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summary

This paper considers estimation of the intercept and slope vector parameters of
the simple multivariate linear regression model with Student-t errors in the pres-
ence of uncertain prior information on the value of the unknown slope vector. The
unrestricted, restricted, preliminary test, shrinkage, and positive-rule shrinkage
estimators are defined together with the expressions for the bias, quadratic bias,
quadratic risk and mean squared errors (mse) functions of the estimators are de-
rived. Comparison of the estimators is made using quadratic risk criterion. Based
on the study we conclude that for p ≥ 3 shrinkage estimators are recommended,
and for p ≤ 2, the preliminary test estimators are preferable.
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1 Introduction

The simple multivariate regression model is a more general model than the commonly used
linear regression model where there is only one value of the response variable corresponding
to one value of the explanatory variable. It is used to analyse data from studies where there
are more than one value of the response variable for a particular value of the explanatory
variable. For example, if several patients are given the same dose of a medicine to observe
any response of the subjects, then, for one particular value of the explanatory variable,
there will be several values of the response variable from different subjects. The model can
be applied to any other experimental or observational studies where multiple responses are
generated for one value of the independent variable.
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Estimation of parameters is a core procedure in the statistical inference. Traditional
estimators, such as the the maximum likelihood estimator (MLE) under the normal model or
least squared estimator (LSE), are based exclusively on the observed data and are known to
be best linear unbiased estimators. Improved estimators are based on non-sample uncertain
prior information and the sample data, and often have better statistical properties than
the classical estimators. We define several improved estimators and derive their various
properties. Also, we compare the performances of the estimators under different criteria.

In the classical approach, estimators of unknown parameters are defined exclusively on
the sample data. Bancroft (1944) first used non-sample prior information in estimating
the parameters. The inclusion of non-sample information to the estimation of parameters
is likely to ‘improve’ the quality of the estimators. The natural expectation is that the
inclusion of additional information would result in a better estimator. In some cases this
may be true, but in many other cases the risk of worse consequences cannot be ruled out. A
number of estimators have been introduced in the literature that, under particular situation,
over performs the traditional exclusive sample data based unbiased estimators when judged
by criteria such as the mean squared error and squared error loss function.

The use of the normal distribution to model the errors of linear model is under increasing
criticism for its inability to model fat or heavier tailed distributions as well as being non-
robust. Fisher (1956, p. 133) warned against the consequences of inappropriate use of the
traditional normal model. Fisher (1960, p. 46) analyzed Darwin’s data (cf. Box and Taio,
1992, p. 133) by using a non-normal model. Fraser and Fick (1975) analyzed the same data
by the Student-t model. Zellner (1976) provided both Bayesian and frequentist analyses of
the multiple regression model with Student-t errors. Fraser (1979) illustrated the robustness
of the Student-t model. Prucha and Kelegian (1984) proposed an estimating equation for the
simultaneous equation model with the Student-t errors. Ullah and Walsh (1984) investigated
the optimality of different types of tests used in econometric studies for the multivariate
Student-t model. The interested readers may refer to the more recent work of Singh (1988),
Lange et al. (1989), Giles (1991), Anderson (1993), Spanos (1994), Khan (1997), and Khan
(2006) for different applications of the Student-t models. For a wide range of applications
of the Student-t models refer to Lange et al. (1989). Indeed, Zellner (1976) noted that the
Student t model is more wider than the normal model, as the later model is a special case
of the former.

Bancroft (1944) and later Han and Bancroft (1968) developed the idea of improved es-
timation. They introduced the preliminary test estimator that uses uncertain non-sample
prior information (not in the form of prior distributions), in addition to the sample informa-
tion. Stein (1956) introduced the Stein-rule (shrinkage) estimator for multivariate normal
population that dominates the usual maximum likelihood estimators under the quadratic
error loss function. In a series of papers Saleh and Sen (1978, 1985) explored the preliminary
test approach to Stein-rule estimation. Many authors have contributed to this area, notably
Sclove et al. (1972), Judge and Bock (1978), Stein (1981), and Maatta and Casella (1990),
to mention a few. Khan and Saleh (1995, 1997), and Khan (2000) investigated the problem
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for a family of Student-t populations. However, the relative performance of the prelimi-
nary test and shrinkage estimators of the intercept and slope parameters of multivariate
regression model with Student-t error has not been investigated.

It is well known that the LSE of the intercept and slope parameters is unbiased. We sug-
gest alternative improved estimators of the parameters that may be biased but would have
some superior statistical properties in terms of another more popular statistical criterion,
namely the quadratic risk based on quadratic error loss function. In this process, we define
four biased estimators: the restricted estimator (RE), the preliminary test estimator (PTE)
as a linear combination of the LSE and the RE, and the shrinkage estimator (SE) using the
preliminary test approach, and the positive-rule shrinkage estimator (PRSE). We investigate
the bias, quadratic risk and the mean squared error functions analytically to compare the
performance of the estimators. The relative efficiency of the estimators are also studied to
determine which estimator dominates other estimators under any specific condition. The
analysis reveals the fact that althought there is no uniformly superior estimator that beats
the others, the SE dominates the other two biased estimator if the non-sample information
regarding the value of β is not too far from its true value. In practice, the non-sample
information is usually available from past experience or expert knowledge, and hence it is
expected that such information will not be too far from the true value.

The next Section specifies the simple multivariate regression model. Some preliminaries
and four alternative ‘improved’ estimators of the slope parameter are provided in Section 3.
The expressions of bias functions of the estimators are obtained in Section 4. The quadratic
risk and mean squared error functions are derived in Section 5. Analysis of quadratic risk
functions is discuses in Section 6. Some concluding remarks are given in Section 7.

2 Simple Multivariate Regression Model with
Student–t Errors

Fisher (1956) discarded the normal distribution as a sole model for the distribution of errors.
Fraser (1979) showed that the results based on the Student-t models for linear models are
applicable to those of normal models, but not vice-versa. Prucha and Kelejian (1984)
critically analyzed the problems of normal distribution and recommended the Student-t
distribution as a better alternative for many problems. The failure of the normal distribution
to model the fat-tailed distributions has led to the use of the Student-t model in such
a situation. In addition to being robust, the Student-t distribution is a ‘more typical’
member of the elliptical class of distributions. Moreover, the normal distribution is a special
(limiting) case of the Student-t distribution. It also covers the Cauchy distribution on the
other extreme. Extensive work on this area of non-normal models has been done in recent
years. A brief summary of such literature has been given by Chmielewiski (1981), and
other notable references include Fang and Zhang (1980), Khan and Haq (1990), Fang and
Anderson (1990), Gupta and Vargava (1993) and Celler et al. (1995). Zellner (1976) first
introduced the regression model with Student-t errors.
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The jth sample responses vector from a multivariate linear regression model can be
expressed in the following convenient form

Y j = θ + βxj + ej for j = 1, 2, · · · , n; (2.1)

where Y j = (y1j , . . . , ypj)′ is a p-dimensional column vector of responses produced by or
associated with a single value of the explanatory variable xj , θ is a column vector of p-
dimensional intercept parameters, β is a p-dimensional column vector of the slope parame-
ters, and ej = (e1j , . . . , epj)′ is a p-dimensional column vector of errors. Assume the errors
jointly follow a multivariate Student-t distribution. Such a distribution can be viewed as a
mixture distribution of normal and inverted gamma distributions. To be more specific, let
the above errors be independently and identically distributed as normal variables so that
ej ∼ Np(0, τ2Σ) for any given value of τ . Assuming that τ follows an inverted gamma
distribution with parameters ν and scale σ = 1, having density function

f(τ ; ν) =
2

Γ
(

ν
2

) (ν

2

)ν/2

(τ)−(ν+1)e−
ν

2τ2 , τ > 0 (2.2)

where ν is the shape parameter. It is well known (cf. Khan, 1997) that the mixture
distribution of the errors, ej and τ is a p-dimensional Student-t distribution with shape ν,
and location 0. We write [ej |τ ] ∼ Np(ν,0, τ2Σ) and [ej ] ∼ tp(ν,0, ν

ν−2Σ) where Στ = τ2Σ
is the covariance matrix of the normal errors, ej , when the value of τ is fixed.

Thus the (unconditional) density of yj becomes

p(yj |θ,β,Σ) =
Γ

(
p+ν
2

)
[πνΣ]

p
2 Γ

(
ν
2

)
1 +

1
ν

n∑
j=1

(
yj − θ − βxj

)′ Σ−1
(
yj − θ − βxj

)−
ν+p
2

.

(2.3)
Note that E[yj ] = θ + βxj , Var[yj |τ ] = τ2Σ, and Var[yj ] = ν

ν−2Σ.

3 Some Preliminaries and Alternative Estimators

Following Zellner (1976), the unrestricted estimator (UE) of (θ′β′)′ is given by θ̃n

β̃n

 =

 Ȳ − β̃nx̄

1
Q

∑n
j=1(xj − x̄)(Y j − Ȳ )

 (3.1)

where Q =
∑n

j=1(xj − x̄)2 in which x̄ = 1
n

∑n
j=1 xj and Ȳ = 1

n

∑n
j=1 Y j . The above UE is

either the least squares or maximum likelihood estimator.
It is easily verified that (θ̃

′
n, β̃

′
n)′ is unbiased with covariance matrix

Σ∗ ⊗

 1
n + x̄2

Q − x̄
Q

− x̄
Q

1
Q

 in which Σ∗ =
ν

ν − 2
Σ (3.2)
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where ⊗ is the Kronecker product of the two matrices. Further, one can verify that the
matrix S defined by

S = (n− 2)−1
n∑

j=1

[
(Y j − Ȳ )− β̃n(xj − x̄)

]′ [
(Y j − Ȳ )− β̃n(xj − x̄)

]
(3.3)

is unbiased for Σ∗. In addition, one can test the null hypothesis H0 : β = 0 against
HA : β 6= 0 based on the test statistic

Ln =
m

p
Qβ̃

′
nS−1β̃n (3.4)

which follows a central F–distribution with (p, m) d.f. in which m = n− p− 1, under H0,
and under HA it follows the mixed distribution given by

Gp,m(Cα;∆∗) =
∑
r≥0

Γ
(

ν
2 + r

)
Γ(r + 1)Γ(ν/2)

(
∆∗

ν−2

)r
ICα

(
1
2 (q + r); 1

2m
)(

1 + ∆2

ν−2

)ν/2+r
(3.5)

where ∆∗ =
(

ν
ν−2

)
Qβ′Σ−1β, Cα = pFp,m(α)

m+pFp,m(α) and Ix(a; b) is the usual incomplete beta
function. Further, let

G
(j)
p+2i,m(∆∗) =

∞∑
r=0

Γ
(

ν
2 + r + j − 2

)
Γ(r + 1)Γ

(
ν
2 + j − 2

) (∆∗/(ν − 2))rI
[
1
2 (p + 2i) + r, 1

2m
]

(1 + ∆∗/(ν − 2))ν/2+r+j−2
(3.6)

for j = 1, 2 and i = 1, 2. Also,

E(j)
[
χ−2

p+2i (∆∗)
]

=
∞∑

r=0

Γ
(

ν
2 + r + j − 2

)
Γ(r + 1)Γ

(
ν
2 + j − 2

) (∆∗/(ν − 2))r(p + 2i− 2 + 2r)−1

(1 + ∆∗/(ν − 2))ν/2+r+j−2

E(j)
[
χ−2

p+2i(0)
]

= (p + 2i− 2)−1, j = 1, 2 (3.7)

and

E(j)
[
F−1

p+2i,m(∆∗)I
(
Fp+2i,m(∆∗) ≤ qd

p + 2i

)]
=

∞∑
r=0

Γ
(

ν
2 + r + j − 2

)
Γ(r + 1)Γ

(
ν
2 + j − 2

) ( ∆∗

ν−2 )r(p + 2i)p + 2i− 2 + 2r)−1

(1 + ∆∗/(ν − 2))ν/2+r+j−2

×Ix

[1
2
(p + 2i− 2 + 2r),

1
2
(m + 2)

]
,

E(j)
[
F−1

p+2i,m(0)I
(
Fp+2i,m(0) ≤ qd

p + 2i

)]
= (p + 2i)(p + 2i− 2)−1Ix

[1
2
(p + 2i− 2),

1
2
(m + 2)

]
, (3.8)

where x = qd
m+qd in which d == (p−2)m

p(m+2) is a positive real number.
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Now, we go to the expressions of restricted, preliminary test and shrinkage estimators
of (θ′,β′)′.

The restricted estimator (RE) of (θ′,β′) is given by θ̂n

β̂n

 =

 θ̂n + β̃nx̄

0

 . (3.9)

Following Saleh (2006) we define the preliminary test estimators (PTE) of (θ′,β′)′ as θ̂
PT

n

β̂
PT

n

 =

 θ̂n + β̃nx̄ I(Ln < Fp,m(α)

β̃nI(Ln ≥ Fp,m(α))

 (3.10)

where Fp,m(α) is the α-level upper quantile of an F -distribution with p and m degrees of
freedom. Similarly, the Stein-type shrinkage estimator (SE) of (θ′,β′)′ is given by θ̂

S

n

β̂
S

n

 =

 θ̃n + β̃nx̄(1− dL−1
n )

β̃n(1− dL−1
n )

 , with d =
(p− 2)m
p(m + 2)

(3.11)

and the positive-rule shrinkage estimator (PRSE) of (θ′,β′)′ is as follows: θ̂
S+

n

β̂
S+

n

 =

 θ̃n + β̃nx̄(1− dL−1
n )I(Ln > d)

β̃n(1− dL−1
n )I(Ln > d)

 . (3.12)

In the next section we present the bias, quadratic bias functions, MSE matrices and
quadratic risk functions of these five sets of estimators. The estimators belong to the class
of quasi-empirical Bayes estimators of the form θ∗n

β∗n

 =

 θ̃n + x̄β̃ng(Ln)

β̃ng(Ln)

 (3.13)

where g(Ln) takes the values 0, 1, I(Ln < Fp,m(α)) (1 − dL−1
n ) and (1 − dL−1

n )I(Ln > d)
respectively to yield the UE, RE, PTE, SE and PRSE of (θ′,β′)′ respectively (cf Saleh,
2006).

4 The Bias and Quadratic Bias

In this section, the bias and quadratic bias expressions are given in the following theorem.
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Theorem 4.1: For the simple multivariate linear model with Student-t errors having ν

degrees of freedom the bias and quadratic bias functions of the UE, RE, PTE, SE and
PRSE of the intercept and slope vectors are given by b1(θ̃n)

b1(β̃n)

 =

0

0

 , and

 B1(θ̃n)

B1(β̃n)

 =

0

0

 (4.1)

 b2(θ̂n)

b2(β̂n)

 =

 βx̄

−β

 , and

 B2(θ̂n)

B2(β̂n)

 =

 x̄2∆∗

∆∗

 (4.2)

 b3(θ̂PT
n )

b3(β̂
PT

n )

 =

 βx̄G
(2)
p+2,m(`α;∆∗)

−βx̄G
(2)
p+2,m(`α;∆∗)

 , `α =
p

p + 2
Fp,m(α) (4.3)

and  B3(θ̂PT
n )

B3(β̂
PT

n )

 =

 x̄2∆∗{G(2)
p+2,m(`α;∆∗)}2

∆∗{G(2)
p+2,m(`α;∆∗)}2

 (4.4)

 b4(θ̂S
n)

b4(β̂
S

n)

 =

 dpβx̄E(2)[χ−2
p+2(∆

∗)]

−dpβE(2)[χ−2
p+2(∆

∗)]

 , (4.5)

and  B4(θ̂S
n)

B4(β̂
S

n)

 =

p2d2x̄2∆∗{E(2)[χ−2
p+2(∆

∗)]}2

p2d2∆∗{E(2)[χ−2
p+2(∆

∗)]}2


 b5(θ̂S+

n )

b5(β̂
S+

n )


=

 βx̄
{
E(2)

[
(1− d1F

−1
p+2,m(∆∗))I(Fp+2,m(∆∗) < d1)

]
+ E(2)[F−1

p+2,m(∆∗)]
}

−β
{
E(2)

[
(1− d1F

−1
p+2,m(∆∗))I(Fp+2,m(∆∗) < d1)

]
+ E(2)[F−1

p+2,m(∆∗)]
}

 ,

and B5(θ̂S+
n )

B5(β̂
S+

n )


=

 x̄2∆∗{E(2)
[
(1− d1F

−1
p+2,m(∆∗))I(Fp+2,m(∆∗) < d1)

]
+ E(2)[F−1

p+2,m(∆∗)]
}2

∆∗{E(2)
[
(1− d1F

−1
p+2,m(∆∗))I(Fp+2,m(∆∗) < d1)

]
+ E(2)[F−1

p+2,m(∆∗)]
}2

 (4.6)
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with d1 = dp
p+2 where bi and Bi for i = 1, 2, . . . , 5 represent bias and quadratic bias functions

of the estimators respectively.

We observe from the expressions of quadratic biases that

0 ≤ B3

(
β̂

PT

n

)
≤ B2(β̂n) < ∞.

Moreover, the quadratic biases of β̂
S

n and β̂
S+

n satisfy the ordering

0 = B1(β̃n) ≤ B4(β̂
S

n) ≤ B5(β̂
S+

n ) < ∞.

For the comparison of the quadratic biases of β̂
PT

n and β̂
S

n we note that

B3(β̂
PT

n )−B4(β̂
S

n) = ∆∗
[{

G
(2)
p+2,m(`α;∆∗)

}2

−
{

E(2)
[
χ−2

p+2(∆
∗)

]}2
]
≥ 0

whenever G
(2)
p+2,m(`α;∆∗) ≥ E(2)

[
χ−2

p+2(∆
∗)

]
otherwise B4(β̂

S

n) > B3(β̂
PT

n ).

Similar conclusions hold for the biases of θ̃n, θ̂n, θ̂
PT

n , θ̂
S

n and θ̂
S+

n .

5 The MSE and Risk Expressions of the Estimators

The following theorem gives the expressions for the MSE matrices and quadratic risks of
the estimators.

Theorem 5.1: For the simple multivariate linear model with Student-t errors having ν

degrees of freedom the MSE matrices and quadratic risk functions of the UE, RE, PTE, SE
and PRSE of the intercept and slope vectors are given by

(i) M1(θ̃n) =
(

1
n

+
x̄2

Q

)
Σ∗ and R1(θ̃n;W ) =

(
1
n

+
x̄2

Q

)
tr(WΣ∗)

and

M1(β̃n) =
1
Q

Σ∗ and R1(β̃n;W ) =
1
Q

tr(WΣ∗).

(ii) M2(θ̂n) =
(

1
n

+
x̄2

Q
∆∗

)
Σ∗ and R2(θ̂n;W ) =

(
1
n

+
x̄2

Q
∆∗

)
tr(WΣ∗)

and

M2(β̂n) = ββ′ and R2(β̂n;W ) = ∆∗ = Qβ′Σ∗−1β.

(iii) M3

(
θ̂

PT

n

)
=

(
1
n

+
x̄2

Q

)
Σ∗ − x̄2

Q
Σ∗G

(2)
p+2,m(`α;∆∗)

+ x̄2ββ′
{

2G
(1)
p+2,m(`α;∆∗)−G

(1)
p+4,m(`∗α;∆∗)

}
where `∗α = p

p+4Fp,m(α).
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R3

(
θ̂

PT

n ;W
)

=
(

1
n

+
x̄2

Q

)
tr(WΣ2)− x̄2

Q
tr(WΣ∗)G(2)

p+2,m(`α;∆∗)

+ x̄2(β′Wβ)
{

2G
(1)
p+2,m(`α;∆∗)−G

(1)
p+4,m(`∗α;∆∗)

}
.

M3

(
β̂

PT

n

)
=

1
Q

Σ∗− 1
Q

Σ∗G
(2)
p+2,m(`α;∆∗)+ββ′{

2G
(1)
p+2,m(`α;∆∗)−G

(1)
p+4,m(`∗α;∆∗)

}
and

R3

(
β̂

PT

n

)
=

1
Q

tr(WΣ∗)− 1
Q

tr(WΣ∗)G(2)
p+2,m(`α;∆∗)

+ (β′Wβ)
{

2G
(1)
p+2,m(`α;∆∗)−G

(1)
p+4,m(`∗α;∆∗)

}
.

(iv) M4

(
θ̂

S

n

)
=

( 1
n

+
x̄2

Q

)
Σ∗ − dp

x̄2

Q
Σ∗

{
2E(2)

[
χ−2

p+2(∆
∗)

]
− (p− 2)E(2)

[
χ−4

p+2(∆
∗)

]
+ dp(p + 2)x̄2ββ′E(2)

[
χ−4

p+4(∆
∗)

]
,

R4

(
θ̂

S

n ;W
)

=
( 1

n
+

x̄2

Q

)
tr(WΣ∗)− dp

x̄2

Q
tr(WΣ∗)

{
2E(2)

[
χ−2

p+2(∆
∗)

]
− (p− 2)E(2)

[
χ−4

p+2(∆
∗)

]}
+ dp(p + 2)x̄2(β′Wβ)E(2)

[
χ−4

p+4(∆
∗)

]
and

M4

(
θ̂

S

n

)
=

1
Q

Σ∗ − 1
Q

dpΣ∗
{
2E(2)

[
χ−2

p+2(∆
∗)

]
− (p− 2)E(2)

[
χ−4

p+2(∆
∗)

]}
+ dp(p + 2)ββ′E(2)

[
χ−4

p+4(∆
∗)

]
and

R4

(
β̂

S

n ;W
)

=
1
Q

tr(WΣ∗)− dp

Q
tr(WΣ∗)

{
2E(2)

[
χ−2

p+2(∆
∗)

]
−(p− 2)E(2)

[
χ−4

p+2(∆
∗)

]}
+ dp(p + 2)x̄2(β′Wβ)E(2)

[
χ−4

p+4(∆
∗)

]
.

(v) M5

(
θ̂

S+

n

)
= M4

(
θ̂

S

n

)
− x̄2

Q
Σ∗E(1)

[(
1− d1F

−1
p+2,m(∆∗)

)2
I
(
Fp+2,m(∆∗) < d1

)]
+ x̄2ββ′

{
2E(2)

[(
1− d1F

−1
p+2,m(∆∗)

)
I
(
Fp+2,m(∆∗) < d1

)]
−E(2)

[(
1− d2F

−1
p+4,m(∆∗)

)2
I
(
Fp+4,m(∆∗) < d2

)]}
with d1 = dp

p+2 and d2 = dp
p+4 ,

R5

(
θ̂

S+

n ;W
)

= R4

(
θ̂

S

n ;W
)
− x̄2

Q
tr(WΣ∗)E(1)

[(
1− d1F

−1
p+2,m(∆∗)

)2
I
(
Fp+2,m(∆∗) < d1

)]
+(β′Wβ)

{
2E(2)

[(
1− d1F

−1
p+2,m(∆∗)

)
I
(
Fp+2,m(∆∗) < d1

)]
−E(2)

[(
1− d2F

−1
p+2,m(∆∗)

)2
I
(
Fp+4,m(∆∗) < d2

)]}
.
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Similarly,

M4(β̂
S+

n ) = M4(β̂
S

n)− 1
Q

Σ∗E(1)
[
(1− d1F

−1
p+2,m(∆∗)

)2
I
(
Fp+2,m(∆∗) < d1

)]
+x̄2ββ′

{
2E(2)

[
(1− d1F

−1
p+2,m(∆∗)

)
I
(
Fp+2,m(∆∗) < d1

)]
−E(2)

[(
1− d2F

−1
p+4,m(∆∗)

)
I
(
Fp+4,m(∆∗) < d2

)]}
.

6 Analysis of Quadratic Risks

It is clear that the risks of θ̃n and β̃n are constant while that of θ̂n and β̂n depend on ∆∗

and are monotonic functions of ∆∗. So, as ∆∗ →∞, they are unbounded. For W = Σ∗−1,
we then have

R2

(
θ̂n;Σ∗−1) = p

( 1
n

+
x̄2

Q
∆∗

)
and R2

(
β̂n; Σ∗−1) = p/Q. (6.1)

Further, [( 1
n

+
x̄2

Q
∆∗

)
−

( 1
n

+
x̄2

Q

)]
tr(WΣ∗) =

x̄2

Q
(∆∗ − 1)tr(WΣ∗). (6.2)

Hence, θ̂n is better than θ̃n if ∆∗ < 1 and θ̃n is better than θ̂n if ∆∗ > 1. Similar conclusions
hold for β̂n and β̃n, i.e.

R2(β̂n;W )−R1(β̃n;W ) = ∆∗ − 1
Q

tr(WΣ∗)

implies that β̂n is better than β̃n if ∆∗ < 1
Q tr(WΣ∗) and β̃n is better than β̂n if ∆∗ >

1
Q tr(WΣ∗).

Now, consider the comparison of θ̃n and θ̂
PT

n , and β̃n and β̂
PT

n . First, we consider β̃n

and β̂
PT

n . The risk-difference R1(β̃n;W )−R3(β̂
PT

n ;W ) which is

1
Q

tr(WΣ∗)G(2)
p+2,m(`α;∆∗)− (β′Wβ)

{
2G

(1)
p+2,m(`α;∆∗)−G

(1)
p+4,m(`∗α;∆∗)

}
>=
<

0

whenever

Q(β′Wβ)
<=
>

tr(WΣ∗)G(2)
p+2,m(`α;∆∗)[

2G
(1)
p+2,m(`α;∆∗)−G

(1)
p+4,m(`∗α;∆∗)

] .

If W = Σ∗−1, then the above reduces to

∆∗ <=
>

pG
(2)
p+2,m(`α;∆∗)[

2G
(1)
p+2,m(`α;∆∗)−G

(1)
p+4,m(`∗α;∆∗)

] .
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Hence, β̂
PT

n is better than β̃n if

∆∗ <
pG

(2)
p+2,m(`α;∆∗)[

2G
(1)
p+2,m(`α;∆∗)−G

(1)
p+4,m(`∗α;∆∗)

] ,

otherwise β̃n is better.

Similar conclusions follow for θ̃n and θ̂
PT

n . Consider the risk-difference of the estimators

R1(θ̃n;W )−R3

(
θ̂

PT

n ;W
)

=
x̄2

Q
tr(WΣ∗)G(2)

p+2,m(`α;∆∗)− x̄2(β′Wβ)
[
2G

(1)
p+2,m(`α;∆∗)−G

(1)
p+4,m(`∗α;∆∗)

]
.

Hence, the risk-difference is
>=
<

whenever

Q(β′Wβ)
>=
<

tr(WΣ∗)G(2)
p+2,m(`α;∆∗)[

2G
(1)
p+2,m(`α;∆∗)−G

(1)
p+4,m(`∗α;∆∗)

] .

Hence, θ̂
PT

n is better than θ̃n if

Q(β′Wβ) ≤
tr(WΣ∗)G(2)

p+2,m(`α;∆∗)[
2G

(1)
p+2,m(`α;∆∗)−G

(1)
p+4,m(`∗α;∆∗)

] .

otherwise θ̃n is better than θ̂
PT

n .
Now, consider the risk-difference

R1(β̃n;W )−R4(β̂
S

n ;W ) =
dp

Q
tr(WΣ∗)

{
2E(2)

[
χ−2

p+2(∆
∗)

]
− (p− 2)E(2)

[
χ−4

p+2(∆
∗)

]}
−dp(p + 2)(β′Wβ)E(2)

[
χ−4

p+4(∆
∗)

]
R1(θ̃n;W )−R4(θ̂

S

n ;W ) =
dp

Q
tr(WΣ∗)

{
(p− 2)E(1)

[
χ−4

p+2(∆
∗)

]
+

[
1− (p + 2)(β′Wβ)

2∆∗tr(WΣ∗)

]
2∆∗E(2)

[
χ−4

p+4(∆
∗)

]}
.

The risk-difference is positive for all A such that{
A :

tr(WΣ∗)
Chmax(WΣ∗)

≥ p + 2
2

}

where Chmax is the maximum characteristic root of the matrix (WΣ∗). Thus, θ̂
S

n uniformly

dominates θ̃n as well as β̂
S

n uniformly dominates β̃n.
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To compare θ̂n and θ̂
S

n we may write

R4(θ̂
S

n ;W )−R2(θ̂n;W ) =
x̄2

Q
(1−∆∗)tr(WΣ∗)

+dp
x̄2

Q
tr(WΣ∗)

{
(p− 2)E(2)

[
χ−2

p+2(∆
∗)

]
+ ∆∗E(2)

[
χ−4

p+4(∆
∗)

]}
+dp(p + 2)x̄2(β′Wβ)E(2)

[
χ−4

p+4(∆
∗)

]
.

Under H0, the above risk-difference becomes

x̄2

Q
tr(WΣ∗) + dp(p− 2)

x̄2

Q
E(2)

[
χ−2

p+2(0)
]
≥ R2(θ̂n;W )

while under HA

R2(θ̂n;W ) =
1
n

tr(WΣ∗) ≤ R1(θ̃n;W ).

Thus, θ̂n performs better than θ̃n under H0. However, as β moves away from the origin ∆∗

increases and the risk of θ̂n becomes unbounded while the risk of θ̂
S

n remains below the risk

of θ̃n and the two merge as ∆∗ →∞. Thus θ̂
S

n dominates θ̂n outside an interval around the
origin.

Similarly,

R4(β̂
S

n ;W )−R2(β̂n;W )

=
1
Q

tr(WΣ∗)
[
1− dp

{
(p− 2)E(2)

[
χ−2

p+2(∆
∗)

]
+ 2∆∗E(2)

[
χ−4

p+4(∆
∗)

]}]
+ dp(p + 2)(β′Wβ)E(2)

[
χ−4

p+4(∆
∗)

]
.

Under H0, the above becomes

1
Q

tr(WΣ∗)
[
1− dp(p + 2)E(2)

[
χ−2

p+2(∆
∗)

]]
which, under H0

R2(β̂n;W ) = 0 ≤ R1(β̃n;W ).

Thus, βn performs better than β̃
S

n under H0.
However, as β moves away from the origin 0, β′Wβ as well as ∆∗ increases and the risk

of β̂n becomes unbounded while the risk of β̂
S

n remains below the risk of β̃n and the two

merge as ∆∗ →∞. Thus, β̂
S

n dominates β̂n outside an interval around the origin.

Now, we compare θ̂
S

n and θ̂
S+

n (also β̂
S

n and β̂
S+

n ). The risk-difference is

R4(θ̂S
n ;W )−R5(θ̂S+

n ;W )

=
x̄2

Q
tr(WΣ∗)E(1)

[(
1− d1F

−1
p+2,m(∆∗)

)2
I
(
Fp+2,m(∆∗) < d1)

]
= x̄2

[
R4(β̂

S

n ; bW )−R5(β̂
S+

n ;W )
]
≥ 0.
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Hence, the relative dominance of (θ̂
S+

n , θ̂
S

n and θ̃n) is given by

R5(θ̂
S+

n ;W ) ≤ R4(θ̂
S

n ;W ) ≤ R1(θ̃n;W ) ∀ ∆∗.

Similarly, the relative dominance of β̂
S+

n , β̂
S

n and β̃n is given by

R5(β̂
S+

n ;W ) ≤ R4(β̂
S

n ;W ) ≤ R1(β̃n;W ) ∀ ∆∗.

Finally we compare θ̂
PT

n and θ̂
S

n . Note that under H0

R4(θ̂
S

n ;W ) = R3(θ̂
PT

n ;W ) +
x̄2

Q

[
G

(1)
p+2,m(`α; 0)− d

]
≥ R3(θ̂PT

n ;W )

where G
(1)
p+2,m(`α; 0) = 1− α and `α = pFp,m(α)/p + 2. Note `α satisfies the inequality{

α : `α ≥ F−1
p+2,m(α; 0)

}
.

Thus, the risk of θ̂
PT

n is smaller than that of θ̂
S

n when `α satisfies the above inequality. This

implies that θ̂
S

n does not always dominate θ̂PT
n under H0. We may order the quadratic risks

under H0 as
R2(θ̂n;W ) ≤ R3(θ̂

PT

n ;W ) ≤ R(θ̂
S

n ;W ) ≤ R1(θ̃n;W ).

The relative dominance picture changes as ∆∗ diverts from 0. As ∆∗ → ∞, the risks
of θ̂

S

n and θ̂
PT

n converges to the risk of θ̃n but for reasonably small values of ∆∗ near 0,

θ̂PT
n dominates θ̂

S

n for a solution α from the set {α : `α ≥ F−1
p+2,m(α, 0)}. Thus, none of the

estimators uniformly dominate each other for p ≥ 3.
Similarly, under H0

R4(β̂
S

n ;W ) = R3(β̂
PT

n ;W ) +
1
Q

[
G

(2)
p+2,m(`α; 0)− d

]
and the analysis is similar to the risks of θ̂

PT

n and θ̂
S

n follows and none of the estimators
uniformly dominate each other for p ≥ 3. Analysis of the MSE matrices is also possible, but
not included in this paper.

7 Conclusions

In this paper we have studied five different estimators of (θ′,β′)′ when the hypothesis

H0 : β = 0 is suspected to hold. Note that the estimators (θ̂
′S

n , β̂
′S

n ) and (θ̂
′S+

n , β̂
′S+

n )′ are

constrained by p ≥ 3 while (θ̂
′PT

n , β̂
′PT

n )′ does not need to satisfy this constraint but needs
the determination of the size of the test and depends on the diversion parameter ∆∗. Also
maximal saving in risk for the shrinkage estimators in the normal case is (p−2)m

p(m+2) . In the
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case of Student-t models the maximal risk saving is (p−2)m
p(m+2)

(
ν−2

ν

)
. Thus, for moderate and

small values of ν the risk-saving is significant compared to the normal case. The risk saving
in the case of the PTE in the normal case is G

(2)
p+2,m(`α; 0) and for the Student-t errors it

is ν−2
ν G

(2)
p+1,m(`α; 0) which converges to G

(2)
p+2,m(`α; 0) as ν →∞. Thus, the performance of

the five estimators is robust in the case of the Student-t errors which is determined by the

d.f. ν (≥ 4). For p ≥ 3 one uses the (θ̂
S+′

n , β̂
S+′

n )′ while for p < 3 the PTE is used with
optimum size of α. Therefore, from the point of robust efficiency both the PTE and the
positive-rule Stein-type estimators may be advocated for application.

7.1 Acknowledgements

The author is very thankful to Professor A K Md E Saleh, Carleton University, Canada, for
his valuable advice and comments that significantly improved the quality and presentation
of the manuscript.

References

[1] Anderson, T.W. (1993). Nonnormal multivariate distributions: Inference based on el-
liptically contoured distributions. In Multivariate Analysis: Future Directions. ed. by
C.R. Rao. North-Holland, Amsterdam, 1–24.

[2] Bancroft, T.A. (1944). On biases in estimation due to the use of the preliminary tests
of significance. Ann. Math. Statist., 15, 190–204.

[3] Chiou, P. and Saleh, A.K.Md.E. (2002). Preliminary test confidence sets for the mean of
a multivariate normal distribution. Journal of Propagation in Probability and Statistics,
2, 177-189.

[4] Box, G.E.P. and Taio, G.C. (1990). Bayesian Inference in Statistical Analysis. Wiley,
New York.

[5] Cornish, E.A. (1954). Multivariate t-distribution associated with a set of normal sample
deviates. Australian Journal of Physics. Vol. 7, 531–542.

[6] Fisher, R.A. (1956). Statistical Methods in Scientific Inference. Oliver and Boyd, Lon-
don.

[7] Fisher, R.A. (1960). The Design of Experiments. 7th ed., Hafner, New York.

[8] Fraser, D.A.S. and Fick, G.H. (1975). Necessary analysis and its implementation. In
Proc. Symposium on Statistics and Related Topics. ed. by A.K. Md. E. Saleh, Carleton
University, Canada, 5.01–5.30.

[9] Fraser, D.A.S. (1979). Inference and Linear Models, McGraw–Hill, New York.

84



[10] Giles, J.A. (1991). Pre-testing for linear restrictions model with spherically symmetric
disturbances. Journal of Econometrics, Vol. 50, 377–398.

[11] Han, C.P. and Bancroft, T.A. (1968). On pooling means when variance is unknown.
Jou. Amer. Statist. Assoc., 63, 1333-1342.

[12] James, W. and Stein, C. (1961). Estimation with quadratic loss. Proceedings of the
Fourth Berkeley Symposium on Mathematical Statistics and Probability. Berkeley, Cal-
ifornia, 361–379.

[13] Judge, G.C. and Bock, M.E. (1978). Statistical Implications of Pre-test and Stein-rule
Estimators in Econometrics. North Holland, Amsterdam.

[14] Khan, S. (1997). Likelihood based inference on the mean vectors of two multivariate
Student-t populations. Far East Journal of Theoretical Statistics. 1, 1-17.

[15] Khan, S. (2000). Improved estimation of the mean vector for Student-t model. Com-
munications In Statistics: Theory & Methods 29, (3), 507-527.

[16] Khan, S. (2006). Optimal Tolerance Regions for Some Functions of Multiple Regression
Model with Student-t Errors. Journal of Statistics & Management Sciences, Forthcom-
ing

[17] Khan, S. and Saleh, A.K.Md.E. (1997). Shrinkage pre-test estimator of the intercept pa-
rameter for a regression model with multivariate Student-t errors. Biometrical Journal.
Vol. 39, 131–147.

[18] Khan, S. and Saleh, A.K.Md.E. (1998). Comparison of estimators of the mean based
on p-samples from multivariate Student-t population. Communications in Statistics:
Theory & Methods. Vol. 27(1), 193-210.

[19] Khan, S. and Saleh, A.K.Md.E. (2001). On the comparison of the pre-test and shrinkage
estimators for the univariate normal mean. Statistical Papers, 42(4), 451-473.

[20] Lange, K.L. Little, R.J.A., and Taylor, J.M.G. (1989). Robust statistical modeling
using the t-distribution. Journal of American Statistical Association, Vol. 84, 881–896.

[21] Prucha, I.R. and Kelegian, H.H. (1984). The structure of simultaneous equation es-
timators: A generalization towards non-normal disturbances, Econometrica, Vol. 52,
721–736.

[22] Saleh, A K Md E. (2006). Theory of Preliminary Test and Stein-type Estimation with
Applications. Wiley, New York.

[23] Singh, R.S. (1988). Estimation of error variance in linear regression models with errors
having multivariate Student-t distribution with unknown degrees of freedom. Economics
Letters, Vol. 27, 47–53.

85



[24] Spanos, A. (1994). On modeling heteroskedasticity: The Student’s t and elliptical linear
regression models. Econometric Theory, Vol. 10, 286–315.

[25] Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate
normal distribution. Proceedings of the Third Berkeley Symposium on Math. Statist.
and Probability, University of California Press, Berkeley, Vol. 1, 197-206.

[26] Stein, C. (1981). Estimation of the mean of a multivariate normal distribution. Ann.
Statist. 9, 1135–1151.

[27] Ullah, A. and Walsh, V.Z. (1984). On the robustness of LM, LR and W tests in regres-
sion models. Econometrica, Vol. 52, 1055–1066.

[28] Zellner, A. (1976). Bayesian and non-Bayesian analysis of the regression model with
multivariate Student-t error term. Journal of American Statistical Association, Vol. 66,
601–616.

86


