedure with the detectors Q̂(m, k)
has the desired property (2.3). Horváth et al. [2004] derived similar results also for the
procedure based on Q̃(m, k).

The assumption (2.9) is quite restrictive, e.g., if {Xi}i is a stationary sequence with
EXji = 0, EX2

ji < ∞, j = 2, . . . , p, i = 1, . . ., then cT
1 = (1, 0, . . . , 0) and the above

procedures are not sensitive w.r.t. δ 6= 0 with the zero first component.
In the present paper we investigate procedures based on quadratic forms of partial sums

of weighted residuals (2.4) or (2.5) that have the property (2.3) without additional assump-
tion (2.9). Particularly, we consider here procedures based on either

V̂ (m, k) =
( m+k∑

i=m+1

xiêi

)T

C−1
m

( m+k∑
i=m+1

xiêi

)
(2.10)

or

Ṽ (m, k) =
( m+k∑

i=m+1

xiẽi

)T

C−1
m

( m+k∑
i=m+1

xiẽi

)
, (2.11)

where êi and ẽi are defined by (2.4) and (2.5), respectively, and

Ck =
k∑

i=1

XiXT
i , k = 1, 2, . . . .

Notice that V̂ (m, k) can be equivalently expressed as a quadratic form of differences of
estimators of β based on Ym+1, . . . , Ym+k and on Y1, . . . , Ym, particularly,

V̂ (m, k) =
(
β̂m+k,m − β̂m

)T(
Cm+k −Cm

)T

C−1
m

(
Cm+k −Cm

)(
β̂m+k,m − β̂m

)
,

55



where

β̂m+k,m =

(
m+k∑

i=m+1

XiXT
i

)−1 m+k∑
i=m+1

XiYi.

Hence one can expect the procedures based on V̂ (m, k) will be sensitive w.r.t. to changes
in regression parameters and that their large values indicate that the null hypothesis is
violated.

The decison rule related to V̂ (m, k) is defined as follows:
having observed Y1, . . . , Ym+k, the null hypothesis H0 is rejected as soon as

V̂ (m, k)σ̂−2
m ≥ cq2

γ(k/m),

otherwise we continue with observations. Here c = ĉp(α, γ) is determined in such a way that
(2.2) holds true and the stopping boundary function qγ satisfies (B.1).

Now, we formulate assertions on the limit behavior of the test statistics based on weighted
suprema of V̂ (m, k), k = 1, 2, . . . , under H0 as well as under alternatives. The former one
provides an approximation for ĉp(α, γ).

Theorem 1. Let Y1, Y2, . . . , follow the model (1.1). Let the assumptions (A.1) – (A.3) and
(B.1) be satisfied. Then under H0

lim
m→∞

P

(
sup

1≤k<∞

V̂ (m, k)
σ̂2

mq2
γ(k/m)

≤ x

)
= P

(
sup

0≤t≤1

∑p
i=1 W2i(t)

t2γ
≤ x

)
for all x, where {Wi(t); 0 ≤ t ≤ 1}, i = 1, . . . , p are independent Wiener processes.

Theorem 2. Let Y1, Y2, . . . , follow the model (1.1). Let the assumptions (A.1) – (A.3) and
(B.1) be satisfied. Then under the alternatives HA with

lim
m→∞

mδT
mδm = ∞

we have, as m →∞

sup
1≤k<∞

V̂ (m, k)
σ̂2

mq2
γ(k/m)

P→∞.

The proofs are postponed to Section 4.
The critical values ĉp(α, γ) can be found as a solution of the equation (w.r.t. c):

P

(
sup

0≤t≤1

∑p
i=1 W2i(t)

t2γ
≤ c

)
= 1− α. (2.12)

The explicit form for the distribution of sup0≤t≤1

∑p
i=1 W2i(t)t−2γ is known only for γ = 0,

otherwise its approximation as well as an approximation for critical values ĉp(α, γ) can be
obtained through simulations of Wiener processes. See Table 1 for simulated critical values
ĉp(α, γ), p = 2 and selected values of α and γ. Theorems 1 and 2 imply that for c = ĉp(α, γ)
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defined in (2.12) the test procedure based on V̂ (m, k) has the desired properties (2.2) and
(2.3).

Next, we shall have a look at the test procedures based on Ṽ (m, k). The corresponding
the decision rule is defined as follows:
having observed Y1, . . . , Ym+k the null hypothesis H0 is rejected and the observation is
stopped as soon as

Ṽ (m, k)σ̂−2
m ≥ cq2(k/m),

and continue with observations otherwise. Here c = c̃(α, q) is determined in such a way
that (2.2) holds true and q is a boundary function satisfying (B.2). The limit behavior of
the test procedures based on statistics Ṽ (m, k) under the null and alternative hypotheses is
stated in Theorems 3 and 4.

Theorem 3. Let Y1, Y2, . . . , follow the model (1.1). Let the assumptions (A.1) – (A.3) and
(B.2) be satisfied. Then under H0

lim
m→∞

P

(
sup

1≤k<∞

Ṽ (m, k)
σ̂m2q2(k/m)

≤ x

)
= P

(
sup

0≤t<∞

∑p
i=1 W2i(t)

q2(t)
≤ x

)

for all x, where {Wi(t); 0 ≤ t ≤ 1}, i = 1, . . . , p are independent Wiener processes.

Theorem 4. Let Y1, Y2, . . . , follow the model (1.1). Let the assumptions (A.1) – (A.3) and
(B.2) be satisfied. Then under the alternatives HA with

lim
m→∞

mδT
mδm = ∞

we have, as m →∞,

sup
1≤k<∞

Ṽ (m, k)
σ̂2

mq2(k/m)
P→∞.

The proofs are postponed to Section 4.

The critical values c̃p(α, q) can be found as a solution of the equation (w.r.t. c):

P

(
sup

0≤t<∞

∑p
i=1 W2i(t)

q2(t)
≤ c

)
= 1− α. (2.13)

The explicit form for the distribution of sup0≤t<∞
∑p

i=1 W2i(t)q−2(t) is known only for
p = 1 and some particular choices of q, for more information see, Chu et al. [1996]. Approx-
imations can be obtained through the simulations of Wiener processes. Theorems 3 and 4
imply that for c = c̃p(α, q) defined in (2.13) the test procedure based on Ṽ (m, k) has the
desired properties (2.2) and (2.3).
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3 Simulations

A small simulation study was performed in order to obtain approximations for critical values
of the introduced test procedures and to get a picture on their behavior under various
alternatives.

Table 1 provides approximations to the critical values ĉp(α, γ) with p = 2 defined as

P

(
sup

1≤t≤1

∑p
i=1 Wi2(t)

t2γ
> ĉp(α, γ)

)
= α,

for α = 0.1, 0.05, 0.025, 0.01 and various γ. They are based on 10 000 repetitions of sim-
ulation from the Wiener process. The supremum over the interval [0,1] is approximated
through maximum of 10 000 grid points. The obtained critical values are rounded to 4
decimal places.

γ \α 0.1 0.05 0.025 0.01

0.00 5.8554 7.1540 8.5462 10.0883

0.05 5.9222 7.3184 8.6439 10.4928

0.10 5.9637 7.2987 8.7480 10.5202

0.15 6.0038 7.3815 8.7675 10.3285

0.20 6.3110 7.7812 9.3889 11.3457

0.25 6.3977 7.7922 9.1359 10.8234

0.30 6.6555 8.0667 9.5175 11.5386

0.35 7.1613 8.6912 10.1804 11.8058

0.40 7.8245 9.3454 10.6790 12.5857

0.49 10.8873 12.4327 14.1495 16.1948

Table 1: Simulated critical values ĉ2(α, γ)

Tables 2, 3 and 4 compare behavior of the test procedures based on the test statistics
Q̂(m, k) developed in Horváth et al. [2004] and those based on V̂ (m, k). We consider the
simple linear regression model

Yi = β0,0 + β1,0Xi + δ0I{i>k∗} + δ1XiI{i>>k∗} + εi, i = 1, 2, . . .

where {Xi}, i = 1, 2, . . . is either

(a) a sequence of i.i.d. random variables uniformly distributed in the interval [−
√

3,
√

3]
or

(b) a simple autoregression sequence

Xi = 0.5Xi−1 + εi,
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where εi ∼ N(0, 1) are i.i.d. random variables.

The sequence εi consists of i.i.d. random variables with normal and Laplace distribution
with zero mean and unit variance.

The other parameters were chosen as follows

1. m = 100 – size of training data set,

2. γ = 0, 0.25, 0.49,

3. change points: k∗ = m/2,m, 2m, 5m,

4. alternatives

(i) β0 = (1, 1)T ,β1 = (2, 1)T – change in the intercept only
(ii) β0 = (1, 1)T ,β1 = (1, 1.5)T – small change in the slope only
(iii) β0 = (1, 1)T ,β1 = (1, 2)T – moderate change in the slope only
(iv) β0 = (1, 1)T ,β1 = (1, 3)T – large change in the slope only.

Change in both, in the intercept and in the slope, would be detected if either a change
in the intercept or a change in the slope would be detected.

For each of the combinations of the parameters we simulated a random sequence of size
10 000, evaluate the two test statistics and calculate the corresponding stopping times
τ(m). We made 2500 repetitions for each of the combinations. In the following tables the
selected results for α = 0.05 are presented through the summaries of the simulations, i.e.,
the extremes, median and both quartiles.

In Tables 2 and 3, there are the summaries of the stopping times for selected alternatives,
when the sequence {Xi} satisfies condition (a). In Table 2 are the results for alternative (i)
and in Table 3 the results for alternative (iii).

Both the test statistics, Q̂(m, k) and V̂ (m, k) behave very well for changes in location,
although the statistic Q̂(m, k) detects the change a bit earlier. One can see that in the
case of Laplace error distribution, the stopping times are not so concentrated around their
median as are the stopping times when the errors follow the normal distribution. This
invites the idea to use another test statistic for the nonnormal errors, for example the test
statistic based on L1-residuals suggested in Koubková [2004].

The results also confirm the pattern of the tuning constant γ mentioned already in the
beginning of the paper. Since we do not choose very early change, γ = 0.49 gives never the
best results.

In the case of the alternatives (ii), (iii) and (iv), the changes were detected only with the
test statistics V̂ (m, k), not with the statistics Q̂(m, k). For the small change in the slope
(alternative (ii)) neither the test statistics V̂ (m, k) behaves satisfactorily. Such a change is
too small to be easily detect.

On the other side, the large change in the slope only (alternative (iv)) is detected by
the statistics V̂ (m, k) even better. The test statistics Q̂(m, k) begin to react to a change in
slope only, when the size of the change is somewhere around 6.

For completeness we add also results for the case when the sequence {Xi} satisfies
condition (b) and for alternative (iii) (see Table 4). The conclusion about the results remains
the same.
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Figure 1: Histograms of stopping times τ(m) (the time 1 is the first nonhistorical observa-
tion) for the alternative (iii), early and late changes and the sequence {Xi} satisfying the
condition (a) and the behavior of the test statistic V̂ (m, k)

To see better how a change is detected, we present also several plots in Figure 1. In the
plots we compare influence of small and large γ for alternatives with early and late change.
In all the plots we use the parameters m = 100, α = 0.05, normal error distribution and the
sequence {Xi} satisfying the condition (a). The upper row corresponds to the early change
(k∗ = m/2) and in the lower row the late change (k∗ = 2m) was examined. The first and
the second columns present the histograms of the stopping times τ(m) for γ = 0 and for
γ = 0.49, respectively. The last column shows, how the test statistics V̂ (m, k)q−2

γ (k/m)
react to the changes. The upper row relates to γ = 0.49 while the lower one to γ = 0. In
both plots the dashed line denotes the critical value and the dot in the bottom of the plot
stands at the time k∗.

Appendix: Proofs of the Results.

In the following, the historical data Y1, . . . , Ym and all the regressors available at the actual time
point i, i.e., X1, . . . ,Xi are assumed to be known and so fixed.

We start with several lemmas. The first one contains useful properties of the matrices Cm. In
the second and the third ones weak invariance principles for functionals of bV (m, k) and eV (m, k),
respectively, are formulated. They provide a key tool for the proofs of the theorems from Section
2.

Lemma 3.1. Let XT
i = (1, x2i, . . . , xpi), 1 ≤ i < ∞, be a strictly stationary sequence of p-

dimensional random vectors satisfying (A.3). Then, as k →∞,

(a) |(kC−1
k −C−1)| = O(k−τ ) a.s.
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(b) Cm+k −Cm = kC + O(k1−τ ) a.s. for each m

(c) lim supk→∞ k−1|Ck| < ∞, a.s.

Proof. The assertion (a) follows easily from the assumption (A.3). Towards the assertion (b) it
suffices to realize that by the strict stationarity of the sequence of Xi, i = 1, 2, . . . we have for any
m that

(Ck+m −Cm, k = 1, 2, . . . )
D
= (Ck, k = 1, 2, . . . ).

Relation (c) is a consequence of (a).

Lemma 3.2. Let the assumptions of Theorem 1 be satisfied. Then for each m there exist two
independent p-dimensional Wiener processes {W1,m(t), t ∈ [0,∞)} and {W2,m(t), t ∈ [0,∞)},
with independent components, such that, as m →∞,

sup
1≤k<∞

1

q2
γ(k/m)

����σ̂−2
m
bV (m, k)−m−1

������W1,m(k)− k

m
W2,m(m)

������2���� = op(1),

where ||.|| denotes the Euclidean norm.

Proof. Since, as m →∞, bσ2m − σ2 = OP (m−1/2)

it suffices to show that the assertion of the lemma holds true if bσ2m is replaced by σ2. Denoting

Z0,m =

mX
i=1

Xiεi, Zm,k =

m+kX
i=m+1

Xiεi, k = 1, 2, . . . , (3.1)

we realize that under H0 the test statistics bV (m, k) can be written in the form

bV (m, k) =
������C−1/2

m

�
Zm,k − (Cm+k −Cm)C−1

m Z0,m

�������2 , k = 1, 2, . . . . (3.2)

By Lemma 3.1.7 in Csörgő and Horváth [1997] we know that if, as n →∞,�����n−1
nX

i=1

XiX
T
i −A

����� = o(ln−ν n) (3.3)

holds for some symmetric positive definite matrix A and for some constant ν > 0 and {εi} is a
sequence satisfying (A.1), then there exists a sequence of i.i.d. random normal vectors Ni, i =
1, 2, . . . with ENi = 0 and CovNi = σ2A, such that�����

�����
nX

i=1

Xiεi −
nX

i=1

Ni

�����
����� = o(n1/2 ln−λ n), a.s.,

with some λ > 1.

In our case the assumption (A.3) is stronger than (3.3) and therefore for each m we can find
a sequence of i.i.d. p-dimensional random vectors Ni,m, i = 1, 2, . . . distributed as N(0, Ip) such
that, as n →∞, �����

�����
nX

i=1

Xiεi − σC1/2
nX

i=1

Ni,m

�����
����� = o(n1/2 ln−λ n), a.s. (3.4)
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Then regarding our assumptions, particularly (A.2), for each m there exist two independent p-
dimensional Wiener processes {W1,m(t), t ∈ [0,∞)} and {W2,m(t), t ∈ [0,∞)} with independent
components such that, as m →∞,�����

�����
mX

i=1

Xiεi − σC1/2W2,m(m)

�����
����� = o(m1/2 ln−λ m), a.s., (3.5)

and

sup
1≤k<∞

k−1/2 lnλ k

�����
�����

m+kX
i=m+1

Xiεi − σC1/2W1,m(k)

�����
����� = op(1). (3.6)

Hence by Lemma 1 we get, as m →∞,

sup
1≤k<∞

������C−1/2
m

�
Zm,k − σC1/2W1,m(k)− (Cm+k −Cm)C−1

m (Z0,m − σC1/2W2,m(m))
�������2

×
�p

m/k lnλ k + (m/k) lnλ m
�
2 = oP (1).

Therefore, to finish the proof, it suffices to show that, as m →∞,

sup
1≤k<∞

B2(m, k)/q2γ(k/m) = oP (1) (3.7)

and

sup
1≤k<∞

1

q2
γ(k/m)

1

m

������W1,m(k)− k

m
W2,m(m)

������2 = Op(1).

where

B(m, k) =
p

k/m ln−λ k + (k/m) ln−λ m, k = 1, 2, . . . .

The later relation is a consequence of standard properties of Wiener processes. Elementary calcu-
lations give that, as m →∞,

sup
1≤k≤m

B2(m, k)/q2
γ(k/m) = OP

�
sup

1≤k≤m

�
(k/m)1/2−γ ln−λ k + (k/m)1−γ ln−λ m

	2
�

= oP (1)

and

sup
m≤k<∞

B2(m, k)/q2
γ(k/m) = OP

�
sup

m≤k<∞

�
(m/k) ln−λ k + ln−λ m

	2
�

= oP (1).

Hence (3.7) holds true and the proof is finished.

Lemma 3.3. Let the assumptions of Theorem 3 be satisfied. Then for each m there exist two
independent p-dimensional Wiener processes {W1,m(k), k ∈ [0,∞)} and {W2,m(k), k ∈ [0,∞)}
with independent components such that, as m →∞,

sup
1≤k<∞

1

q2(k/m)

�����eV (m, k)

−m−1σ

�����
�����W1,m(k)−

m+kX
i=m+1

1

i− 1
W1,m(i−m)− ln

�
1 +

k

m

�
W2,m(m)

�����
�����
2 ����� = oP (1)
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Proof. Notice that

m+kX
i=m+1

Xieei =

m+kX
i=m+1

Xiεi −
m+kX

i=m+1

XiX
T
i C−1

i−1

i−1X
j=1

Xjεj .

For the second term on the r.h.s. one gets, as m →∞,

m+kX
i=m+1

XiX
T
i C−1

i−1

i−1X
j=1

Xjεj

=

m+kX
i=m+1

XiX
T
i C−1 1

i− 1

i−1X
j=1

Xjεj + O

 
m+kX

i=m+1

|XiX
T
i |i−1−τ

�����
i−1X
j=1

Xjεj

�����
!

,

(3.8)

uniformly in k. The later term on the r.h.s. of (3.8) does not influence the limit behavior of the
whole sum (see Horváth et al. [2004], the proof of Lemma 6.1).

Next we proceed as in the proof of Lemma 6.2, Horváth et al. [2004]. By Abel’s summation
formula we decompose the first term on the r.h.s of (3.8) into four parts

m+kX
i=m+1

XiX
T
i

1

i− 1
C−1

i−1X
j=1

Xjεj

=

m+kX
i=m+1

CiC
−1 1

i(i− 1)

i−1X
j=1

Xjεj −
m+kX

i=m+1

CiC
−1 1

i
Xiεi

+ Cm+kC
−1 1

m + k

m+kX
j=1

Xjεj −CmC−1 1

m

mX
j=1

Xjεj .

Denoting four terms on the r.h.s. by Z1(m, k), Z2(m, k), Z3(m, k) and Z4(m, k) and following
Horváth et al. [2004] we obtain, as m →∞,

Z1(m, k) =

m+kX
i=m+1

1

i− 1

i−1X
j=1

Xjεj + OP

 
m+kX

i=m+1

i−τ

i− 1

i−1X
j=1

Xjεj

!

Z2(m, k) = −
m+kX

i=m+1

Xiεi + OP

 
m+kX

i=m+1

i−τXiεi

!

Z3(m, k) =

m+kX
i=1

Xiεi + OP

 
(m + k)−τ

m+kX
j=1

Xjεj

!

Z4(m, k) = −
mX

i=1

Xiεi + OP

 
(m)−τ

mX
j=1

Xjεj

!

uniformly in k. Here τ > 0 is from the assumption (A.3). Then standard arguments give

sup
1≤k≤∞

|Z2(m, k) + Z3(m, k) + Z4(m, k)|((m + k)−1/2mτ ) = OP (1)

and

sup
1≤k≤∞

�����Z1(m, k)−
m+kX

i=m+1

1

i− 1

i−1X
j=1

Xjεj

����� �(m + k)−1/2mτ
�

= OP (1).
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Hence, as m →∞,

sup
1≤k≤∞

�����
m+kX

i=m+1

Xieei −
m+kX

i=m+1

Xiεi −
m+kX

i=m+1

1

i− 1

i−1X
j=1

Xjεj

����� ((m + k)−1/2mτ ) = OP (1).

Therefore it suffices to prove the assertion of the Lemma with bσ−2
m
eV (m, k) replaced by

σ−2

�����
�����C−1/2

m

m+kX
i=m+1

 
Xiεi −

1

i− 1

i−1X
j=1

Xjεj

!�����
�����
2

. (3.9)

Toward this we write

m+kX
i=m+1

 
Xiεi −

1

i− 1

i−1X
j=1

Xjεj

!
=

m+kX
i=m+1

 
Xiεi −

1

i− 1

i−1X
j=m+1

Xjεj

!
−

m+kX
i=m+1

1

i− 1

mX
j=1

Xjεj .

Now, similarly as in the proof of Lemma 2 we apply Lemma 3.1.7 in Csörgő and Horváth [1997] and
Lemma 1 and we get that for each m there exist two independent p-dimensional Wiener processes
{W1,m(k), k ∈ [0,∞)} and {W2,m(k), k ∈ [0,∞)} with independent components satisfying the
equations (3.5) and (3.6) as m →∞.

Then proceeding similarly as in the proof of Lemma 6.4 in Horváth et al. [2004] and after a
few standard steps we finish the proof of our lemma.

Now, we prove Theorems 1-4.

Proof of Theorem 1. Proceeding as in the proof of Theorem 2.1 in Horváth et al. [2004], however
we have the multidimensional version, we find that, as m →∞,

m−1

��������W1,m(k)− k

m
W2,m(m)

��������2 D
=

��������W1,m(k/m)− k

m
W2,m(1)

��������2 , k = 1, 2, . . . ,

sup
0≤k≤T

��������W1,m(k/m)− k

m
W2,m(1)

��������2 q−2
γ (k/m) → sup

0≤t≤T
||W1(t)− tW2(1)||2 q−2

γ (t)

for each T > 0 and

sup
0≤t≤∞

||W1(t)− tW2(1)||2 q−2
γ (t)

D
= sup

0≤t≤1
||W(t)||2t−2γ ,

where {Wi(t), 0 ≤ t < ∞}, i = 1, 2 are independent p-dimensional Wiener processes with indepen-
dent components and {W(t), 0 ≤ t < ∞} is also a p-dimensional Wiener process with independent
components. These relations together with Lemma 1 imply that for all x

lim
m→∞

P

 
sup

1≤k<∞

bV (m, k)bσ2
mq2

γ(k/m)
≤ x

!
= P

�
sup

0≤t≤1

Pp
i=1 W2i(t)

t2γ
≤ x

�
and so the Theorem 1 is proved.

Proof of Theorem 2. We can write

m+kX
i=m+1

Xibei = Zm,k − (Cm+k −Cm)C−1
m Z0,m +

m+kX
i=m+k∗

XiX
T
i δmI{k > k∗},
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where Zm,k and Z0,m are defined in (3.1). The first two terms on the r.h.s. coincide with those
under the H0 and therefore by Theorem 1

max
1≤k≤T

������C−1/2
m (Zm,k − (Cm+k −Cm)C−1

m Z0,m)
������2q−2

γ (k/m) = OP (1),

for each T > 0. Hence it suffices to show that, as m →∞,

F (m, km) =
�
δT

m(Cm+k −Cm+k∗)
T C−1

m (Cm+k −Cm+k∗)δm

�
q−2

γ (km/m)
P→∞ (3.10)

for some km > k∗. We show that it holds for

km = 2mI{k∗ < m}+ 2k∗I{k∗ > m}.

In such a situation Lemma 1 can be applied and we get

F (m, km) = q−2
γ (km/m)

× δT
m((km − k∗)C + O(m1−τ ))T (m−1C−1 + O(m−1−τ ))((km − k∗)C + O(m1−τ ))δm.

For k∗ < m, m →∞,

F (m, km) =
m−1(km − k∗)2δT

mCT δm

32
�

2
3

�2γ + O(m1−τ ||δm||2) ≥ z1mδT
mCδm(1 + o(1))

with some positive constant z1, and for k∗ > m

F (m, km) =
m−1(km − k∗)2δT

mCT δm�
1 + km

m

�
2
�

km
km+m

�2γ + O(m1−τ ||δm||2) ≥ z2mδT
mCδm(1 + o(1)),

with some positive constant z2. Hence (3.10) holds true and the proof is finished.

In the proofs of Theorems 3 and 4 we follow the proofs of Theorems 3.1 and 3.2 in Horváth et
al. [2004] and concentrate only on differences.

Proof of Theorem 3. Due to Lemma 3 it suffices to derive the limit distribution of

sup
1≤k<∞

1

q2(k/m)

�����
�����C−1/2

m C1/2

 
W1,m(k)−

m+kX
i=m+1

1

i− 1
W1,m(i−m)−

m+kX
i=m+1

1

i− 1
W2,m(m)

!�����
�����
2

,

(3.11)

where the Wiener processes Wi,m, i = 1, 2 are defined in Lemma 3. By standard properties of
Wiener processes, as m →∞,

sup
1≤k<∞

�����
�����W1,m(k)−

m+kX
i=m+1

i−1W1,m(i−m)− ln

�
1 +

k

m

�
W2,m(m)

�����
�����
2

(m−1q−2(k/m))

converges in distribution to

sup
0≤t<∞

1

q2(t)

������W(t + 1)−W(1)−
Z t

0

1

u + 1
(W(u + 1)−W(1))du−W(1) ln (1 + t)

������2,
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where {W(t), 0 ≤ t < ∞} is a p-dimensional Wiener process with independent components. By
direct calculations we find that

W(t + 1)−W(1)−
Z t

0

1

u + 1
(W(u + 1)−W(1))du−W(1) ln (1 + t)

D
= W∗(t)

whenever 0 ≤ t < ∞ and where {W∗(t), 0 ≤ t < ∞} is a p-dimensional Wiener process with
independent components. The proof is finished.

Proof of Theorem 4. We have

m+kX
i=m+1

Xieei =

m+kX
i=m+1

Xiεi −
m+kX

i=m+1

XiX
T
i C−1

i−1

i−1X
j=1

Xjεj

+

m+kX
m+k∗

XiX
T
i C−1

i−1Cm+k∗δmI{k > k∗}, k = 1, 2, . . . .

By Theorem 3 we obtain, as m →∞,

sup
1≤k<∞

�����
�����

m+kX
i=m+1

Xiεi −
m+kX

i=m+1

XiX
T
i C−1

i−1

i−1X
j=1

boldXjεj

�����
�����
2

q−2(k/m) = OP (1).

Thus it suffices to show that, as m →∞,������C−1/2
m

m+kmX
m+k∗

XiX
T
i C−1

i−1Cm+k∗δm

������2q−2(km/m)
P→∞ (3.12)

for for suitably chosen km > k∗. Noticing that for km = 2mI{k∗ < m}+ 2k∗I{k∗ > m}, we have������C−1/2
m

m+kmX
m+k∗

XiX
T
i C−1

i−1Cm+k∗δm

������2q−2(km/m) ≤
������C−1/2

m (Cm+km −Cm+k∗)δm

������2q−2(km/m)

and the proof can be finished similarly as that of Theorem 2.
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The alternative (i) β0 = (1, 1)T , β1 = (2, 1)T , normal error distribution

k∗ γ bQ(m, k) bV (m, k)

min 1stQ med 3stQ max min 1stQ med 3stQ max

m/2 0 60 104 119 137.3 256 68 118 136 160 342

0.25 55 94 110 128.0 253 45 104.0 123.0 145 317

0.49 55 102.0 121 145.0 356 1 113.0 136 168.0 459

m 0 117 169 192 218.0 437 116 188 216 249 582

0.25 108 163 186 212.0 442 68 178.0 205.0 238 582

0.49 117 182.0 212 248.0 718 1 200.0 238 285.3 924

2m 0 218 302 338 380.3 716 134 327 372 423 894

0.25 212 301 338 382.0 731 126 321.8 367.0 419 908

0.49 8 340.0 389 452.3 1076 1 372.0 433 511.0 2023

5m 0 176 701 777 870.0 1633 55 749 844 951 2040

0.25 103 711 791 888.3 1784 27 754.0 853.5 965 2141

0.49 411 813.8 924 1058.0 2485 1 881.8 1021 1191.0 5016

The alternative (i) β0 = (1, 1)T , β1 = (2, 1)T , Laplace error distribution

bQ(m, k) bV (m, k)

min 1stQ med 3stQ max min 1stQ med 3stQ max

m/2 0 62 116 140 176 1289 68 134 166.0 212 4770

0.25 10 105 129 163.0 2353 10 118.0 148 193.0 5920

0.49 1 117.0 150 206.0 10000 1 132.0 177 254.0 10000

m 0 55 185 222 273 1925 85 207 254.0 318 4008

0.25 20 178 216 268.0 2570 13 195.0 241 306.3 5327

0.49 1 205.0 259 339.3 10000 1 224.0 296 407.0 10000

2m 0 119 327 384 466 5368 78 361 432.0 540 3906

0.25 28 326 385 472.3 9525 2 355.0 427 540.0 9238

0.49 1 383.0 470 618.3 10000 1 422.8 542 744.3 10000

5m 0 100 745 876 1059 6794 53 808 968.5 1204 10000

0.25 48 760 900 1102.0 10000 1 815.8 985 1240.0 10000

0.49 1 904.8 1110 1455.0 10000 1 988.0 1272 1754.0 10000

Table 2: Simulated quantiles of the stopping times τ(m) (the time 1 is the first nonhistorical
observation), for the alternative (i), when the sequence {Xi} satisfies condition (a)
.
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The alternative (iii) β0 = (1, 1)T , β1 = (1, 2)T , normal error distribution

k∗ γ bQ(m, k) bV (m, k)

min 1stQ med 3stQ max min 1stQ med 3stQ max

m/2 0 77 10000 10000 10000 10000 63 113 137 167.3 448

0.25 56 10000 10000 10000 10000 55 101 123 151.3 448

0.49 56 10000 10000 10000 10000 1 108.0 138.0 179.0 1924

m 0 154 10000 10000 10000 10000 113 182 216 258.0 745

0.25 87 10000 10000 10000 10000 103 173 205 248.0 748

0.49 11 10000 10000 10000 10000 1 192.0 237.0 302.3 1852

2m 0 111 10000 10000 10000 10000 98 320 371 439.0 1098

0.25 55 10000 10000 10000 10000 23 314 367 435.0 1160

0.49 55 10000 10000 10000 10000 1 360.0 431.5 536.0 2662

5m 0 115 10000 10000 10000 10000 127 739 846 984.0 2859

0.25 104 10000 10000 10000 10000 66 742 854 1000.0 3005

0.49 5 10000 10000 10000 10000 1 865.8 1025.0 1244.0 10000

The alternative (iii) β0 = (1, 1)T , β1 = (1, 2)T , Laplace error distribution

bQ(m, k) bV (m, k)

min 1stQ med 3stQ max min 1stQ med 3stQ max

m/2 0 54 10000 10000 10000 10000 58 130.0 168 226 10000

0.25 26 10000 10000 10000 10000 1 114.0 151 206.0 10000

0.49 1 10000 10000 10000 10000 1 124 177 276.0 10000

m 0 76 10000 10000 10000 10000 100 201.0 254 330 10000

0.25 14 10000 10000 10000 10000 1 191.0 240 319.0 10000

0.49 1 10000 10000 10000 10000 1 215 296 442.0 10000

2m 0 114 10000 10000 10000 10000 113 349.0 432 558 10000

0.25 13 10000 10000 10000 10000 5 341.0 427 557.3 10000

0.49 1 10000 10000 10000 10000 1 402 541 793.5 10000

5m 0 110 10000 10000 10000 10000 76 786.8 958 1234 10000

0.25 19 10000 10000 10000 10000 12 793.8 978 1273.0 10000

0.49 1 10000 10000 10000 10000 1 947 1249 1850.0 10000

Table 3: Simulated quantiles of the stopping times τ(m) (the time 1 is the first nonhistorical
observation), for the alternative (iii), when the sequence {Xi} satisfies the condition (a).
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The alternative (iii) β0 = (1, 1)T , β1 = (1, 2)T , normal error distribution

k∗ γ bQ(m, k) bV (m, k)

min 1stQ med 3stQ max min 1stQ med 3stQ max

m/2 0 83 10000 10000 10000 10000 52 102.0 125 156 480

0.25 55 10000 10000 10000 10000 27 90 112.0 142 480

0.49 55 10000 10000 10000 10000 1 94 121 162.0 2445

m 0 131 10000 10000 10000 10000 78 169.0 201 243 688

0.25 78 10000 10000 10000 10000 6 160 192.0 234 693

0.49 134 10000 10000 10000 10000 1 175 217 276.0 1149

2m 0 135 10000 10000 10000 10000 80 301.0 346 408 905

0.25 77 10000 10000 10000 10000 21 295 341.0 403 1116

0.49 81 10000 10000 10000 10000 1 330 392 486.3 5360

5m 0 365 10000 10000 10000 10000 67 704.8 809 938 2449

0.25 122 10000 10000 10000 10000 19 708 816.5 954 2746

0.49 1532 10000 10000 10000 10000 1 799 954 1165.0 10000

Table 4: Simulated quantiles of the stopping times τ(m) (the time 1 is the first nonhistorical
observation), for the alternative (iii), when the sequence {Xi} satisfies the condition (b).
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