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summary

The purpose of this paper is to use Monte Carlo simulations to evaluate the
performance of six most popular statistics for testing the goodness of fit of a
parametric density function. The first three tests in this study are based on
the empirical distribution function which are simple and widely used. The other
three are based on directed and non-directional divergence measures and derived
from minimum relative entropy (MinxEnt) principle, m-spacing method and ker-
nel method. This study aims to evaluate the behavior of these tests by examining
the rejection rates under the hypothesis. It is shown that the tests based on the
directed divergence measure give a good approximation to the given significance
levels and are more powerful than other tests against the given alternative dis-
tributions. It also suggests that the statistics based on the MinxEnt estimator
detect the distribution with higher kurtosis better than others.
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1 Introduction

The goodness of fit tests are developed with the aim of testing the hypothesis that exper-
imental data have come from a random variable with a theoretical distribution. How well
the data are modeled by that distribution is known as goodness of fit and can be measured
by several different types of test statistics.

Suppose that we have observed a sequence of independent samples {Xi}n
i=1 which are

drawn from a common cumulative distribution function (CDF), F (x) , with a probability
density function (PDF), f (x) , x ∈ R. Consider the following goodness-of-fit test problem:

H0 : F (x) = F0 (x, θ) , or f (x) = f0 (x, θ) for all x ∈ R and some θ ∈ Θ,

where the parameter vector, θ, is unspecified, F0 (x, θ) is a CDF from a parametric family,
with PDF f0 (x, θ) that are measurable in x for every θ ∈ Θ, an open subset of a d-
dimensional Euclidean space Rd, and continuous in θ for every x ∈ R.

In particular, this study considers the case of testing for normality with unknown param-
eters estimated by the maximum likelihood estimators (MLE). That is, the null hypothesis
is

H0 : f (x) = f0 (x, θ) =
(√

2πσ
)−1

exp
(
− (x− µ)2 /2σ2

)
for all x ∈ R, some θ ∈ Θ

where θ =
(
µ, σ2

)
, µ and σ2 are not specified and are replaced by the sample mean x̄ and

the sample variance σ̂2, where x̄ = n−1
∑n

i=1 xi and σ̂2 = n−1
∑n

i=1 (xi − x̄)2. The use of
testing for normality could be applied in two areas. The first is to test the distribution of the
statistics which are normally distributed due to the applicability of large sample theorems
such as the central limit theorem. The second application for testing normality is related to
the situations where the normal distribution is assumed to be the appropriate model for the
phenomenon under investigation. The examples of use of normal distribution and lognormal
distribution are given in many literatures. For example, in the analysis of cadmium and
lead levels in the blood of children (Smith, Temple, and Reading, 1976), body discomfort
and transmissibility scores (Griffin and Whitham, 1978), and weights of mammary tumors
in rats (Fredholm, Gummarsson, Jensen, and Muntzing, 1978), applictions of normal and
lognormal distributions are made.

When testing for normality for a given sample, test statistics may have different perfor-
mance. This study aims to evaluate the finite-sample performances of several statistics for
testing the goodness of fit of a normal distribution function. This problem is very important
both in theoretical and in experimental analysis.

Many tests have been developed for testing the goodness of fit of normality. In D’gostino
and Stephens (1986), five categories of them are introduced, chi-square tests, empirical
distribution function (EDF) tests, moment tests, regression tests, and miscellaneous tests.

The chi-square type tests follow a chi-square distribution under H0 and are first developed
by Karl Pearson in 1900. They are based on a comparison of the frequencies from a model
with the frequencies observed from an experiment. The well known Pearson chi-square test
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and others related to it such as the G test (Cressie and Read, 1984), the Freeman-Tukey
test (Freeman and Tukey, 1950) and the Rao-Robson test (Rao and Robson, 1974) remain
among the most used statistical procedures.

The EDF type tests constitute another class of goodness of fit statistics. These are
based on a comparison of F0(x, θ), the CDF of the normal distribution and the empirical
distribution function Fn(x) of the sample. These tests are used most often with continuous
data. In the 1930s, Kolmogorov and Smirnov invented their EDF test for continuous data
which is known as the KS test. Today it is still one of the best known and most commonly
used goodness of fit tests because of its simplicity and intuitive nature. Crámer-von Mises
(CVM) test and Anderson Darling (AD) test are defined as the integrated squared difference
between the EDF and the theoretical distribution function, invoking a weight function ψ

(Ozturk and Hettmansperger, 1997). Other EDF type tests include the Kuiper test, the
Watson test, etc. Stephens (1974) examined these five statistics in three situations: when
the hypothesized distribution F0(x) was completely specified and where F0(x, θ) represented
the uniform or normal distribution with one or more parameters to be estimated from the
data. Throughout the experiments studied by Stephens, the AD test and the CVM test
appeared to be the best pair of EDF statistics and the chi-squared test was not as powerful
as EDF statistics. In this study, we concentrate on the KS test, the CVM test and the AD
test which have attracted most attention. For moment tests, regression tests, miscellaneous
tests and other tests for testing normality, see D’agostino and Stephens (1986).

Moreover, in the literature of statistic, another type of goodness-of-fit test statistics,
divergence measure tests, have been developed based on the idea of information-theoretic
entropy which was first introduced in communication theory by Shannon (1948), see Ullah
(1996) for a good survey. The concept of divergence is related to the distance between two
probability distributions.

An asymmetric divergence measure of f from f0 is discussed in Ullah (1996). It is
introduced by Kullback and Leibler (1951) and is known as relative entropy which is one
of the directed divergence measures. The minimum relative entropy principle can be used
in econometric estimation and hypothesis testing. Parzen (1985) has applied it to the test
for goodness of fit. Based on the Kullback-Leibler relative entropy, Song (2002) developed
an asymptotically distribution-free goodness-of-fit test using the m-spacing method. This
method is shown to provide an extremely simple and potentially much better alternative to
the classical EDF based test procedures.

Another class of divergence measure which is symmetric is referred to as the non-
directional divergence measure. Test based on

∫
(f (x)− f0 (x, θ))2 dx, the integrated squared

difference between a kernel estimate of f (x) and the quasi-maximum likelihood estimate
of f0 (x, θ) is described in Fan (1994), Aı̈t-Sahalia (1996) and Pagan and Ullah (1999).
Fan (1994) showed this test was more powerful than the KS test for the local alternatives
introduced by Rosenblatt (1975).

This paper is organized as follows. Six tests including three EDF tests and three diver-
gence measure tests are summarized in Section 2. The EDF tests, which are the KS test,
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the CVM test and the AD test, are first discussed in Section 2.1. A directed divergence
measure, which is Kullback-Leibler divergence measure, is introduced in Section 2.2. It is
applied for testing the goodness of fit by using two methods. One is the classical minimum
relative entropy principle. The other is m-spacing method. Section 2.3 introduces another
test of goodness of fit which is based on the non-directional divergence measure. In Section
3, a Monte Carlo simulation study is given to evaluate the performance of these statistics.
After introducing the experimental design, the simulation results are given for a comparison.
A conclusion and suggestions for future research are given in the last section.

2 Summary of Test Statistics

2.1 Tests Based on Empirical Distribution Function (EDF)

The empirical distribution function is used for estimating the population cumulative distri-
bution function for a given observed sample. It is defined as

Fn (x) = n−1 (number of xj ≤ x) = n−1
n∑

i=1

I (xj ≤ x) ,

where n is the sample size, and I (·) is the indicator function. By Glivenko-Cantelli lemma,
the EDF converges uniformly to the CDF with probability one.

Conveniently, the EDF statistics are divided into two classes, the supremum class and
the quadratic class (Kapur and Kesavan, 1992). In this study, we consider three EDF
statistics which are Kolmogorov-Smirnov (KS) statistic, Crámer-von Mises (CVM) statistic
and Anderson-Darling (AD) statistic.

KS test is one of the earliest nonparametric tests. The KS statistic belongs to the
supremum class of EDF statistics which is based on the largest vertical difference between
F0 (x) and Fn (x). As defined in Stephens (1974), without loss of generality, we assume that
the values in the given sample are in ascending order, x1 ≤ x2 ≤ · · · ≤ xn. The KS statistic
(D) is

D+ = max
1≤i≤n

(i/n− zi)

D− = max
1≤i≤n

(zi − (i− 1) /n) (2.1)

D = max
(
D+, D−

)
where zi is the theoretical distribution F0 (xi), D+ is the largest vertical distance between
the EDF and the theoretical distribution function when the EDF is greater than zi, and D−

is the largest vertical distance when the EDF is less than zi. If H0 is true, the distance will
be minimum; otherwise, the difference between the hypothetical distribution and the true
distribution will be noticeable.
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The CVM test statistic (W 2) is one of the quadratic EDF statistics. This class is based
on (F0 (x)− F (x))2 which has the following general form:

Q = n

∫
(F0 (x)− F (x))2 ψ (x) dF (x) , (2.2)

where ψ (x) is a suitable function that gives weight to the squared difference (F0 (x)− F (x))2,
see Kapur and Kesavan (1992).

As defined in Stephens (1974), the CVM test statistic
(
W 2
)

can be computed as

W 2 =
n∑

i=1

[zi − (2i− 1) /2n]2 + 1/12n, (2.3)

with the weight function ψ (x) = 1, where n is sample size, and zi is defined the same as
above. For a given significance level, we reject H0 if the CVM statistic is greater than the
critical value.

AD test statistic ( A2) is another quadratic EDF statistics with the weight function
ψ (x) = [F (x) (1− F (x))]−1. It is computed as

A2 = −n− n−1
n∑

i=1

(2i− 1) (log zi + log(1− zn+1−i)) , (2.4)

where n is sample size, and zi is defined the same as above (see Stephens, 1974). Similar to
the KS test and the CVM test, it is a one-sided test and the null hypothesis will be rejected
if A2 is greater than the critical value for the given significance level.

2.2 Tests Based on Divergence Measure

First, we introduce the definition of entropy as an information measure. Given a random
variable x with the probability density function f(x), the measure of information content
from observations in f(x) is

log (f (x))−1 = − log (f (x)) , (2.5)

and the expected information in x is given by

H (x) = H (f (x)) = −E log (f (x)) = −
∫

log f (x) f (x) dx. (2.6)

This definition is due to Shannon (1948), and it is a measure of average information and
uncertainty. The larger H (x) is, the less informative or more uncertain the data are.

This measure is first used in the field of thermodynamics. Since this definition of entropy
associated with the concept of information, the use of it has penetrated almost all disciplines.

Shannon’s entropy is the expected value of the function g (f (x)) = − log f (x), which
satisfies g (1) = 0 and g (0) = ∞. As pointed out by Ullah (1996), any convex function g (·)
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with the condition that g (1) = 0 can be used as a measure of information content. Then, a
class of g-entropies is given by

Hg (f (x)) = E [g (f (x))] =
∫
g (f (x)) f (x) dx. (2.7)

A class of smooth functions g given bellow is discussed by Ullah,

gβ (f) =

 (β − 1)−1 (1− fβ−1
)
, β 6= 1, β > 0,

− log f, β = 1,
(2.8)

where β is a non-stochastic constant, indexing the smooth function g.
Now we consider a divergence measure which is developed in terms of entropy. It is based

on the ratio λ = f0/f1, where f0 and f1 represent two densities of models corresponding
to two hypotheses. We consider the dissimilarity between two models on the basis of the
divergence between these two densities f0 and f1. The difference in the models is large when
λ is far from unity.

As an extension of the entropy function (2.7), given a convex function g(λ) with g (1) = 0,
the divergence measure of f0 with respect to f1 is then

Hg (f1, f0) =
∫
g (f0 (x) /f1 (x)) f1 (x) dx ≥ 0 (2.9)

by Jensen’s inequality. This is called the relative entropy function.
According to Ullah (1996), the β-class of divergence measure can be obtained by applying

the smooth function g as we discussed in (2.8). It is given as follows

Hβ (f1, f0) = (β − 1)−1
∫

[1− f0 (x) /f1 (x)]β−1
f1 (x) dx for β 6= 1. (2.10)

When β → 1, we get

H (f1, f0) =
∫

log (f1 (x) /f0 (x)) f1 (x) dx

=
∫

log (f1 (x)) f1 (x) dx−
∫

log (f0 (x)) f1 (x) dx (2.11)

which is the Kullback-Leibler (1951) generalization of Shannon’s entropy in (2.6). When
f0 is a uniform density, (2.11) becomes the Shannon entropy. It is easier to see that (2.11)
is not symmetric. Hence it is a directed divergence measure. The null hypothesis is rejected
if the value of H is large.

Here, we consider two methods for estimating the Kullback-Leibler information measure.
One is minimum relative entropy principle (MinxEnt) and the other is m-spacing method.
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2.2.1 Minimum Relative Entropy (MinxEnt) Principle

To test H0 : F (x) = F0 (x), we consider the Kullback-Leibler information measure which
measures the divergence of f0 (x) with respect to f (x). The MinxEnt principle is stated as
follows:

Out of all probability distributions satisfying the given constraints, choose the distribu-
tion that is closest to the given distribution (Kapur and Kesavan, 1992).

Given m+ 1 constraints, by MinxEnt principle, (2.11) is minimized subject to∫
f (x) dx = 1, E (hr (x)) = ar, r = 1, · · · ,m, (2.12)

where hr (x) are chosen from xr, (log x)r
, |x− E (x)|r , etc. In practice, ar is replaced by

the method of moment (MM) estimator â = n−1
∑n

i=1 hr (xi) or by the maximum likelihood
estimator (MLE).

As suggested in Kapur and Kesavan (1992), to minimize (2.11), we form the Lagrangian:

L =
∫

log (f (x) /f0 (x)) f (x) dx− (λ0 − 1)
(

1−
∫
f (x) dx

)
−

m∑
r=1

λr

(
ar −

∫
hr (x) f (x) dx

)
. (2.13)

Make use of Euler-Lagrange equation,

F (x, f (x) , f ′ (x)) = log (f (x) /f0 (x)) f (x) + (λ0 − 1) f (x) +
m∑

r=1

λrhr (x) f (x) (2.14)

and ∂F/∂f (x) = 0, to obtain the function f (x), which minimizes L, and hence (2.11), as

f (x) = f0 (x) exp

(
−λ0 −

m∑
r=1

λrhr (x)

)
, (2.15)

where λr are estimated so as to satisfy all the constraints.
The goodness of fit test H0 : F (x) = F0 (x) is now equivalent to a parametric test

H0 : λ0 = λ1 = · · · = λm = 0. Therefore, the likelihood ratio statistic

LR = −2

[
log

(∏
i

f0 (xi)

)
− log

(∏
i

f
(
xi, λ̂

))]

= −2
n∑

i=1

[
log
(
f0 (xi) /f

(
xi, λ̂

))]
= −2

n∑
i=1

(
λ̂0 +

m∑
r=1

λ̂rhr (xi)

)
(2.16)
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can be applied for testing this hypothesis. Under H0, LR converges to a Chi-square distri-
bution with degree of freedom m+ 1.

2.2.2 M-Spacing Method

The methodology used in this section is introduced by Song (2002). It is a nonparametric
procedure developed on the basis of the classical log-likelihood ratio test. This method is
based on the difference between two sample quintiles whose indexes are 2m apart.

Kullback-Leibler divergence measure gives a distance between two density functions in
terms of likelihood. In other words, it measures how likely the observations are from a
distribution other than the posited one. As noted in Song, it is not very apparent how the
log likelihood and the general problem of nonparametric goodness of fit test are connected
with each other. However, as pointed out by Song, the information interpretation given for
log likelihood by Akaike (1974, 1985, 1992, 1994) in connection of developing the Akaike
information criterion (AIC) for model identification and the application of log likelihood as
a general criterion of fit of models lead to the use of Kullback-Leibler divergence for testing
goodness of fit.

To test H0 : F (x) = F0 (x, θ), for some θ ∈ Θ, we consider the use of H (f, f0) =
−H1 −H2, where

H1 = −
∫

log (f (x)) f (x) dx =
∫ 1

0

log
(
d

dp
F−1 (p)

)
dp,

(2.17)

H2 =
∫

log (f0 (x, θ)) f (x) dx.

The idea by Song of estimating H1 is to replace the differential operator by the estimated
slope. He developed a m-spacing method which is based on the difference between two
sample quantiles whose indexes are 2m apart. The entropy estimator of H1 is then given as

I1 (m,n) = n−1
n∑

i=1

log
( n

2m
(
x(i+m) − x(i−m)

))
, (2.18)

and H2 is estimated by

I2 = n−1
n∑

i=1

log
(
f0

(
xi,θ̂

))
, (2.19)

where θ̂ is the MLE of θ, n is the sample size, m is the order of spacings, x(i) denotes the
ith order statistic of the sample, x(j) = x(1) if j < 1 and x(j) = x(n) if j > n. The null
hypothesis is rejected when (−I1 (m,n)− I2) is large. In this study, the null hypothesized
distribution F0 (x, θ) is normal distribution N

(
µ, σ2

)
, θ =

(
µ, σ2

)
. It is well known that

MLE of θ is θ̂ =
(
µ̂, σ̂2

)
, where

µ̂ = n−1
n∑

i=1

xi and σ̂2 = n−1
n∑

i=1

(xi − x̄)2 .

110



Then the Kullback-Leibler divergence measure H = −H1 − H2 is estimated by Imn =
−I1 (m,n)− I2. This is standardized as

Smn =
√

6mn (Imn − log (2m)− γ +R2m−1) , (2.20)

where R2m−1 =
∑m

j=1 j
−1 and γ = limn→∞ (Rn − log n) ≈ 0.577215665 is the Euler con-

stant. Assume that

m (log n)−1 →∞, and mn−1/3 log (n)2/3 → 0, as n→∞, (2.21)

then under H0, Smn
D→ N (0, 1) as n → ∞. These two assumptions are made on the

smoothing parameter m which implies that the order of spacings m should tend to infinity
slower than n1/3 as n→∞.

2.3 Test Based on the Integrated Difference Estimated by Kernel
Method

In the previous subsection, we talked about the test statistics based on the Kullback-Leibler
information which is a directed divergence measure. Another class of divergence measures
is developed in the following ways. Define

Ig (f1, f0) = Hg (f1, f0) +Hg (f0, f1) , (2.22)

Kg (f1, f0) = 2Hg

(
f1 + f0

2

)
−Hg (f0)−Hg (f1) , (2.23)

Jg (f1, f0) =
∫

(f1 − f0) (g (f0)− g (f1)) dx, (2.24)

where Hg (f1, f0) is defined as (2.9). This class of divergence measures is symmetric and is
referred to as the non-directional divergence measures.

A special case of Jg (f1, f0) in (2.24) with g given by (2.8) (β = 2) is

J (f1, f0) =
∫

(f1 − f0)
2
dx. (2.25)

This can be used to test the goodness of fit H0 : F (x) = F0 (x, θ) against the general
alternative H1 : F (x) 6= F0 (x, θ) for all θ ∈ Θ.

The test considered by Fan (1994) is based on the integrated squared difference between
a kernel estimate of f(x) and the quasi-maximum likelihood estimate (QMLE) of f0 (x, θ).
Specifically, the estimator of J (f1, f0) is obtained as follows,

Jn =
∫ (

f̃ (x)− f0(x, θ̂)
)2

dx, (2.26)

where under H0, f0(x, θ) is estimated by f0(x, θ̂), where θ̂ is the QMLE, and the true, un-
known density function f(x) is estimated by the kernel estimator f̃ (x) = (nh)−1∑n

i=1K
(

x−Xi

h

)
.
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K(.) is a kernel function. h is a smoothing parameter: the larger the h is, the smoother the
estimated density which has larger bias and smaller variance; the smaller the h is, the less
smooth the estimated density, and the density has smaller bias and larger variance.

And the asymptotic test statistic is given by

Tn = (2h)−1/2
σ̃−1 (nhJn − I (K)) . (2.27)

If nh1/2+4 → 0, then, under H0, Tn
D→ N (0, 1). The test statistic apparently depends on

the choice of h. Although it is well-known that the optimal choice of h is of order n−1/5

for density estimation, see Silverman (1986) for example, there is no simple data-driven
method to select the optimal h for the test. Therefore, we take Fan’s (1994) suggestion
and use h = h0σ̂n

−δ, where σ̂ is the standard deviation of the data, h0 and δ are positive
constant and 0 < δ < 1.

We have introduced above six statistics with the associated methods for applying to test
the goodness of fit problem. We examine the finite-sample performances of these tests by a
Monte Carlo study in the following section.

3 Monte Carlo Simulation Study

In this section we carry out Monte Carlo simulations to evaluate the performance of the
goodness of fit tests discussed in Section 2 above. In particular, we study the behavior of
various statistics by examining the estimated size and power of the tests. Throughout this
section, the null hypothesis considered is

f (x) = f0 (x, θ) =
(√

2πσ
)−1

exp
(
− (x− µ)2 /2σ2

)
, (3.1)

where θ =
(
µ, σ2

)
is unspecified. To see how the six test statistics perform for different

sample sizes, we set the sample size to be 60, 100, 200, and 600. The number of Monte
Carlo simulations is 1,000. In addition, asymptotic distribution of a test statistic may not
be a good approximation of the distribution of the test in finite samples, and this questions
the use of critical values derived from the asymptotic theory when the sample size is not
large. Therefore, for each experiment run below, we also construct size-corected critical
values from 5,000 Monte Carlo simulations. The details are given below.

3.1 Comparison by Estimated Sizes

We first study the three EDF test statistics. Table 1 comes from Stephens (1974). It
contains the formulas and critical values which are given for the use of the modified KS
statistic (D), CVM statistic (W 2) and AD statistic (A2). In practice, for a given data set,
we first calculate the modified form T ∗ corresponding to T in column 1. If T ∗ exceeds a
value in column 3 for level α, reject H0 at the significance level α. For example, if the value
of modified T ∗ for KS test exceeds 0.819, we reject H0 at α=10%.
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Table 1: Modifications to the EDF Statistics and Their Critical Values

Statistic T Modified form T ∗ α

10% 5% 2.5%

D D∗ = D (
√
n− 0.01 + 0.85/

√
n) 0.819 0.895 0.955

W 2 W ∗2 = W 2 (1 + 0.5/n) 0.104 0.126 0.148

A2 A∗2 = A2
(
1 + 4/n− 25/n2

)
0.656 0.787 0.918

By using the Fortran program, we generate 1,000 replicate samples of sizes n=60, 100,
200, 600 from the standard normal distribution. T ∗ is calculated from each sample.
The size is then estimated by the percentage rejection of the true H0 according to the given
significance level. The results are reported in Table 2.

Table 2 indicates that CVM statistic W ∗2 has the closest percentage rejection to the
given significance level for all the sample sizes in the study. It is seen that KS statistic D∗

gives a very good approximation to the significance level α when sample size n = 200.
The study for evaluating the performance of LR statistic is carried out based on 1,000

Monte Carlo simulations for sample size n=60, 100, 200, 600 with the critical values from
Chi-square table. If LR exceeds the upper 100 (1− α) percentile point of a Chi-square
table with 5 degree of freedom (four moment restrictions are imposed as restrictions), H0

is rejected at significant level α. The percentage rejections of the true H0 according to the
given significance level are shown in the second column of Table 3.

Using asymptotic critical values from the Chi-square distribution with a degree of free-
dom 5, Table 3 indicates that at each significant level, the rejection rates increases with the
increasing of sample size. Small sample size leads to under-rejection of the null hypothesis
and large sample size results in over-rejection of the null hypothesis.

Except the use of critical values from the Chi-square table, we can calculate them by
Monte Carlo simulations. The Monte Carlo simulated critical values is also called size-
corrected critical values, because they are different for different sample sizes. To determine
the critical values of the test statistic, we generate 5,000 replicate samples at each sample
size. From each sample, LR is calculated. The upper tail percentage points LR∗ of the dis-
tribution of LR are then estimated by the (1− α)th percentiles of the empirical distribution
function of LR based on the observed samples. Once these critical values have been deter-
mined, the sizes of LR are estimated by Monte Carlo simulations. That is, at each sample
size, we generate 1,000 samples under the null hypothesis and the size is then estimated by
the proportion of the samples falling into the critical region {LR ≥ LR∗}. These estimated
sizes of the test are reported in the third column of Table 3 under the title of using Monte
Carlo simulated critical values.

Comparing the estimated sizes using asymptotic critical values with those using Monte
Carlo simulated critical values, we see that with critical values based on Monte Carlo simula-
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Table 2: Estimated Sizes of Three EDF Statistics

T ∗ n 10% 5% 2.5%

60 9.2 4.6 2.7

D∗ 100 9.2 4.8 3.1

200 10.4 5.1 2.2

600 11.1 5.8 2.9

60 8.9 5.0 2.4

W ∗2 100 9.3 4.2 2.1

200 9.1 4.7 2.6

600 9.3 5.0 1.8

60 8.8 4.8 2.7

A∗2 100 9.0 3.9 1.5

200 8.9 4.8 2.0

600 8.5 3.3 1.5

Table 3: Estimated Size of LR Statistic

n Using Asymptotic Using Monte Carlo Simulated

Critical Values Critical Values

10% 5% 2.5% 10% 5% 2.5%

60 4.9 3.0 2.2 10.9 4.1 1.8

100 6.2 4.4 2.8 10.6 4.2 1.8

200 8.2 5.1 3.8 9.6 4.5 2.4

600 11.7 7.3 4.8 9.2 3.9 1.7
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Table 4: Estimated Size of Song’s (2002) Statistic I

n m̂ Using Asymptotic Using Monte Carlo Simulated

Critical Values Critical Values

10% 5% 2.5% 10% 5% 2.5%

60 3 13.2 9.5 6.2 13.4 4.1 2.2

100 4 11.6 7.9 5.4 11.5 5.2 2.8

200 6 11.4 7.3 4.6 16.2 5.1 2.4

600 12 3.2 1.7 0.9 14.9 6.6 4.1

tions, the estimated sizes are closer to the given significant levels than the use of Chi-square
table.

Next, we calculate Song’s (2002) test statistic I. When applying his m-spacing method,
we need to specify the order of spacings m. The asymptotic theory suggests that m should
be chosen according to the sample size. As suggested by Song (2002), based on large values
of H favoring the alternative hypothesis, we chose m which minimizes the sample estimator
Imn and satisfies Imn ≥ 0. By the data-driven method,

m̂ = min

{
m∗ : m∗ = arg max

m

(
I1 (m,n) : I1 (m,n) ≤ −n−1

n∑
i=1

log f0
(
xi, θ̂

))}
. (3.2)

In practice, for each sample, we choose m∗ from the range [1, n/2− 1] which maximizes
the estimated Kullback-Leibler divergence when the estimated value is positive. Then, define
m̂ as the smallest m∗ over 1,000 samples.

In addition, although Song’s Smn test statistic converges to a standard normal distribu-
tion when sample size is sufficiently large, Song (2002) pointed out that this statistic may
have substantial finite-sample bias. To correct this problem in finite samples, he suggests
to reject H0 when

Imn ≥ E (Umn) + (6mn)−1/2
Z1−α, (3.3)

where

E (Umn) = log (2m)− log (n) +Rn −R2m−1 +
2m
n
R2m−1 −

2
n

m∑
i=1

Ri+m−2 (3.4)

and Rm =
∑m

i=1 j
−1.

To obtain the estimated size of Imn statistic, we use the same procedure as we did for
Table 3 with the critical values Z1−α from the standard normal distribution table and with
Monte Carlo simulated critical values. The results and the selected m̂ are reported in Table
??. Comparing the estimated sizes using different critical values, it seems that using the
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critical values obtained from Monte Carlo simulations gives a better approximation to the
sizes of Song’s I statistic especially at 5% and 2.5% significant levels.

The last test of goodness of fit we consider in this study is Fan’s (1994) T statistic which
has approximate standard normal distribution under H0. For the standard normal kernel
K (z) = (2π)−1/2 exp

(
−z2/2

)
, Fan (1994) showed that Tn had the following form:

Tn = (2h)−1/2
σ̃−1 (nhJn − I (K)) (3.5)

where

I (K) =
∫
K2 (z) dz =

(
2
√
π
)−1

, σ̃ = J (K)
∫
f̃2 (x) dx, J (K) =

(
2
√

2π
)−1

Jn =
∫
f̃2 (x) dx− 2

∫
f̃ (x) f0

(
x, θ̂
)
dx+

∫
f2
0

(
x, θ̂
)
dx = J1 + J2 + J3

with

J1 =
∫
f̃2 (x) dx =

(
2
√
πh
)−1

n−2
∑

i

∑
j

exp
(
−
(
4h2
)−1

(xi − xj)
2
)

J2 =
∫
f̃ (x) f0

(
x, θ̂
)
dx = n−1

[
2π
(
h2 + σ̂2

)]−1/2∑
i

exp

(
− (xi − µ̂)2

2
(
h2 + σ̂2

))

J3 =
∫

f2
0

(
x, θ̂
)
dx =

(
2
√
πσ̂
)−1

.

As discussed in Pagan and Ullah (1999), the test statistic Tn has a center term that
may contribute to some finite sample bias. This stems from the inclusion of the “diagonals”
terms (i = j) in J1. To eliminate such an effect they introduced a modified test statistic,

T1n =
(√

2σ̃
)−1/2

nh1/2
(
Jn −

(
2
√
πnh

)−1
)
. (3.6)

It is found that under H0, T1n
D→ N (0, 1).

For a given test, different choice of the parameter h may lead to different conclusion for
a given data set. We choose h according to h = h0σ̂n

−δ, where σ̂ = n−1
∑n

i=1 (xi − x̄)2. In
this study, we selected the same values of h0 and δ as in Fan (1994).

The simulation results are reported in Table 5 with the critical values from the standard
normal table. The Monte Carlo experiment is similar to the procedure we described before.
From this table, it seems that small values of h0 lead to under-rejection of the null hypothesis.
The estimated sizes are close to the given significant levels with the sample size increasing.

The percentage rejections with the critical values from Monte Carlo simulations are
summarized in Table 6. Comparing the results with those in Table 5, it can be seen that
the later gives a better approximation of the significant level for large values of h0 at each
value of δ. Among the choices of parameters we considered, δ = 1/4, h0 = 1.9 gives a better
approximation to the given significant levels except for the small sample size. According to
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Table 5: Estimated Size of Fan’s (1994) Statistic T (Using Asymptotic Critical Values)

n 10% 5% 2.5% 10% 5% 2.5% 10% 5% 2.5%

δ = 2/7, h0 = 2.25 δ = 2/7, h0 = 2.35 δ = 2/7, h0 = 2.4

60 1.7 0.2 0.1 4.7 0.6 0.1 7.1 1.4 0.2

100 3.3 0.7 0.2 6.9 2.2 0.5 8.8 3.0 0.7

200 4.8 2.1 0.8 7.4 4.0 1.7 8.9 4.6 2.3

600 5.9 2.8 1.3 8.2 4.4 1.7 9.8 5.6 2.8

δ = 1/4, h0 = 1.8 δ = 1/4, h0 = 1.9 δ = 1/4, h0 = 1.95

60 0.3 0.1 0.0 0.9 0.1 0.0 1.7 0.2 0.1

100 1.8 0.4 0.0 2.9 0.7 0.2 5.3 1.4 0.5

200 3.7 1.3 0.4 6.1 2.7 1.0 7.6 4.1 1.9

600 6.1 3.0 1.4 9.6 5.2 2.8 12.0 6.3 3.4

this result, we choose h = 1.9σ̂n−0.25 as the smooth parameter when testing the normality
under the alternative distribution. This confirmed Fan (1994)’s suggestion of the choice of
h.

Throughout the experiments to estimate the sizes of the tests under 10%, 5% and 2.5%
significant levels, the average standard errors in estimations are 0.259 at 10% significant
level, 0.167 at 5% significant level and 0.113 at 2.5% significant level.

3.2 Power Comparison

For power comparison, we investigate seven cases with non-normal distributions as alter-
natives. They are chosen from the generalized lambda distributions (GLD) discussed in
Ramberg and Schmeiser (1974) including three symmetric and four asymmetric distribu-
tions. These distribution families are based on the inverses of the cumulative distribution
functions and can be easily generated:

F−1 (z) = λ1 + λ−1
2

[
zλ3 − (1− z)λ4

]
, (3.7)

where 0 < λ < 1. Table 7 comes from Fan (1994) which contains the seven selected
alternative distributions defined by the parameters, along with the associated mean (µ ),
variance (σ2), coefficient of skewness ( α3) and coefficient of kurtosis (α4) values.

To evaluate the six test statistics when the null hypothesis is false, we use the critical
values from Table 1 for D, W 2, A2, and from the standard normal table for T . According
to the performance of I and LR under the null hypothesis, Monte Carlo simulations are
considered for determining the critical values which are based on 5,000 replicate samples
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Table 6: Estimated Size of Fan’s (1994) Statistic T (Using Monte Carlo Critical Values)

n 10% 5% 2.5% 10% 5% 2.5% 10% 5% 2.5%

δ = 2/7, h0 = 2.25 δ = 2/7, h0 = 2.35 δ = 2/7, h0 = 2.4

60 4.9 0.9 0.3 4.6 0.8 0.3 4.6 0.8 0.3

100 6.1 1.5 0.4 5.9 1.1 0.3 5.9 1.1 0.3

200 7.8 3.1 1.5 7.6 3.0 1.4 7.5 3.1 1.4

600 8.6 3.6 1.7 8.0 3.5 1.4 8.1 3.4 1.4

δ = 1/4, h0 = 1.8 δ = 1/4, h0 = 1.9 δ = 1/4, h0 = 1.95

60 15.5 1.5 0.3 5.0 1.2 0.3 4.9 0.9 0.3

100 11.5 1.8 0.5 6.1 1.5 0.4 5.9 1.3 0.3

200 10.7 3.1 1.3 7.7 3.3 1.5 7.6 3.0 1.4

600 8.3 3.6 1.7 8.1 3.4 1.4 8.0 3.2 1.3

Table 7: Seven Alternative Distributions Used in the Simulation Study

Case Symmetric Distributions

λ1 λ2 λ3 λ4 µ σ2 α3 α4

1 0 2 1 1 0 0.0833 0 1.80

2 0 -0.3970 -0.16 -0.16 0 1.0001 0 11.61

3 0 -1 -0.24 -0.24 0 0.5323 0 126.89

Case Asymmetric Distributions

λ1 λ2 λ3 λ4 µ σ2 α3 α4

4 0 1 1.4 0.25 -0.3833 0.2107 0.51 2.22

5 3.5865 0.0430 0.0252 0.0949 5.0114 5.0853 0.89 4.28

6 0 -1 -0.0075 -0.03 0.0234 0.0014 1.50 13.66

7 -0.1167 -0.3516 -0.13 -0.16 0 1.0001 0.76 11.43
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from normal distribution under the corresponding null hypothesis. After determining the
critical values, for each alternative, 1,000 samples of size n = 60, 100, 200, 600 are generated
from the alternative distribution and the power is then estimated by the proportion of the
samples falling into the critical region. In the experiments, the smooth parameter of test
statistic T is chosen as h = 1.9σ̂n−0.25 which we have discussed in the previous section.

As shown in Table 7, three symmetric distributions defined by lambdas are considered
as case 1, case 2 and case 3. The probability density functions under the alternatives,
together with the normal distributions under the null hypothesis which have the same mean
and variance as the corresponding lambda distributions are given in Figure 1. Solid lines
present the alternative GLDs, dashed lines present the normal distributions.
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Figure 1: PDFs of Normal Distributions vs. Those of First Three GLDs

The GLD as alternative in case 1 is actually the uniform distribution U(−0.5, 0.5). The
null hypothesis we considered in this case is the normal distribution with mean 0 and variance
0.0833 which are the same as case 1 distribution. As we can see in Table 8, at sample size
n = 60, the estimated powers of the statistics are less than 76% except for Song’s statistic
I which is 96.1%. It is much higher than the others and attains 1 at sample size n =100.
The most used KS statistic appears the least powerful against this alternative in case 1.

The alternative distributions in case 2 and case 3 have similar shapes. From Figure 1,
we can see clearly that both of them have a peak near the mean and fat tails. This can
also been seen from the associated kurtosis values in Table 7, which are 11.61 and 126.9
respectively. The estimated powers of the six statistics are reported in Table 8. It shows
that the LR statistic is more powerful against the alternatives in case 2 and case 3. The
EDF statistics perform good detections as well. In these two cases, Fan’s statistic T has
little power for small sample size n =60, 100.

Four asymmetric GLD are considered as cases 4-7. The solid lines in Figure 2 present
the plots of these distributions. The dashed lines present normal distributions under the
corresponding null hypothesis. Case 6 and case 7 distribution are heavy tailed with the
kurtosis value 13.66 and 11.43 respectively.
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Table 8: Percentage Rejections: Three Alternatives for Cases 1-3 (at the 5% Level)

EDF Directed Divergence Measure Non-directional

n KS CVM AD Spacing Method MinxEnt Divergence

D W 2 A2 I LR Measure T

Case 1: mean 0, variance 0.08, skewness 0, and kurtosis 1.8

60 35.5 59.3 75.3 96.1 32.2 68.7

100 60.5 87.0 95.9 100 89.8 98.7

200 96.1 99.8 100 100 100 100

600 100 100 100 100 100 100

Case 2: mean 0, variance 1.0001, skewness 0, and kurtosis 11.6

60 35.0 51.6 50.8 40.2 64.7 0.0

100 55.9 69.0 74.0 56.2 80.2 0.6

200 83.7 93.7 94.2 78.2 97.3 6.6

600 99.9 100 100 90.5 100 89.5

Case 3: mean 0, variance 0.53, skewness 0, and kurtosis 126.9

60 50.5 71.1 68.1 57.7 79.1 0.2

100 76.3 87.0 89.6 76.9 92.9 2.6

200 95.6 99.3 99.0 93.5 99.4 27.1

600 100 100 100 96.0 100 99.9
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Table 9: Percentage Rejections: Four Alternatives for Cases 4-7 (at the 5% Level)

.

EDF Directed Divergence Measure Non-directional

n KS CVM AD Spacing Method MinxEnt Divergence

D W 2 A2 I LR Measure T

Case 4: mean -0.38, variance 0.21, skewness 0.51, and kurtosis 2.2

60 67.6 82.1 93.6 99.1 55.8 57.2

100 92.1 98.1 99.7 100 95.3 97.3

200 99.9 100 100 100 100 100

600 100 100 100 100 100 100

Case 5: mean 5.01, variance 5.09, skewness 0.89, and kurtosis 4.28

60 47.1 51.2 62.8 43.1 60.5 0.6

100 68.0 77.7 84.0 64.7 85.8 10.9

200 95.0 98.6 98.0 90.3 98.7 66.7

600 100 100 100 99.7 100 100

Case 6: mean 0.02 variance 0.0014, skewness 1.5, and kurtosis 13.66

60 70.5 77.8 86.7 69.6 85.9 0.6

100 90.5 95.9 96.3 90.5 97.9 22.8

200 99.8 99.9 100 99.6 100 90.1

600 100 100 100 100 100 100

Case 7: mean 0, variance 1.0001, skewness 0.76, and kurtosis 11.43

60 39.0 46.5 52.2 37.4 60.6 0.0

100 58.0 68.3 74.0 54.8 80.0 0.7

200 84.8 92.6 94.3 76.7 96.4 6.7

600 100 100 100 90.3 100 92.4
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Figure 2: PDFs of Normal Distributions vs. Those of Last Four GLDs

As shown in Table 9, most of the estimated powers attain 1 at sample size 200 for case
4. At small sample size n = 60, 100, Song’s test statistics I is more powerful against the
alternative in this case. For the fifth and the sixth cases, the AD test is more powerful
than the test based on the LR statistic when sample size is 60, but the test based on LR

dominates when the sample size n =100, 200, 600. Statistic LR shows the highest estimated
power against the alternative in case 7 as well. Fan’s statistic T appears to have no power
in the last three cases at sample size 60.

4 Conclusion and Discussion

The goodness of fit problem is very important in experimental analysis. Among a large
number of tests for judging normality, no one test is optimal for all possible deviations
from normality. In this paper, we compared six statistics for testing the goodness of fit
of a parametric density function. The first three statistics, based on EDF, are simple and
widely used. The remaining three are based on the divergence measure and applied using
the MinxEnt principle, the m-spacing method and the kernel method. We investigated the
sensitivity of these tests by applying the tests to a generalized lambda distribution under
the alternatives.

In evaluating their performance under the null hypothesis, the critical values obtained
from the Monte Carlo simulations are shown to give a closer rejection rates to the significant
levels for tests I and LR. However, comparing Table 5 and Table 6, it is hard to say by
which method the critical values work well for the statistic T .

To examine the power performances, we compared the powers against seven alternatives
in Tables 8 and 9. Several conclusions can be drawn from this table. First, for a fixed sample
size n, the power depends on how far the alternative distribution is away from the normal
distribution. Second, for a given alternative, the power increases with increasing the sample
size. Third, for a large sample size, the powers of most statistics in this study increased to
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one. The statistic T has no power against the last six alternatives at sample size n = 60.
The Kullback-Leibler divergence based statistics I works well for the first and the fourth
distributions and LR statistic works well for the other distributions in our study. According
to the associated kurtosis, it seems that LR test based on Kullback-Leibler divergence will
better detect a distribution with a peak near the mean and with heavy tails.

This paper investigated several statistics for testing for normality. It is of interest to
consider the null hypothesis for other than the family of normal distributions such as the
null of uniform distribution which can be equivalent to a test for the form of a parametric
density function. If F is the true distribution of x, then F (x) ∼ U(0, 1). The exponential
family is also of interest to be considered as the null distribution because it is of fundamental
importance in the modeling and analysis of transition data. It is also important to examine
how these tests work for testing multivariate distributions.
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