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summary

In an ANOVA setup one tests the global null hypothesis against the alternative
that at least one pair of means differ. In this paper we consider the estimation of
the variance, when it is suspected, but one is not sure, that the null hypothesis
holds. We consider the (i) unrestricted unbiased estimator (UUE), (ii) unre-
stricted biased estimator (UBE), (iii) restricted unbiased estimator (RUE), (iv)
restricted biased estimator (RBE), (v) preliminary test estimator (PTE) using
UUE and RUE, (vi) Stein-type estimator (SE) using UBE and RBE of variance.
We derive the bias and risk expressions for these estimators to compare them. It
is shown that Stein-type estimator (SE) dominates uniformly over the UUE as
well as the PTE when the critical value for preliminary test is 1.

Keywords and phrases: Point estimation, preliminary test estimator, Stein-type
estimation, quadratic risk

1 Introduction

Stein’s (1956–64) prolific and innovative ideas enriched mathematical statistics in the direc-
tion of point and set estimation of parameters among many other topics. For the multipa-
rameter problem Stein (1956) proved that the usual MLE or LSE is inadmissible under a
quadratic loss function and James-Stein (1961) became the symbol of the paradox which is
a non-linear estimator depending on a test-statistic to test some plausible null hypothesis.
For example, in the case of several mean problem, the test-statistics relates to the test of
equality of the means.

For the estimation of the variance of a normal distribution, Stein’s (1964) theory really
boils down to a preliminary test estimator (PTE) when it is suspected that the mean of the
distribution is zero. The preliminary test estimator was first proposed by Bancroft (1944).
It stands out as a precursor to the Stein-estimator, but soon became important due to
the Stein-estimator of variance. A detailed survey and the importance of Stein’s method
of variance estimation is given in the classic paper “Developments in Decision-Theoretic
Variance Estimation” by Maatta and Casella (1990). The paper details out various aspects
of variance estimation based on a single sample. Before the publication of this paper many
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other papers dominated the area such as Brown (1968), Rukhin (1987), and Strawderman
(1974) among others. In this paper, we consider the problem of estimation of variance
based on multiple samples of varying sizes from different normal distributions with the
same variance but different means, which are suspected, but not sure to be equal.

2 Various Estimates of σ2

Consider the ith sample {xi1, . . . , xini
} of size ni from the normal distribution {N(θi, σ

2)|i =
1, 2, . . . , p}. Let x̄i be the ith sample mean and S2

i be the ith sample unbiased estimator of
σ2 i.e. (ni − 1)S2

i = (xi1 − x̄i)2 + · · · + (xini
− x̄i)2 i = 1, . . . , p. An unrestricted unbiased

estimator (UUE) of σ2 is then defined by

S2
U = m−1

{
(n1 − 1)S2

1 + · · ·+ (np − 1)S2
p

}
, m = n− p (2.1)

where n = n1 + · · ·+ np. Clearly, E[S2
U ] = σ2. If now, θ1 = . . . = θp = θ0 (unknown) holds,

then the restricted unbiased estimator (RUE) is defined by

S2
R = (m+ q)−1


n1∑

j=1

(x1j − ¯̄x)2 + · · ·+
np∑

j=1

(xpi − ¯̄x)2

 , (2.2)

where q = p− 1 and ¯̄x = n−1(n1x̄1 + · · ·+ npx̄p). Note that

(m+ q)S2
R = mS2

U + (x̄− ¯̄x1p)′N(x̄− ¯̄x1p) (2.3)

where

x̄ = (x̄1, . . . , x̄p)′, 1p = (1, . . . , 1)′ − a p-tuple of 1’s and N = Diag(n1, . . . , np). (2.4)

Further, consider the likelihood ratio test-statistic for the null hypothesis H0 : θ1 = · · · =
θp = θ0 (unknown) given by

Ln = (x̄− ¯̄x1p)′N(x̄− ¯̄x1p)/q S2
U (2.5)

which follows a central F–distribution with (q,m) d.f. underH0 and non-central F–distribution
with (q,m) d.f. and noncentrality parameter ∆2 = (θ − θ01p)′N(θ − θ01p)σ−2. Under H0,
E[S2

R] = σ2.
Now, consider the following two additional estimators of σ2 which are biased unrestricted

(BUE) and restricted biased (RBE) estimators respectively

σ̃2
U =

mS2
U

m+ 2
and σ̂2

R =
(m+ q)S2

R

m+ q + 2
. (2.6)

Let Fq,m(α) be the α–level critical value of the central F–distribution with (q,m) d.f.
Then, a preliminary test estimator of σ2 is defined by

S2
PT[1] = ψ1(Ln)mS2

U (2.7)
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where

ψ1(Ln) =
1
m
I
(
Ln ≥ Fq,m(α)

)
+

1 + q
mLn

m+ q
I(Ln < Fq,m(α)). (2.8)

Hence,
S2

PT[1] = S2
U I(Ln ≥ Fq,m(α)) + S2

RI(Ln < Fq,m(α)) (2.9)

Similarly, we define
S2

PT[2] = ψ2(Ln)mS2
U (2.10)

where

ψ2(Ln) =
1

m+ 2
I(Ln ≥ Fq,m(α)) +

1 + q
mLn

m+ q + 2
I(Ln < Fq,m(α)). (2.11)

Notice that ψ2(Ln) ≤ ψ1(Ln) and S2
PT[1], is based on S2

U and S2
R and S2

PT[2] is based on

σ̃2
U and σ̂2

R respectively. Further, if we choose Fq,m(α∗) = m
m+2 i.e. α∗ = F−1

q,m

(
m

m+2

)
, we

obtain the special PTE called the Stein-type estimator, namely,

S2
[s] = φS(Ln)mS2

U (2.12)

where

φS(Ln) =
1

m+ 2
I

(
Ln ≥

m

m+ 2

)
+

1 + q
mLn

m+ q + 2
I

(
Ln <

m

m+ 2

)
. (2.13)

3 Bias and Risk Expressions

In this section we consider the bias and the risk expressions of the various estimators of σ2.
First we consider the bias expressions:

(1) b(S2
U ) = E(S2

U − σ2) = 0.

(2) B2(S2
R) = E[S2

R − σ2] = − σ2

m+q (q −∆2).

(3) b(σ̃2
U ) = E

(
σ̃2

U − σ2
)

= − 2σ2

m+2 .

(4) b
(
σ̂2

R

)
= E(σ̂2

R − σ2) = σ2

m+q+2

(
(m+ 2) + ∆2

)
.

(5) b(S2
PT[1]) = − qσ2

m+q

{
Gq,m+2

((
1 + 2

m

)
Fq,m(α);∆2

)
−Gq+2,m

(
q

q+2Fq,m(α);∆2
)}

+σ2∆2Gq+4,m

(
q

q+4Fq,m(α;∆2
)
.
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(6) b
(
S2

PT[2]

)
= − 2σ2

m+2 −
qmσ2

(m+2)(m+q+2)Gq,m+2

((
1 + 2

m

)
Fq,m(α);∆2

)
+ σ2

m(m+q+2)×{
qGq+2,m

(
q

q+2Fq,m(α);∆2
)

+ ∆2Gq+4,m

(
q

q+4Fq,m(α);∆2
)}

.

(7) b
(
S2

[s]

)
= − 2σ2

m+2 −
qmσ2

(m+2)(m+q+2)G(1;∆2) + σ2

m(m+q+2)

{
qGq+2,m

(
q

q+2
m

m+2 ;∆2
)

+∆2Gq+4,m

(
q

q+4
m

m+2 ;∆2
)}

.

Now consider the risk expressions of the estimators under the loss function

L(σ∗2;σ2) =
1
σ4

(σ∗2 − σ2)2.

The risk-expressions corresponding to the estimators are given by

(1) R1(S2
U ) = 2

m ,

(2) R2(S2
R) = 1

m+q

[
1 + ∆2(2+∆2)

m+q

]
,

(3) R3(σ̃2
U ) = 2

m+2 ,

(4) R4(σ̂2
R) = 2

(m+q+2)

[
1 + 1

m+q+2∆2(2 + ∆2)
]
,

(5) R5(S2
PT[1]) = E

(χ2
m

m − 1
)2 + E

[ (
1
m − 1+ q

m Fq,m(∆2)

m+q

)2

χ4
mI

(
Fq,m(∆2) < Fq,m(α)

)]
− 2E

[(
χ2

m

m − 1
) (

1
m − 1+ q

m Fq,m(∆2)

m+q

)
χ2

mI
(
Fq,m(∆2) < Fq,m(α)

)]
= 2

m + q2

(m+q)2E
[
χ4

m

(
1− Fq,m(∆2)

)2
I

(
Fq,m(∆2) < Fq,m(α)

)]
− 2q

m+qE
[
χ4

m(1− Fq,m(∆2))I(Fq,m(∆2) < Fq,m(α))
]

+ 2q
m+qE

[
χ2

m

(
1− Fq,m(∆2)

)
I
(
Fq,m(∆2) < Fq,m(α))

]
(6) R6(S2

PT[2]) = E
(

χ2
m

m+2 − 1
)2

+ E

[(
1

m+2 −
1+ q

m Fq,m(∆2)

m+q+2

)2

χ4
mI

(
Fq,m(∆2) < Fq,m(α)

]
−2E

[( χ2
m

m+2 − 1
)(

1
m+2 −

1+ q
m Fq,m(∆2)

m+q+2

)
χ2

mI
(
Fq,m(∆2) < Fq,m(α)

)]
= 2

m+2 + q2

m2(m+q+2)2E
[(

m
m+2 − Fq,m(∆2)

)2
χ4

mI
(
Fq,m(∆2) < Fq,m(α)

)]
− 2q

m(m+2)(m+q+2)E
[(

m
m+2 − Fq,m(∆2)

)
χ4

mI
(
Fq,m(∆2) < Fq,m(α)

)]
+ 2q

m(m+q+2)E
[(

m
m+2 − Fq,m(∆2)

)
χ2

mI
(
Fq,m(∆2) < Fq,m(α)

)]
.
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(7) R7

(
S2

[S]

)
= 2

m+2 + q2

m2(m+q+2)2E
[(

m
m+2 − Fq,m(∆2)

)2
χ4

mI
(
Fq,m(∆2) < m

m+2

)]
− 2q

m(m+2)(m+q+2)E
[(

m
m+2 − Fq,m(∆2)

)2
χ4

mI
(
Fq,m(∆2) < m

m+2

)]
+ 2q

m(m+q+2)E
[(

m
m+2 − Fq,m(∆2)

)
χ2

mI
(
Fq,m(∆2) < Fq,m

m
m+2

)]
.

Note that expressions for R7(S2
[S]) is obtained from R6(S2

PT[2]) by putting Fq,m(α) = m
m+2 .

Actually, this is the optimum value of Fq,m(α) for the minimum of R6(S2
PT[2]) as a function

of Fq,m(α). Similarly, by Giles (1988) the minimum value of R5(S2
PT[1]) is obtained at

Fq,m(α) = 1. Hence, the optimum α∗ is obtained in these two cases

α∗ = F−1
q,m

(
m

m+2

)
for R6

(
S2

PT[2]

)
α∗∗ = F−1

q,m(1) for R6

(
S2

PT[1]

)
}

for all (q,m)

respectively.

4 Properties of the Estimators

In this section we compare the estimators using the risks criteria. First we note that σ̃2
n

is better than S2
U and σ̂2

R is better than S2
R. The PTE S2

PT[1] is a combination of S2
U and

S2
R while S2

PT[2] and S2
[S] are combinations of σ̃2

U and σ̂2
R. The optimum risks of S2

PT[1] and
S2

PT[2] are obtained when Fq,m(α∗∗) = 1 and Fq,m(α∗∗) = m
m+2 .

We compare S2
U and S2

R. The risk of S2
U is constant while the risk of S2

R depends on
∆2. Under H0, the risk of 2

m+q <
2
m . Thus, RUE is better than S2

U under H0. However, if
H0 does not hold, then the range of ∆2 for which S2

R dominates S2
U is given by the positive

root of the following equation

∆4 + 2∆2 − 2q
m

= 0.

Let ∆2
∗ = −1 +

√
1 + 2q

m be the positive root of the above equation. Then, S2
R dominates

S2
U in the interval [0,∆2

∗] and S2
U dominates S2

R outside this interval. note that as ∆2 →∞,
the risk is unbounded while that of S2

U is constant.
Similarly, compare σ̃2

U and σ̂2
R. In this case σ̃2

U has constant risk, while the risk of σ̂2
R

depends on ∆2. Thus, under H0, σ̂2
R dominates σ̃2

U while in general σ̂2
R dominates σ̃2

U in
the interval [0,∆2

∗∗] where ∆2
∗∗ is the positive root of the equation

∆4 + 2∆2 − 2q
m+ 2

= 0.

Let ∆2
∗∗ = −1±

√
1 + 2q

m+2 be the positive root, then the interval in question is [0,∆2
∗∗].

Now we show that S2
[S] dominates σ̃2

U uniformly under the loss function 1
σ4 (σ2

∗ − σ2)2,
i.e. R7(S2

[S]) ≤ R3(σ̃2
U ) ∀ ∆2.

131



Consider the risk of S2
[S] with respect to the above loss. Then we have

1
σ4
E

[
mS2

UφS(Ln)− σ2
]2 = ELn

{[
φ2

S(Ln)E(χ4
m|Ln)− 2φS(Ln)E(χ2

m|Ln) + 1
]}

where φS(Ln) is a real function of Ln. The minimum of the quadratic form inside the
bracket for fixed ∆2 and Ln is given by

φ∗S(Ln) =
E(χ2

m|Ln)
E(χ4

m|Ln)

which is a function of Ln as well as ∆2.
Following Stein (1964), it is clear that the maximum of φ∗S(Ln) is attained at ∆2 = 0

which eliminates the need of noncentral chi-square distribution. Thus, by straightforward
computation we have

φ0(Ln) =
E[χ2

m/Ln]
E[χ4

m/Ln]
=

1 + q
mLn

m+ q + 2

since χ2
q and χ2

m are independent. If Ln < 1
m+2 then 1+ q

mLn

m+q+2 < 1
m+2 which also implies

that φ∗(Ln) ≤ φ0(Ln) ≤ 1
m+2 ∀ ∆2 that is, φ0(Ln) is closer to the minimizing value than

1/(m+ 2). Thus, defining

φS(Ln) =
1

m+ 2
I
(
Ln ≥

m

m+ 2

)
+

1 + q
mLn

m+ q + 2
I
(
Ln <

m

m+ 2

)
,

we have the Stein-type estimator.
It is then clear from Stein (1964) that

E
[{
φS(Ln)

(mS2
U

σ2

)
− 1

}2∣∣∣Ln

]
≤ E

[{ 1
m+ 2

(mS2
U

σ2

)
− 1

}2∣∣∣Ln

]
.

Thus φS(Ln)mS2
U is better than mS2

U/m+ 2.
Similarly, we consider the estimator S2

PT[1] with Fq,m(α) = 1 i.e. α∗∗ = F−1
q,m(1) for all

(q,m) under H0, then

S∗2
PT[1] = ψ∗(Ln)mS2

U

= S2
UI(Ln ≥ 1) + S2

RI(Ln < 1).

We show that S∗2
PT[1] dominates S2

U . In this case too we have

ψ∗10(Ln) =
1 + q

mLn

m+ q

and the max∆2ψ∗10(Ln) = 1+ q
mLn

m+q at ∆2 = 0. Then, for Ln < 1, we have

1 + q
mLn

m+ q
<

1
m

=⇒ ψ∗10(Ln) ≤ ψ∗10(Ln) ≤ 1
m
∀ ∆2
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that means ψ∗10(Ln) is closer to the minimizing value 1/m. Thus, defining

ψ1(Ln) =
1
m
I(Ln ≥ 1) +

1 + q
mLn

m+ q
I(Ln < 1)

we have the PTE of σ2 with 1 as the critical value. Then, it is clear, as in Stein (1964), that

E
[(
ψ1(Ln)χ2

m − 1
)2∣∣Ln

]
≤ E

[( 1
m
χ2

m − 1
)2∣∣Ln

]
.

Thus, ψ1(Ln)mS2
U is uniformly better than S2

U for all ∆2.
What about the dominance of φS(Ln)mS2

U over ψ1(Ln)mS2
U? Clearly, φS(Ln) ≤ 1

m+2 ≤
ψ1(Ln) ≤ 1

m which implies that

E
[(
φS(Ln)χ2

m − 1
)2∣∣Ln

]
≤ E

[( 1
m+ 2

χ2
m − 1

)2∣∣Ln

]
≤ E

[(
ψ(Ln)χ2

m − 1
)2∣∣Ln

]
≤ E

[(χ2
m

m
− 1

)2

|Ln

]
Thus, the Stein-type estimator dominates the PTE with critical value 1. Therefore, we
conclude that the Stein-type estimator is the best among the estimators we considered.
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