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summary

This article considers an extension of the existing survival model with an immune
proportion known as a latent data (LD) model. Random effects are introduced
in this LD model. A generalized linear mixed model using a penalized quasi
likelihood approach for the parameter estimates is proposed. The model enables
the prediction of the random effect and retains the proportional hazard property
of the LD model. Application of the method is carried out on two real data
sets. A simulation study is conducted to evaluate the model’s performance. Two
different types of censoring are considered. The results show that the estimates
have relatively small bias in all cases and the method works equally well in both
the random and fixed censoring cases.
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1 Introduction

An immune, or a long-term survivor, is defined as an object which is not subject to the event
of interest (Maller and Zhou, 1996). Hence, the object is immortal with regard to the event of
interest under study. Consequently, the lifetime of the immune object will be infinite, at least
theoretically, under the event of interest being investigated. These immune observations form an
immune proportion in the data and are usually visible in the Kaplan-Meier plot of the survival
function. Another possible indication of their presence is the existence of some large values of
censored data. The immune proportion is also known as the surviving proportion/fraction or cure
proportion/fraction. Modeling the survival data using a “regular” survival analysis (which ignores
immunes) in the presence of immunes might lead to drawing misleading conclusions from the
study.
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Recently, Yakovlev et al. (1993) introduced a new model to deal with survival data with an
immune proportion. Chen et al.(1999) have studied this model in a Bayesian context. This ap-
proach proceeds by introducing a latent data variable N , the number of clonogens(carcinogenic
cells which will propagate tumors in detectable forms), which is assumed to have a Poisson dis-
tribution. Observe that the variable N is not observable and will be referred to as a latent data
variable. The survival function of the patients under this model is given below:

Sp(t) = e−θeθS(t) = e−θF (t), (1.1)

where S(t) is a proper survival function and F (t) = 1− S(t). The corresponding hazard function
is given by:

hp(t) = θf(t), (1.2)

where θ is the mean of the Poisson distribution specified for N and f(t) = F ′(t) is a probability
distribution function (pdf) of the progression times for carcinogenic cells. This model implies that
immune proportion consists of patients who have N = 0.

This model has more biological meaning than the corresponding classical model discussed in
Maller and Zhou (1996), particularly in modeling survival data for cancer diseases, as pointed out
by Yakovlev et al.(1993) and Chen et al.(1999). We will refer to this model as a latent data (LD)
model or a latent variable model.

In some circumstances, there is more than one measurement taken from the same subject,
leading to what is known as correlated data. This type of data has a heterogeneity factor built
in. Heterogeneity could also occur as a result of natural group existence. For example, a centre
effect exists if multiple centres are used in clinical trials, where more than one patient is treated
in each of the centres. Heterogeneity could result in a misleading analysis if it is not incorporated
in the model. The possible impact of excluding the heterogeneity factor from the model when it
exists is discussed in Section 2.

In survival analysis, the model dealing with heterogeneity is known as a frailty model. There
exist several approaches to handle heterogeneity when survival data contain immune observations.
The common approach is by introducing random effects into the survival function of the mixture
distribution approach. This approach, for instance, can be found in Yau and Ng (2001). They used
the generalized linear mixed model (GLMM) approach developed earlier by McGilchrist (1994)
for parameter estimates of their model. In addition, there is a compound Poisson distribution
approach introduced by Aalen (1992). The compound distribution approach assumes that the
frailty random variable follows a compound Poisson distribution, that allows for a point mass at
zero corresponding to the cured fraction. The survivor function can then be found by integrating
out the frailty random variable through the use of a Laplace transform.

The aim of this article is to provide an alternative model for handling heterogeneity when an
immune proportion exists. It is achieved by extending the model given in (1.1). The extension
proceeds by introducing a random effect for the objects under study, to take into account the
heterogeneity of the objects. The random effect in the model acts multiplicatively on the hazard
function, as commonly found in the frailty model.

In addition, a simple estimation method for the model is proposed. It is shown that the random
effect can be handled by incorporating it into the Poisson generalized linear model, which is one
part of the likelihood in Yakovlev’s model. Because of the existence of random components, this
part becomes a Poisson GLMM. The random effects can be assumed to follow a certain type of
distribution. In this article, the random effect ui discussed later in Section 2 is assumed to follow
a common normal distribution. However, since the estimation method for the Poisson GLMM is
based on an approximate method known as the Penalized Quasi Likelihood (PQL), only the first
and the second moment assumptions for the random effects are needed.
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This article is organized as follows: Section 2 presents the extension of Yakovlev’s latent variable
model to include random effects. Likelihood for this extended model along with an estimation
procedure are discussed. Applications of the methods to real data sets are discussed in section 3.
Section 4 provides a simulation study to assess the model. Section 5 mentions some directions for
possible further research.

2 Frailty Model with an Immune Proportion

Frailty is a concept in survival analysis which resembles random effects in linear or generalized
mixed linear models. It represents unobserved heterogeneity across subjects. This unobserved
heterogeneity may arise from measures of multivariate or correlated failure times. At the individual
level, it comes from multiple failure time measurements, such as in sequences of asthmatic attacks,
infection episodes, tumor diagnosis, tumor recurrences or bleeding incidents (Prentice et al., 1981).
The correlated failure times could also occur at the group level where cluster structure exists, such
as animals nested within a litter, children nested within a family, or patients nested within clinical
centres in multi-centre clinical trials. In this paper we will develop a frailty model which is
applicable to multi-centre clinical trial framework.

Frailty in a survival analysis model is typically introduced through the hazard function. Given
the basic hazard function h0(t), the individual hazard h(t|z) conditioned on the frailty Z is assumed
to take the following form

h(t|Z) = Z h0(t). (2.1)

Here Z is a positive random variable describing heterogeneity of an individual, with mean, E(Z),
equal to 1 for identifiability reasons. If Z in (2.1) is individual specific, then the model is known
as a frailty model. If Z is group specific, then the model is known as a shared frailty model.

Lancaster (1979, 1990) provides an argument for the use of frailty, or error term, in a regression
model of survival analysis. He explains that the population hazard is a bent-down version of a
basic hazard function. In other words, this hazard function falls faster or increases slower than
the basic hazard function (with no frailty). This argument is similar to the “selection effects” of
Aalen (1998).

2.1 Approximate Method for Frailty Model in the Presence of an Im-
mune Proportion

There are two commonly used methods to handle random effects in the frailty models with an
immune proportion, the marginal and the conditional approaches. The first approach focuses on
the change in the population-average hazard function of the population when the frailty random
variable is integrated out. The second method, which avoids integrating out the random effects,
is more flexible in handling high-dimensional random effects. This method does not emphasize
on the form of the hazard function, since in this approach the random effects are not integrated
out. Rather, it focuses on the prediction of group specific effects shared within observations of
each individual, centre or family. The predicted values of the random effects will give information
about the effects of individuals or groups on the population hazard.

The development of the frailty model for survival data with an immune proportion proposed
in this article proceeds by extending the approach of Yakovlev et al.(1993) and Chen at al.(1999)
and Chen and Ibrahim (2001) within the multi-centre clinical trials framework. More specifically,
the model formulation assumes that there are n clinical centres treating cancer patients. Suppose
that in the ith centre there are li patients treated. In each centre time zero is the time when the
study begins. Patients will receive treatment randomly based on a standard protocol and then are
monitored until the end of the study. From the beginning to the end of the study, a survival time
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or a censoring time will be observed. A survival time is recorded if a patient dies within the study
period. A censoring time will be observed if a patient is alive till the end of the study period.
Provided that the study period is long enough, we will expect that some of the patients will die
from cancer. We assume that some patients are cured by the end of the study. It is also assumed
that due to variation in patient treatment from any one centre to another during the period of
study that a centre effect is present, and it is important to introduce this effect into the model
used to analyze the data obtained from such a multi-centre clinical trial. This source of variation
will be treated as a random effect, i.e. we assume that the centres involved in the study are a
random sample from a population of centres. Below, we construct the likelihood for our proposed
frailty model with an immune proportion. A similar likelihood for a model without random effects
can be found in Yakovlev et al.(1993) and Chen et al.(1999) and Chen and Ibrahim (2001).

In the ensuing development we refer to the models (1.1) and (1.2) presented in the introduction.
Moreover, the parameter θ and the random variable N referred to here are those presented in the
Section 1. The likelihood for the data for the LD model is given as follows:

L(λ, θ|{(ti, di)}) =

"
nY

i=1

{S(ti|λ)}Ni−di{Nif(ti|λ)}di

#
exp

(
nX

i=1

Ni log (θ) −
nX

i=1

log (Ni!) − nθ

)
, (2.2)

where ti is the observed lifetime, f(t|λ) is a proper probability distribution function, S(t|λ) is a
proper survival function and di is a censoring indicator. Details discussion of this model can be
found in Yakovlev and Tsodikov (1996) and Chen et al. (1999) among others.

We assume that the type of censoring in this study is either a type I or a random censoring.
The structure of the likelihood for the data resembles the likelihood in (2.2), except that now a
random effect Zi is introduced into the mean of the Poisson random variable N for each centre.
Therefore, conditional on the random variable Zi, the mean of the Poisson distribution becomes
Ziθ.

Sometimes it is more convenient to work with a transformed version of a random effect Zi

than to consider it in its original form. In this article the log transformation form of the random
effect, namely ui = log Zi is adopted. This transformation enables a direct inclusion of the random
effects into the Poisson log-linear model.

Assuming ui to be iid with pdf g(u|σ∗), the likelihood function can be expressed as:

L(λ, θ, σ∗|ui, Nij , {(ti, di)}) =
n∏

i=1

li∏
ji=1

S(tij |λ)Nij−dij (Nijf(tij |λ))dij

exp{
n∑

i=1

(
li∑

ji=1

(Nij(log θ + ui)− log (Nij !) − (log θ + ui)) + log g(ui))}

= L1(λ|t)L2(N |u)L3(u), (2.3)

where σ∗2 is the variance of the random effect ui.
The second part of the likelihood in (2.3), namely L2 and L3, is an extended likelihood (Paw-

itan, 2001) which has the form of a Poisson regression with random effects ui’s. If the log link
ηij = log θij is taken then the conditional mean of the Poisson random variables can be expressed
as exp(η + ui). When covariates are included, they enter the model through the link function by
placing η = x′β. The augmented likelihood function can then be written as:

L(λ, β, σ∗|{(ti, di)}) =
n∏

i=1

li∏
ji=1

{S(yij |λ)}Nij−dij {Nijf(yij |λ)}dij

exp

 n∑
i=1

 li∑
ji=1

{
Nij(x′

ijβ + ui)− log (Nij !)− (x′
ijβ + ui)

}
+ log g(ui)

 . (2.4)
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The hazard function corresponding to the likelihood in (2.3) is

hp(tij |ui) = exp(ui) θijf(tij), (2.5)

where θij is the mean of Poisson random variable Nij , and f is a proper pdf specified for the
progression time. Observe that the hazard function (2.5) with the frailty Zi = exp(ui) removed
from it is exactly the hazard function (1.2) studied in Yakovlev et al.(1993). Unlike the traditional
frailty model where assumptions are made on the random variable Zi’s, here, assumptions are
imposed directly on the transformed form of the random variable ui. That is, ui is assumed to
have mean equal to 0, and variance σ∗2. Models which have this hazard form are known as shared
frailty hazard models as discussed in the previous subsection, where the multiplicative random
effect Zi is known as the frailty. Expression (2.5) reflects the contribution of the immunes and
the heterogeneity in the hazard function. The hazard function of the survival data with immunes
has no less than one peak (Yakovlev and Tsodikov, 1996). It should be emphasized that although
the model (2.5) is developed here in the context of a multi-centre clinical trial framework it can
also be used in other contexts, for example, a situation in which the n centres are replaced by n

individuals and multiple observations are made on each individual. This model can be extended
further to a multi-level random effects model such as a study in which multiple observations are
observed on an individual in multi-centre clinical trials.

The second part of the likelihood in (2.3) has the form of a Poisson log-linear regression with
random effects ui’s, where the responses Nij are latent data and as such are not observed. The
estimation procedure can follow the procedure for the regular cure rate model as in Chen et
al.(1999). The only difference is that the Poisson regression has random effects in the model (2.5),
as opposed to a regular Poisson regression in the model (1.2). The Poisson regression with random
effects is solved within the framework of GLMM’s, as discussed in the next section.

There are some recent closely related developments for the model with a hazard function as
found in (2.5). Ibrahim et al. (2001) discussed this model in the context of bivariate multivariate
cure rate, where the event time consists of two different readings from the same person, namely
ti1 (the time to first infection) and ti2 (the time to second infection). They then specified Nk,
k=1,2 to follow the Poisson distribution with mean Zθk. The differences between Ibrahim et al.’s
model and the model developed in this article lies primarily in the fact that their model assumes
different Poisson means for the time to event ti1 and ti2. In this article, this assumption is not
necessary. The contribution of multiple events in each object, or the group effects, is handled
through the inclusion of random effects (u) in the model. In addition, Ibrahim et al. proposed a
Bayesian approach for their model but the approach used in this article is the GLMM approach
within the frequentist framework.

When covariates are introduced into the model, the linear predictor of the link function for the
Poisson generalized linear model becomes exp(η) = θ = exp(Xβ). The hazard function for the
model can then be written as

hp(tij) = exp(x′
ijβ + ui)f(tij).

The random effect u has mean 0 and variance σ∗2. This formulation guarantees that the random
effect Zi = exp(ui), which acts multiplicatively on the hazard function, is positive.

2.2 Estimation Procedure

In the likelihood functions (2.3) and (2.4), the parameters that have to be estimated are the
parametric vector λ, the vector β of regression parameters and σ∗2 the variance of the random
effects ui’s. The vector λ appears when a choice of distribution is made on the response variable
which are the progression times. The vector β appears when a choice of covariates is made in
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the model. In this article we impose the lognormal distribution f(t|λ), where λ = (µ, σ), on the
progression times.

The process we will use in doing this estimation is a two step method known as the expectation
maximization (EM) algorithm. We refer to Tanner (1996) for a good discussion about this method.

We start the EM algorithm by specifying initial values (Nij)0, µ0 and σ0. Note that once (Nij)0
have been specified, it implies that β0 and σ∗20 are also specified. At the (k + 1)th expectation
step (k = 0, 1, 2, · · · ), N

(k)
ij is replaced by its expected value(
N

(k+1)
ij |ui

)
= E

(
N

(k)
ij |ui

)
≡ θ

(k)
ij S(si, µ

(k)) + di,

where θij = (x′
ijβ + ui), dij is the censoring indicator of the jth-patient in the ith centre and S(.)

is the survival function. Therefore, the (k + 1)th expectation step of the EM algorithm has the
following form:

E{l(θ, µ, σ|{si, di}, ui, σ
∗, θ(k), µ(k), σ(k))} =

nX
i=1

liX
ji=1

{N (k+1)
ij − dij} log Ψ
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σ

�
− r log σ −

1

2σ2

X
i,j∈D

(sij − µ)2 +

nX
i=1

"
liX

ji=1

{Nk+1
ij (x′

ijβ + ui) − log (Nk+1
ij !) − (x′

ijβ + ui)} + log g(ui)

#
.

The maximization step consists of two parts: (i) estimating the parameters µ and σ and (ii)
estimating the regression parametric vector β and the variance σ∗2 of the random effects ui. For
(i) we use the Newton-Raphson algorithm (see Hasan et al., 2005) and for (ii) we use the penalized
quasi likelihood (PQL) method. For a discussion of the PQL method, see Schall (1991) and Breslow
and Clayton (1993). Venables and Ripley (2002) have recently written a computer program on
the PQL method. We continue the EM algorithm and stop when a pre-set convergence criterion
has been met.

As discussed earlier, the expressions in (2.3) and (2.4) reflect two components in the model
which can be separately estimated. The first part of the likelihood dealing with the estimation of
the parameters in f(t) was discussed for instance in Chen and Ibrahim (2001). When the lognormal
distribution is specified for f(t), the estimation procedure is discussed in Hasan et al.(2005).

2.3 Inferences and Hypothesis Tests

As commonly known, standard errors are not available for the estimates produced through the
EM algorithm. Therefore, calculating the standard errors of the estimates requires that the
latent variables are eliminated. For the survival model with an immune proportion, Yakovlev
and Tsodikov (1996) have shown that the latent data N can be integrated out so that the score
function and its variance can be derived from the the likelihood. Therefore, inferences can be
made based on the likelihood method. For the cure rate frailty model discussed here however, the
standard likelihood model is not applicable because of the existence of random effects.

One way to obtain the standard deviations of the estimates is by bootstrapping. This method
is straightforward and particularly useful when there is no direct method available to obtain
the information matrix of the estimates such as in the EM algorithm. One issue in the use
of the bootstrap method is the number of bootstrap simulations needed to derive the standard
deviation estimates. To have a very large number of bootstrap replicates is ideal, but is often
not feasible due to computational restrictions. This is particularly true for the method developed
in this article, where intensive calculations are performed to do the estimation. However, for
the purpose of obtaining standard deviations, the number of bootstrap replication, R, can be as
few as 50 (Efron and Thibshirani, 1993). In this article, after trying several choices of R (i.e.,
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R = 50, 100, 200, and R = 400), it is found that R = 100 gives a bootstrap standard deviation just
as good as R = 400 does. Therefore, the number of bootstrap replications, R = 100, is chosen.

3 Applications

In this section, the method developed in Section 2 will be applied to real data sets. There are two
data sets considered. The first one is the carcinoma data found in Kalbfleisch and Prentice (2003).
This data set is suitable for the method developed since it involves a number of institutions in which
patients were treated. Therefore, it is a multi-centre clinical trial where the centre can be accounted
for as a random effect. Another data set is the bladder cancer data listed in Wei et al.(1989). This
data set has multiple records of time to reoccurrences of bladder cancer on each person. Since
the measurements within each person are not independent, the frailty model can be applied since
a person specific random effect is present. There are two algorithms used to fit Schall (1991)’s
PQL proposal for GLMM. The first algorithm is the glmmPQL written by Venables and Ripley
(2002) and the second one is reglm written by Schmidt (http://www.statsci.org/s/reglm.html).
Both of them were written as S − Plus 2000 functions and are claimed to have been derived
from Schall’s proposal by their writers. The estimation for the variance component σ∗ employs
restricted maximum likelihood (REML) in both algorithms.

Note that the estimates for immune proportions are derived from the relationship 1 − p =
exp(−exp(η)), where η is the intercept of the regression parameters if no covariates are included
in the model. Throughout this section and the rest of this article therefore, the inferences for
the immune proportions in the event of no covariates in the model are carried out through the
inferences for the intercepts of the regression parameters. However, the immune proportions
will still be reported to give a clear view of their presence, even though they are not tested for
significance.

3.1 Carcinoma Clinical Trial

The data provided in Kalbfleisch and Prentice (2003) is a subset of results from a clinical trial
studied by the Radiation Therapy Oncology Group in the United States. The data consists of
survival records of patients with squamous carcinoma from three sites in the oropharynx, collected
with the participation of six institutions. Patients in the study were randomly assigned to one
of two treatment groups, namely radiation therapy alone and radiation therapy together with a
chemotherapeutic agent. The main interest is in comparing these two treatments with respect to
the survival time of the patients. In addition, there were various covariates recorded in the study,
which would be expected to relate to the patients’ survival. Six covariates were specified in the
study, namely sex, tumor stage classification (T-stage), lymph node stage classification (N-stage),
age, the degree of differentiation of the tumor (grade), and the general condition of the functional
capacity of the patient at the time of diagnosis. Hence, in addition to comparing the treatments,
investigating to what extent risk factors among the covariates related to the patient’s survival
were also of interest.

The treatment protocol was applied to the patients during a 90 day period. When the treatment
was done, patients received medical care by the participating institutions. No restrictions, except
those specifically required by the study, were placed on the past 90 day care. Variability as a
result of differences in the institutional care post the 90 days of treatment is therefore inevitable.
It is then plausible to consider the institution effect in the analysis of the data. In Kalbfleisch and
Prentice (2003), the institution effect was considered as a fixed effect. That is, inferences from
the analysis may be valid only for those institutions which participated in the clinical trial. A
random effect model may be adopted to give further insights into the variability of the institution
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Superimposed Survival Function for Faucial Arch Carcinoma
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Figure 1: Survival Function Estimated by Kaplan-Meier and Latent Variable Methods

effect. In that case, the participating institutions are considered as a random sample from the
institutions of interest.

In this article, for illustration purposes, only a subset of the data will be used, namely the
faucial site subset. The only covariate included is the T-stage. The main interest is to see whether
less severe tumor stage increases the cure probability of patients. For this purpose, T-stage is
reclassified so that only two categories are included, namely the massive tumor with extension
to adjoining tissue and the non-massive tumor. In addition, it is assumed that there exists an
unobservable random effect u in the data.

There were 65 patients recorded for the subset of the data chosen. They are from 6 participating
institutions. Out of the 65 patients, 50 died of the disease and the rest were either still alive at
the end of the follow-up period or lost to follow-up. Patients were lost to follow-up if they moved
or transferred to an institution not participating in the study. The total number of censored
observations were 15 (23.1 percent). The data is fitted using the long-term frailty model, hp(tij) =
exp(xijβ +ui)f(tij), proposed in the previous section which we refer to below as the frailty latent
variable model.

It is assumed that the progression time follows a lognormal distribution, and estimation of the
parameters is derived from the EM algorithm approach described in the previous section. To
estimate the fixed and random components as well as the variance components, a PQL method
(Breslow and Clayton, 1993) based on an algorithm proposed by Schall (1991) is used. This
estimation is carried out on each iteration until the estimates converge. The algorithm applied
is the S − Plus 2000 function glmmPQL of Venables and Ripley(2002) which is used for this
particular data set. The bootstrap method (Efron and Thibshirani, 1993) with R = 100 (one
hundred bootstrap replications) is used for estimating the standard errors of each of the parameters
in the model.

The graph of the survival function is given in Figure 1. The figure shows lines estimated by
Kaplan-Meier method(solid line) and the latent variable method using the lognormal distribution
(dashed line). They are very close.

The first four rows of Table 1 give the parameter estimates for the model when the covariate T-
stage is excluded. The bootstrap standard deviation for the estimates are also included. The values
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Table 1: Parameter Estimates of the Models for Carcinoma Data

Frailty Latent Variable Model Latent Variable Model

intercept 0.561 (0.110) 0.561(0.101)

σ∗ 1.369e-07(0.178)

µ 6.134(0.086) 6.134(0.088)

σ 0.796(0.069) 0.796(0.076)

intercept 0.417(0.156) 0.417(0.155)

T-stage 0.346( 0.276) 0.346( 0.281)

σ∗ 2.809e-07(0.199)

µ 6.134(0.085) 6.134( 0.071)

σ 0.796( 0.074) 0.796(0.077)

in brackets are standard deviations calculated from the bootstrap replications. For comparative
purposes, the estimates obtained by a similar model without random effects and their bootstrap
standard deviation are also included.

It can be seen from the second row of the table that the estimate for variance component of the
random effect σ∗ is effectively 0, an indication that there is not any significant institution effect
present in the data. This observation is supported by a relatively large value of the bootstrap
standard error of the variance component estimate. The estimate for the intercepts and their
bootstrap standard errors for both models are similar. The same is true for the estimate of
the mean µ and the standard deviation σ of the lognormal distribution. All these estimates are
significantly different from 0. The estimates of the cured proportion in both of the models are
similar, about 17.3 percent, compared to 15.5 percent for the cure proportion estimated by the
mixture model (fitted using GFCURE S − Plus 2000 function) with a Weibull distribution.

When the covariate T-stage is included in the model the estimates are reported in the last five
rows of Table 1. The results are similar to the model without covariates. The cure proportion
for patients with small primary tumor is 21.9 percent, much higher than that of the patients
with severe primary tumor (11.7 percent). However, based on a Wald-test, this difference is not
statistically significant, i.e there is not enough evidence to show that a severe tumor condition in
T-stage reduces the proportion of cure in the data.

3.2 Bladder Cancer Data Example

In this second example a bladder cancer data set listed in Wei et al.(1989)is used to illustrate the
use of the frailty latent variable method of analysis. The experiment was conducted by Veterans
Administration Cooperative Urological Research Group. All patients entering the study had su-
perficial bladder tumors. The tumors were removed and then the patients were randomly assigned
to one of three treatments, namely placebo, thiotepa and pyridoxine. Multiple reoccurrences of tu-
mors were observed on many of the patients during the study. Upon observing the reoccurrences,
the tumors were removed at each visit. The interest is to evaluate the effectiveness of treatment
(thiotepa) against placebo. The data set is available in S − Plus 2000 listed as bladder data.
There are several variables recorded in the data set, namely: id referring to the patient ID, rx

referring to the treatment (placebo =1 and thiotepa = 2), number referring to the initial number
of tumors, size referring to the size (cm) of largest initial tumor, start referring to entry time into
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Superimposed Survival Function for Bladder Data
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Figure 2: Survival Function Estimated by Kaplan-Meier and Frailty Latent Variable Model

the study or time of last occurrence, stop referring to reoccurrence or censoring time and enum

referring to which reoccurrences out of four occurrences (1 to 4).
This data set is suitable for the frailty latent variable method, since there are some patients

for whom more than one survival time or censor time is recorded. In this sub-section we assume
that the progression times follow a lognormal distribution. In addition, as all the patients entered
this study had their tumor removed earlier, there was a good chance of the existence of longterm
survivor in this study. To assess the significance of the estimates, bootstrap standard errors based
on 100 bootstrap replications are generated.

There were 85 patients with superficial bladder tumors. Of these patients, 47 were randomized
into the placebo group, and 38 were randomized into the thiotepa group. For the purpose of
applying the frailty latent variable method, the data is slightly modified by defining the time to
occur or reoccur as the difference between stop and start. If this time is 0 it is removed since then
there is not really any occurrence or reoccurrence. Following this setting, for the 85 patients there
were 190 records for the time to occurrence or reoccurrence. Out of the 190 records, 78 of the
times were censored. Since there are multiple records for most of the patients, the patient specific
random effects are included.

The Kaplan-Meier plot of the survival time of the patients can be found in Figure 2. Along
with the Kaplan-Meier curve, the survival time estimates from the latent variable model and frailty
latent variable model are superimposed. Note that no covariates are included in the models. Both
figures are close.

It can be seen from Figure 2 that models with and without frailty agree. This indicates that
there is not much change in the estimates with the inclusion of the random effect. In fact, the
variance component estimate σ∗ of the random effect is relatively small (0.026) and the bootstrap
standard error is equal to 0.145. The cure proportion given by the latent variable model is 0.265
while the estimate for the model with frailty is 0.268. The first four rows of Table 2 list all the
estimates in the models and their standard deviations. Note that as in the previous example, the
number of bootstrap replications used to estimate standard deviations is 100. From the table,
the intercept is significantly different from 0 (estimated value 0.276 with bootstrap standard error
0.073). Other estimates of the parameters of lognormal distribution, namely the mean and the
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Table 2: Parameter Estimates of the Models for Bladder Data

Frailty Latent Variable Model Latent Variable Model

intercept 0.276(0.073) 0.285(0.075)

σ∗ 0.026(0.145)

µ 2.373(0.062) 2.373( 0.071)

σ 1.101( 0.053) 1.101(0.057)

intercept 0.104(0.283) 0.123(0.205)

treat -0.328(0.267) -0.326(0.211)

number 0.135(0.062) 0.131(0.049)

size -0.012(0.086) -0.015(0.072)

σ∗ 0.027(0.194)

µ 2.373(0.069) 2.373(0.071)

σ 1.101( 0.051) 1.101(0.050)

standard deviation (µ and σ) are also significant.
A further investigation to determine whether the cure proportion in the data is related to the

treatment and /or other factors such as number and size of tumors is needed. For this purpose, a
model which includes covariates treat, number and size is fitted. The parameter estimates and
their bootstrap standard deviations are listed in final seven rows of Table 2. It can be seen from
the second half of Table 2 that the data provide some weak evidence that thiotepa treatment
increases the cured proportion. Applying the treatment to the patients increases the proportion
of cured patients in the study up to 11.9 %. However, a Wald-test for the treatment effect gives a
p-value of 0.0612 in the model without frailty and 0.1094 in the model with frailty. This finding is
similar to the one obtained by Wei et al. (1989) when analyzing the same data set. On the other
hand, there is strong evidence that the number of tumors reduces the proportion of cured patients
in the data. The estimate for the coefficient of the number of tumors is 0.1345 with bootstrap
standard error equal to 0.06202 in the model with frailty and 0.04949 in the model without frailty.
A one unit increase in the number of tumors will reduce the cure proportion by up to 4.93 %. The
score test to test the hypothesis for the effect of the number of tumors gives a p-value of 0.015 for
the model with frailty and 0.003 for the model without frailty. The estimate of size of the tumor
is a small negative number with a large standard error. This indicates that the tumor’s size does
not have any significant effect on the proportion of the cured patients in the study.

4 Simulation Study

A simulation study to evaluate the performance of the frailty model and its proposed estimation
method is conducted by adopting a multi-centre clinical trial setting, where centres are treated
as random effect. Various combinations of parameter values that relate to the various values
of censoring proportions in the susceptible population and various amounts of variability in the
random effects are applied. The focus of the investigation is to determine the accuracy of the
method in predicting the cure proportion. Hence, the fixed effect parameters in the Poisson
GLMM only consists of an intercept. Consequently, there are no covariates included in the model.
In addition, two types of censoring patterns namely the random censoring and fixed censoring are
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considered. Finally, a comparison will be made as to whether the developed model/method works
well with these two types of censoring patterns.

4.1 Simulation Methods

The failure time function for the susceptibles sub-population derived from the survival function
in (1.1) can be expressed as:

fs(t) =
exp{−exp(η)F (t|λ)}
1− exp{−exp(η)}

exp(η)f(t|λ), (4.1)

where f(t|λ) is a univariate distribution specified for the progression time of the carcinogenic
cells, η = xβ + u is the linear predictor that connects the immune proportion in the population
with some parametric vector β in the model and u is a random effect which follows a Gaussian
distribution with mean 0 and standard deviation σ∗.

In all the simulation sets, the susceptibles sub-population failure times are generated from
(4.1), and the failure times of the immune sub-population is taken to be infinity. A lognormal
distribution is specified for f(t|λ); where λ = (µ, σ) are the parameters in the distribution. A
set of values (-1, -1/2, 0, 1/2, 1) is assigned for β. Due to the nature of the model from which
the simulated data is generated, these parameter values are not independent of the censoring
proportions of the susceptibles in the generated data. Jointly with the parameter values used in
the censoring distribution, the β values determine the censoring fraction in the simulated data.

When a lognormal distribution with µ = log 1000 and σ = 1 is specified for the censor distribu-
tion and β = (-1, -1/2, 0, 1/2, 1) is used, the corresponding censoring fractions for the susceptibles
are 28.5%, 26.8%, 24.3%, 20.4% and 14.9%. For µ = log 2000, the corresponding censoring frac-
tions are 14.5%, 13.5%, 11.8%, 9.35% and 6.3%. Note that since the lifetimes of the immune
sub-population are arbitrarily assigned as censors, the censoring fraction in the generated data is
higher than these numbers. The total proportion of censored values can be easily determined by
taking into account the contribution of the immune proportion.

In addition to examining the model in the presence of random censoring, the model is also
examined in the presence of fixed censoring values, i.e., type I censoring. There are two fixed
censoring values L chosen, namely L= 700 and L= 1200. As for random censoring, the censoring
fraction in the susceptibles sub-population cannot be easily determined. Hence, the same type of
simulation as for the random censoring case is used. When β = (-1, -1/2, 0, 1/2, 1) and L=700,
the censoring fractions are 32.6%, 29.8%, 26.1%, 19.8% and 12.2%. For L=1200, the censoring
fractions in the model are 16.3%, 14.6%, 12.3%, 8.8% and 4.8%.

Apart from the parameter β and the parameters µ and σ in the censoring distribution, pa-
rameters for the random effects u (the centre effect and its distribution function) also need to
be determined. A normal distribution with mean 0 and two parameter values for the standard
deviation σ∗ namely σ∗ = 1/3 and σ∗=1 are used. These two values determine the amount of
variability introduced in the simulated data. The larger the value of σ∗ the greater the variability
introduced in the data. σ∗=1/3 gives a light amount of variability in the data, while σ∗=1 gives
a high amount of variability in the data.

There are 10 centres in the simulated data and each centre has 15 patients. Therefore, the
number of random samples n to be generated is 150, which are randomly placed in the immune
or susceptibles group. The placement is done by generating binary random numbers B from the
Bernoulli distribution with probability 1−p = exp(−exp(η)), where η = β +u. If B=1 the sample
belongs to the immune sub-population otherwise it belongs to the susceptibles sub-population. To
generate lifetime distribution of susceptibles fs(t) given by (4.1) a rejection/acceptance method
is adopted (Tanner, 1996). This method works well since the functional form of fs(t) is known.
Once a random sample of lifetimes for the susceptibles sub-population has been generated, the
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observed lifetimes can be determined by taking the minimum of the lifetime or the censor time.
In addition, the censor indicator and the centre number are recorded.

4.2 Simulation Results and Discussion

There are five different values of β, two different values of σ∗, two different values of either the
logmean, µ, or L for the censor distribution and two different types of censors, namely the fixed
and random censors. Therefore, forty different simulations are made. The results are shown
in Tables 3, 4, 5 and 6. Each table consists of ten simulation sets corresponding to five different
values of β and two different values of either the logmean, µ (for random censoring), or L (for fixed
censoring). The first column of the tables contains the parameter names followed by their true
values in the second column. The third and the fourth columns are the means of the parameter
estimates obtained from the 100 simulations for two different values (estimates-1 and estimates-2)
of the either µ’s or the L’s. The values in brackets are the standard deviations calculated from the
100 estimates in the simulations. In addition the tables also report the censoring fraction values
for the susceptibles.

From Tables 3 and 4, the results for the simulations with random censoring, there are small
biases in the estimates for β. The bias is slightly more noticeable when more variability is intro-
duced in the random effects (σ∗ = 1 as opposed to σ∗ = 1/3), which implies that more variability
is introduced in the data. In the data with the higher censoring fractions in the susceptibles
sub-population, where the censoring distribution has µ = log 1000, the parameter estimate for β

= -1 is slightly improved when σ∗= 1 is changed to σ∗= 1/3. For the smaller censoring fraction in
the susceptibles sub-population (the random censor distribution µ = log 2000), the two estimates
for β have relatively small biases and are relatively close to each other. As β increases, which
corresponds to a decrease in the censoring fraction, the biases decrease in all cases where small
variability is introduced in the data. For the simulated data with higher variability, the biases
increase slightly as β increases. However, these biases are relatively small particularly when the
transformed version of β, the 1 − p are considered.

The estimates for the parameters in the lognormal distribution, namely µ and σ have relatively
small biases in all cases regardless of the variability and the values of the censor distribution means.
All the estimates also have small standard deviations indicating less variability of the estimated
values in the simulation.

The estimates for the variance component σ∗ of the random effects show small biases in most
cases. These estimates behave differently for β ≤ 0 compared to β > 0. In the former case, when
µ = log 2000, the bias of the estimate of σ∗ is relatively smaller than when µ= log 1000. For β > 0,
the biases are larger when µ = log 2000. This pattern is consistent for both assumed values of σ∗.

Tables 5 and 6 show simulation results for the model when fixed censoring is used. As in the
case of random censoring, the estimates for parameters β, µ, σ and 1 − p show small biases in
all cases regardless of the amount of variability introduced in the data. These biases are slightly
smaller than those seen in the random censoring simulations. The estimates when the censoring
fraction is smaller, i.e. L = 700, are as good as the ones when censoring fraction is greater, i.e.
L = 1200. The standard deviations in all of these estimates are also similar to the corresponding
estimates for the random censoring case in Tables 3 and 4. In addition, despite their similarities,
the estimates for the variance component σ∗ of the random effects show slightly smaller biases in
the random censoring case than the ones for the fixed censoring, for most of the cases.

Overall, the results obtained from the simulations show that the model and the estimation
procedures are good, i.e. the estimates show very small biases. The results also show that the
estimates in the model are robust to various amount of censoring proportions in the susceptibles
sub-population. This feature is important and desirable since in real data, censoring observa-
tions resulting from the immune sub-population are indistinguishable from those resulting from
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Table 3: Parameter Estimates, Censor Distribution µ = log 1000 (estimates-1) and µ = log 2000
(estimates-2), SD of Random Effects σ∗= 1

Set-1

censor-prop 28.5 % 14.5 %

Parameter True Value estimates-1 (SD) estimates-2 (SD)

β -1 -1.133(0.353) -1.038(0.296)

1 − p 0.692 0.725 0.702

σ 1 0.977(0.093) 0.977(0.085)

µ 6.215 6.093(0.166) 6.082(0.155)

σ∗ 1 0.848(0.347) 0.915(0.345)

Set-2

censor-prop 26.8 % 13.5 %

Parameter True Value estimates-1 (SD) estimates-2 (SD)

β -1/2 -0.538(0.302) -0.541(0.279)

1 − p 0.545 0.558 0.559

σ 1 0.989(0.101) 0.993(0.072)

µ 6.215 6.082(0.167) 6.087(0.119)

σ∗ 1 0.851(0.317) 0.878(0.311)

Set-3

censor-prop 24.3 % 11.8 %

Parameter True Value estimates-1 (SD) estimates-2 (SD)

β 0 -0.113(0.299) -0.122(0.263)

1 − p 0.368 0.409 0.413

σ 1 0.992(0.081) 0.998(0.076)

µ 6.215 6.108(0.163) 6.098(0.127)

σ∗ 1 0.905(0.262) 0.890(0.262)

Set-4

censor-prop 20.4 % 9.35 %

Parameter True Value estimates-1 (SD) estimates-2 (SD)

β 1/2 0.442(0.231) 0.399(0.270)

1 − p 0.192 0.211 0.225

σ 1 1.019(0.081) 1.018(0.064)

µ 6.215 6.125(0.164) 6.121(0.159)

σ∗ 1 0.822(0.211) 0.839(0.199)

Set-5

censor-prop 14.9 % 6.3 %

Parameter True Value estimates-1 (SD) estimates-2 (SD)

β 1 0.885(0.184) 0.901(0.195)

1 − p 0.066 0.089 0.085

σ 1 1.049(0.081) 1.041(0.068)

µ 6.215 6.226(0.144) 6.181(0.131)

σ∗ 1 0.863(0.217) 0.808(0.203)
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Table 4: Parameter Estimates, Censor Distribution µ = log 1000 (estimates-1) and µ = log 2000
(estimates-2), SD of Random Effects σ∗= 1/3

Set-1

censor-prop 28.5 % 14.5 %

Parameter True Value estimates-1 (SD) estimates-2 (SD)

β -1 -1.015(0.188) -0.985(0.209)

1 − p 0.692 0.696 0.688

σ 1 1.012(0.119) 0.985(0.093)

µ 6.215 6.224(0.118) 6.180(0.122)

σ∗ 1/3 0.271(0.277) 0.291(0.242)

Set-2

censor-prop 26.8 % 13.5 %

Parameter True Value estimates-1 (SD) estimates-2 (SD)

β -1/2 -0.486(0.151) -0.497(0.147)

1 − p 0.545 0.541 0.544

σ 1 0.983(0.077) 0.985(0.081)

µ 6.215 6.188(0.107) 6.201(0.105)

σ∗ 1/3 0.219(0.209) 0.244(0.186)

Set-3

censor-prop 24.3 % 11.8 %

Parameter True Value estimates-1 (SD) estimates-2 (SD)

β 0 -0.028(0.121) 0.001(0.137)

1 − p 0.368 0.409 0.413

σ 1 1.005(0.079) 0.997(0.070)

µ 6.215 6.216(0.089) 6.185(0.080)

σ∗ 1/3 0.273(0.188) 0.301(0.180)

Set-4

censor-prop 20.4 % 9.35 %

Parameter True Value estimates-1 (SD) estimates-2 (SD)

β 1/2 0.497(0.110) 0.489(0.115)

1 − p 0.192 0.193 0.196

σ 1 1.013(0.057) 1.005(0.059)

µ 6.215 6.203(0.089) 6.201(0.077)

σ∗ 1/3 0.299(0.158) 0.269(0.180)

Set-5

censor-prop 14.9 % 6.3 %

Parameter True Value estimates-1 (SD) estimates-2 (SD)

β 1 1.005(0.089) 1.010(0.091)

1 − p 0.066 0.065 0.064

σ 1 0.996(0.059) 0.996(0.060)

µ 6.215 6.214(0.080) 6.201(0.083)

σ∗ 1/3 0.329(0.217) 0.302(0.136)
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Table 5: Parameter Estimates, Censor Value L = 700 (estimates-1) and L = 1200 (estimates-2),
SD of Random Effects σ∗= 1

Set-1

censor-prop 32.6 % 16.3 %

Parameter True Value estimates-1 (SD) estimates-2 (SD)

β -1 -1.102(0.322) -0.984( 0.330 )

1 − p 0.692 0.710 0.680

σ 1 0.973(0.145) 0.955(0.110)

µ 6.215 6.072(0.179) 6.126(0.162)

σ∗ 1 0.956(0.373) 0.826(0.325)

Set-2

censor-prop 29.8 % 14.6 %

Parameter True Value estimates-1 (SD) estimates-2 (SD)

β -1/2 -0.592(0.291 ) -0.560(0.323)

1 − p 0.545 0.570 0.559

σ 1 0.988(0.127 ) 1.008(0.101)

µ 6.215 6.114(0.190) 6.090(0.135)

σ∗ 1 0.876 (0.294) 0.897(0.273)

Set-3

censor-prop 26.1 % 12.3 %

Parameter True Value estimates-1 (SD) estimates-2 (SD)

β 0 -0.028(0.201) -0.043(0.259)

1 − p 0.368 0.378 0.384

σ 1 1.002(0.089) 1.010(0.084)

µ 6.215 1.002(0.089) 6.121(0.136)

σ∗ 1 0.826(0.229) 0.864(0.259)

Set-4

censor-prop 19.8 % 8.8 %

Parameter True Value estimates-1 (SD) estimates-2 (SD)

β 1/2 0.426(0.188) 0.422(0.202)

1 − p 0.192 0.220 0.221

σ 1 1.017(0.085) 1.019(0.074)

µ 6.215 6.197(0.135) 6.171(0.122)

σ∗ 1 0.813(0.264) 0.827( 0.246)

Set-5

censor-prop 12.2 % 4.8 %

Parameter True Value estimates-1 (SD) estimates-2 (SD)

β 1 0.934(0.159) 0.873(0.173)

1 − p 0.066 0.083 0.097

σ 1 1.071(0.083) 1.081(0.079)

µ 6.215 6.267(0.160) 6.266(0.130)

σ∗ 1 0.812(0.238) 0.844(0.230)
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Table 6: Parameter Estimates, Censor Value L = 700 (estimates-1) and L = 1200 (estimates-2),
SD of Random Effects σ∗= 1/3

Set-1

censor-prop 32.6 % 16.3 %

Parameter True Value estimates-1 (SD) estimates-2 (SD)

β -1 -1.049(0.184) -0.984(0.157)

1 − p 0.692 0.702 0.691

σ 1 0.989(0.132) 0.996(0.103)

µ 6.215 6.208(0.129) 6.199(0.108)

σ∗ 1/3 0.301(0.325) 0.256(0.229)

Set-2

censor-prop 29.8 % 14.6 %

Parameter True Value estimates-1 (SD) estimates-2 (SD)

β -1/2 -0.506(0.116) -0.484(0.135)

y 1 − p 0.545 0.547 0.544

σ 1 1.008(0.089) 1.007(0.079)

µ 6.215 6.1968(0.096) 6.190(0.092)

σ∗ 1/3 0.263(0.218) 0.246(0.215)

Set-3

censor-prop 26.1 % 12.3 %

Parameter True Value estimates-1 (SD) estimates-2 (SD)

β 0 0.000(0.108) 0.025(0.146)

1 − p 0.368 0.368 0.359

σ 1 1.004(0.079) 0.989(0.075)

µ 6.215 6.203(0.096) 6.192(0.090)

σ∗ 1/3 0.290( 0.187) 0.276( 0.176)

Set-4

censor-prop 19.8 % 8.8 %

Parameter True Value estimates-1 (SD) estimates-2 (SD)

β 1/2 0.494(0.093) 0.500(0.104)

1 − p 0.192 0.196 0.194

σ 1 0.993(0.074) 0.988( 0.060)

µ 6.215 6.222(0.091) 6.212(0.073)

σ∗ 1/3 0.290(0.160) 0.289(0.155)

Set-5

censor-prop 12.2 % 4.8 %

Parameter True Value estimates-1 (SD) estimates-2 (SD)

β 1 1.009(0.071) 1.011(0.080)

1 − p 0.066 0.065 0.065

σ 1 1.005(0.066) 0.995(0.054)

µ 6.215 6.217(0.081) 6.204(0.075)

σ∗ 1/3 0.286(0.144) 0.275(0.154)
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the susceptibles sub-population. This is particularly true if the censoring observations from the
susceptibles sub-population are large numbers.

5 Further Discussion

In this article, an extension of the model proposed originally by Yakovlev et al.(1993) to include
frailty has been studied. Use of this model to real data sets has been successful. A GLMM using a
PQL approach is proposed for parameter estimation. This proposal is naturally appealing because
of its simplicity and ready applicability utilizing existing statistical software. Moreover, the new
mode l retains the proportional hazard property of Yakovlev’s model. This property is desirable
in most cases in survival analysis.

Application of the method to two real data sets shows that the survival functions of the model
without covariates are close to the ones generated by the Kaplan-Meier method. When covariates
are included, the estimates in the model are close to the estimates in the model without frailty.
This similarity comes as no surprise, since the variance component of the frailty random effects
are close to 0 for both data sets. This implies that there is not really any frailty effects in both
data sets.

A simulation study conducted to evaluate estimates in the model confirmed that the estimates
have relatively small bias. The method works equally well in both the random and fixed censoring
cases. One problem to be faced is the difficulty in computing standard deviations for the estimates
in the model. This can be handled by using the bootstrap method.

The method for survival data with an immune proportion and frailty developed in this article
is readily extended to the situation where more than one level of random effects exists in the data.
An alternative method for estimation and prediction for the frailty model can be achieved by
integrating out the random effect. This method is well developed for small dimension of random
effects but is restrictive for large dimension of random effects. The advantage of this method lies
in the fact that the inferences can be built on a likelihood base. Therefore, it is an interesting
alternative for future considerations.
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