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summary

Four rank-based procedures for profile analysis of repeated measure responses are
discussed in detail. All four offer the user a complete analysis including estima-
tion of regression coefficients, tests of general linear hypotheses, and confidence
procedures. The fitting for each is based on minimizing a norm, hence, their
geometry is similar to that of the traditional LS analysis. Two of the analyses are
multivariate with theory not requiring assumptions on the covariance structure
of the repeated measures, while the other two are univariate analyses with theory
requiring compound symmetry covariance structure. All of the analyses are easily
computed with existing R software. An example is discussed in some detail, in-
cluding a sensitivity analysis. A Monte Carlo study investigates the validity and
power of the analyses over the normal and Cauchy distributions and a large family
of contaminated normal distributions and over two covariance structures. Gener-
ally the rank-based procedures were valid. In the normally distributed situations,
the traditional LS analysis was more powerful, but by little; on the other hand,
all the rank-based analyses dominated LS over the other distributions. One of the
univariate analyses (ATR) performed better than the others over the compound
symmetric situtations.

Keywords and phrases: Affine-equivariant estimators; Exchangeable; Compound-
symmetry; Monte Carlo; Nonparametrics; Sensitivity analysis; Wilcoxon analysis.



1 Introduction

The focus of this paper is on the small sample behavior of rank-based procedures for profile
analyses of repeated measure responses taken over groups. For the basic notation, suppose
that we have g groups. In the ith group we obtain a random sample of ni subjects. On
each subject, n repeated measures are taken. Denote the sample from the ith group by
yi1,yi2, . . . ,yini

, where yik is the vector of n repeated measures for the kth subject in the
ith group. Let N =

∑g
i=1 ni denote the total sample size. Let the n × 1 vector µ̂i denote

an estimate of the center of the ith group. Then the plots of µ̂ij versus j = 1, 2, . . . , n are
the sample profile plots. The corresponding plots of the population centers µi are called the
population profiles. A profile analysis consists of estimating the profiles, testing hypotheses
about them, and estimating contrasts of the µij along with standard errors so that confidence
intervals and/or regions can readily be formulated for the contrasts of interest. Further, the
estimation allows a residual analysis to ascertain the quality of fit of the model. Main
hypotheses are whether the profiles are parallel and, if so, whether they are coincident.

In this paper, we discuss several rank-based profile analyses and compare their small
sample properties in a Monte Carlo study. Each of these analyses are complete in that
fitting, testing, estimation of contrasts, and their standard errors are obtained. The fitting
in traditional profile analysis is based on the L2-norm. For the rank-based analyses, the
fitting is based on another norm. Hence, the geometry of the rank-based analysis is similar
to the geometry of the traditional analysis.

As we have described it, profile analysis is a multivariate procedure and two of our
rank-based procedures assume such a multivariate model with no structure assumed on
the covariance structure due to the repeated measures. One is based on componentwise R
estimators as discussed in Davis and McKean (1993); see, also, Puri and Sen (1985). The
other is an affine invariant rank-based procedure proposed by Salman and McKean (2005).

Instead of an unstructured covariance matrix, consider the other extreme, where the
responses on a subject are independent. In this case, the appropriate model is an univariate
two-way design and rank-based analyses can be based on ordinary R (OR) estimators for
linear models. The test for parallel profiles is just the test of no interaction. The assump-
tion of independence, though, is far too strong. In practice, we often assume a compound
symmetry assumption for this covariance; i.e., assume that subject is a random effect inde-
pendent of the random errors. Our other two rank-based procedures are based on OR fits
of this univariate model. One assumes the somewhat weaker condition of exchangeability;
see Kloke et al. (2005). The other (Kloke and McKean, 2004) first transforms the responses
using an orthogonal transformation based on a compound symmetry structure and then
proceeds with an univariate R fit. Both of these analyses offer a complete analysis. One
advantage of using an univariate model over a multivariate model is its flexibility in fur-
ther modeling. The disadvantage, of course, is the stronger assumption on the covariance
structure.

All the rank-based analyses discussed in this paper are easily computed. Terpstra and
McKean (2005) offer a family of R routines for the Wilcoxon analysis of univariate linear
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models and we have extended this family to a set of routines for analyses of this paper. The
reader can download them at the site www.stat.wmich.edu/mckean/HMC/Rcode/Repeat.
The computation for R estimates for univariate models and the associated analyses of many
practical designs can be obtained at the RGLM web site www.stat.wmich.edu/slab/RGLM;
see Abebe, Crimin and McKean (2001).

The multivariate and univariate rank-based profile analyses are presented in Sections 2
and 3, respectively. In Section 4, we present a detailed discussion and a sensitivity analysis
of an example. In Section 5, we present the results of a Monte Carlo study of the four rank-
based analyses and a least squares (LS) analysis. The study is over the multivariate normal
and Cauchy distributions and a large family of contaminated multivariate distributions.
Compound symmetric and autoregressive covariance structures are employed. The main
focus of the study is an investigation of the validity and power of these rank-based analyses.

2 Multivariate Rank-Based Procedures

In this section, we first present the notation for the multivariate model. In the next two
subsections we briefly define the two rank-based multivariate procedures in our investigation.
This is followed by two subsections containing the details of the procedures. We will use
the acronyms DM and TRR for these procedures throughout the paper.

2.1 Notation

For the kth subject in the ith group, write the full model as

yik = µi + eik, i = 1, . . . , g; k = 1, . . . , ni, (2.1)

where µi = (µi1, . . . , µin)T is the n × 1 vector of centers for the ith group and eik are iid
random vectors with pdf f(t) and cdf F (t). Denote the pdf and cdf of the jth component of
yik by fj(t) and Fj(t), respectively. Denote the g× n matrix of centers by µT = [µ1 · · ·µg]
and and the N × n matrix of responses by Y = [y11 · · ·y1n1

· · ·yg1 · · ·ygng
]T . In the same

way, compose the N × n matrix of random errors and call it E . Then the full model (2.1)
for the multivariate methods can be expressed as

Y = Wµ + E , (2.2)

where W is the N × g incidence matrix of group membership.
In profile analysis, parallelism of the profiles is the first hypotheses considered. This is

equivalent to no interaction between the groups and the trial (level) of the repeated measure.
In the multivariate setting, the hypotheses of parallelism are given by

H0P : HµK = 0 versus HAP : HµK 6= 0, (2.3)
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where H and K are the contrast matrices

H =


1 -1 0 · · · 0

1 0 -1 · · · 0
...

...
...

...

1 0 0 · · · -1

 and K =



1 1 · · · 1

-1 0 · · · 0

0 -1 · · · 0
...

...
...

0 0 · · · -1


. (2.4)

If H0P is accepted then a hypothesis of interest is that the profiles are coincident. On
the other hand, if H0P is rejected then usually coincidence makes little sense and it is not
tested. Hence assuming that HµK = 0, the hypothesis of coincidence is

H0C : Hµ = 0 versus HAC : Hµ 6= 0, (2.5)

where H is given in expression (2.4).
In the case where parallel profiles are rejected, we may be interested in estimating or

testing contrasts of the center parameters of the form

h = hT µk, (2.6)

where the components of the vector h sums to 0.

2.2 The DM Procedure

Davis and McKean (1993) proposed componentwise R estimates of linear models for Model
(2.2) as described briefly below in Section 2.4. Let µ̂DM denote this R-estimator of the
matrix of centers µ. Sample profile plots for the DM procedure are based on these esti-
mates. The corresponding Lawley-Hotelling type test statistic for parallelism is a function
of Hµ̂DMK and is defined in general in expression (2.17) of Section 2.4. Denote this test
statistic for parallelism by TDM,P . Under the null hypothesis, TDM,P has an asymptotic χ2

with (g − 1)(n− 1) degrees of freedom. The nominal α decision rule used for the examples
and simulation study is

Reject H0P if TDM,P ≥ χ2
(g−1)(n−1)(α). (2.7)

Assuming H0P is true, a similar test can be formulated to test for coincidence, but with
g − 1 degrees of freedom. An estimator of the contrast (2.6) is hT µ̂DMk. A confidence
interval for the contrast is given in (2.18).

2.3 The TRR Procedure

Although rank-based component-wise procedures are highly efficient, they are not affine
invariant. Further, as Bickel (1964, 1965) pointed out, these procedures can lose efficiency
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for highly correlated responses. Recently, Salman and McKean (2005) proposed an affine
equivariant rank-based R estimator based upon a transformation-retransformation method
utilizing Tyler’s (1987) transformation matrix; see Section 2.5 for details.. We will denote
this affine equivariant estimator by µ̂TRR. The corresponding Lawley-Hotelling test statistic
is the statistic TTRR,P which is defined in general in expression (2.19). It is asymptotically
χ2 with (g−1)(n−1) degrees of freedom under H0P . For the record, the nominal α decision
rule used for the examples and simulation study is

Reject H0P if TTRR,P ≥ χ2
(g−1)(n−1)(α). (2.8)

Estimates and confidence intervals for contrasts are formulated similar to the DM compo-
nentwise procedure.

2.4 Details of the DM Multivariate Procedure

In this subsection, we present the details behind the DM analysis. In this paper we are
concerned with rank-based procedures based on rank regression scores. The related asymp-
totic theory does not assume symmetric error distributions and can even be optimized for
asymmetric or symmetric error distributions depending on the knowledge of the error distri-
butions; see McKean and Sievers (1989). Hence, we use regression scores and not signed-rank
scores. Then, in order to conveniently state the theoretical results for this analysis, we in-
troduce a simple reparameterization. Consider the g×g elementary column matrix E which
replaces the first column of a matrix by the sum of all columns of the matrix; i.e,

[c1 c2 · · · cg]E =

[
g∑

i=1

ci c2 · · · cg

]
, (2.9)

for any matrix [c1 c2 · · · cg]. Note that E is nonsingular. Hence we can write Model (2.2)
as

Y = Wµ + E = WEE−1µ + E = [1 W 1]

 αT

B

+ E , (2.10)

where W 1 is the last g − 1 columns of W and E−1µ = [α BT ]T . Since H, (2.4), is a
contrast matrix, its rows sum to zero. Hence the hypotheses (2.3) is equivalent to

H0P : H1BK = 0 versus HAP : H1BK 6= 0, (2.11)

where H1BK is defined in the derivation

HµK = HEE−1µK = [0 H1]

 αT

B

K = H1BK .

Most of the interesting hypotheses in MANOVA are formulated in terms of contrasts ma-
trices and, hence, can be written in the form of (2.11). Likewise, the hypothesis (2.5) of
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coincidence is equivalent to

H0C : H1B = 0 versus HAP : H1B 6= 0. (2.12)

The LS estimates of the matrix of parameters B can be obtained componentwise by
minimizing the Euclidean norm of the residuals. The rank-based estimates can be obtained
in the same way by using a different norm. Consider the norm given by

‖w‖ϕ,N =
N∑

i=1

a[R(wi)]wi, w ∈ RN , (2.13)

where R(wi) denotes the rank of wi among w1, . . . , wN and the scores are given by a(i) =
ϕ[i/(n + 1)] where ϕ(u) is a bounded square integrable nondecreasing function defined on
the interval (0, 1). Without loss of generality assume that

∫ 1

0
ϕ = 0 and

∫ 1

0
ϕ2 = 1. Some

examples of score functions are: the Wilcoxon scores, generated by ϕ(u) =
√

12[u − (1/2)]
and the sign (L1) scores, generated by ϕ(u) = sgn[u− (1/2)]. For a random variable X with
pdf f(x) and cdf F (x), the optimal score generating function is

ϕf (u) = −f ′[F−1(u)]
f [F−1(u)]

. (2.14)

Assume that we have selected a score function ϕ(u).
Let Y (j) and β(j) denote the jth columns of Y and the matrix of regression parameters

B, respectively. The jth component R estimate of B is given by

B̂(j) = Argmin ‖Y (j) −W 1B(j)‖ϕ,N ; j = 1, . . . , n.

Let B̂ = [B̂(1) · · · B̂(n)] denote the matrix of R estimates and W c denote the centered design
matrix based on W 1. Davis and McKean (1993) showed that under the regularity conditions

B̂R is asymptotically Ng,n(B, (W T
c W c)−1,T ϕΣϕT ϕ), (2.15)

where
Σϕ = [E{ϕ[F (j)(ej)]ϕ[F (j′)(ej′)]}]jj′ ; T ϕ = diag{τ1, . . . , τn};

and the scale parameter τj is defined by

τj =
[∫ 1

0

ϕ(u)ϕfj
(u) du.

]−1

, j = 1, . . . n.

In order to obtain the sample profile plots, an estimate of the vector of intercepts is needed.
For the jth component, let α̂(j) = med {Y (j)−W 1B̂(j)}. Davis and McKean (1983) obtain
the joint asymptotic distribution of the intercept and regression estimates. It follows from
the transformation that

µ̂DM = E

 α̂T

B̂

 . (2.16)
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These estimators can be used to obtain robust profile plots.
The corresponding Lawley Hotelling test statistic for the hypotheses (2.11) is given by

TDM = tr (H1B̂RK)T [H1(W T
c W c)−1HT

1 ]−1H1B̂RK[KT T̂ Σ̂T̂K]−1, (2.17)

where T̂ and Σ̂ are respectively the consistent estimators of T ϕ and Σϕ discussed in Davis
and McKean (1993). We use these estimates for the examples and simulations. Davis and
McKean (1993) showed that TDM has an asymptotic χ2 distribution with (g − 1)(n − 1)
degrees of freedom under H0P . They further showed that it has an asymptotical noncen-
tral χ2 distribution under a sequence of local alternatives and obtained its noncentrality
parameter.

The estimate of the contrast (2.6) is ĥ1,DM = hT
1 B̂Rk. An asymptotic (1 − α)100%

confidence interval is

ĥ1,DM ± zα/2

[
hT

1 (W T
c W c)−1h1k

T T̂ Σ̂T̂ k
]1/2

. (2.18)

where zα/2 = Φ−1(1− (α/2)) and Φ(t) is the cdf of a standard normal distribution.

2.5 Details of the TRR Affine Invariant Procedure

Salman and McKean (2005) developed an affine invariant rank-based procedure which is a
type of transformation-retransformation estimator discussed by Chauduri and Chakraborty
(1997). However, unlike the Chauduri and Chakraborty’s procedure, the transformation is
a function of all the data, not a specified subset of the data. We present its algorithm below.
It utilizes Tyler’s (1987) transformation matrix which we now briefly describe.

For the multivariate regression model, let Ê denote the matrix of residuals based on an
affine equivariant estimator of B. Let êi be the ith row of Ê for i = 1, . . . , N . Tyler’s
transformation matrix, Â is the unique upper triangular matrix with 1 in position (1, 1)
which solves:

1
N

N∑
1

(
Aêi

‖Aêi‖

)(
Aêi

‖Aêi‖

)T

=
1
n

I.

Further, it satisfies the identity

DT Â
T
bEDT Â

bEDT D = c0Â
T
bE Â

bE ,

for some c0 > 0 and for any nonsingular matrix D.
To obtain Tyler’s transformation matrix, an initial estimator of the regression coefficients

is required. For the asymptotic theory cited below, all that is needed is that initial estimator
be affine invariant and O(1/

√
N). The LS estimator satisfies these requirements; however,

it is not robust. Another estimator we have used is that proposed by Rousseeuw et al.
(2004), which is robust in both response and factor space. In a simulation study conducted
by Salman and McKean (2005), for heavy tailed distributed errors, as a starting value the
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robust estimator performed better than LS estimates, while for moderate to moderately
heavy tailed error structure they performed about the same.

The following is the algorithm for the transformed-retransformed R estimator B̂TRR of
B proposed by Salman and McKean (2005).

1. Transformation Step. Fit Model (2.2) using an affine equivariant estimator. Obtain
the matrix of residuals, ÊLS . Obtain the transformation matrix Â = Â(Ê0).

Get the transformed response variables: Z = YÂ
T
.

2. R-Estimation Step. As discussed in Section 2.4, obtain the componentwise R esti-
mate B̂R(Z), on the transformed variables.

3. Retransformation Step. Retransform B̂R(Z) to obtain the new estimate B̂TRR =

B̂(Z)(Â
T
)−1.

Salman and McKean (2005) showed that B̂TRR is an affine equivariant estimator and
obtain its asymptotic distribution given by

B̂TRR is asymptotically distributed Ng,n(B, (W T
c W c)−1,A−1T ϕΣϕT ϕA−1 T ).

As in Section 2.4, we can use the median of the residuals as our estimator for the intercept.
The associated Lawley Hotelling test statistic for the hypotheses (2.11) is

TTRR = tr (H1B̂TRRK)T [H1(W T
c W c)−1HT

1 ]−1H1B̂TRRK

[KT Â
−1

T̂ ϕΣ̂ϕT̂ ϕ(Â
−1

)T K]−1. (2.19)

The test statistic TTRR is affine invariant. Under the null hypothesis, Salman and McKean
(2005) showed that TTRR has an asymptotic χ2 distribution with (g − 1)(n − 1) degrees
of freedom, while under local alternatives it has an asymptotic noncentral χ2 distribution.
The estimate of the contrast (2.6) is handled in the same way as in Section 2.4.

3 Univariate Rank-Based Procedures

In this section we discuss the two univariate procedures (KMR and ATR) involved in our
investigation. Similar to Section 2, we briefly describe the profile analysis for each of these
procedures, following with more details in the last two subsections of this section.

3.1 Notation

Let m = Nn and p = ng. Rewrite the matrix of responses Y as the long m × 1 vector
Y T = (yT

11, . . . ,y
T
1n1

, . . . ,yT
g1, . . . ,y

T
gng

). For the full model of this section, consider

yik = θi1n + γi + eik, i = 1, . . . , g; k = 1, . . . , ni. (3.1)
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Note that this is an overparameterized model and, hence, without loss of generality, we
assume that γi ∈ 1⊥n . As in Section 2, for i = 1, . . . , g, k = 1, . . . ni, the random vectors
eik = (ei1k, . . . , eink)T are iid with pdf f(x) and cdf F (x).

In this notation, the hypotheses of parallelism is given by

H0P : γ1 = · · · = γg versus HAP : γi 6= γi′ for some i 6= i′. (3.2)

Note that this hypotheses has (n− 1)(g− 1) degrees of freedom Assuming that H0P is true,
the hypotheses of coincidence is

H0C : θ1 = · · · = θg versus HAP : θi 6= θi′ , for some i 6= i′. (3.3)

Note that this hypotheses has g − 1 degrees of freedom
In terms of fitting, we can write this model as a cell means model with µij = θi + γij ,

i = 1, . . . , g; j = 1, . . . , n. Denote the vector of means by µ = (µ11, . . . , µgn)T . Let W ∗ be
the incidence matrix for this model. Then we can express the model as

Y = W ∗µ + e, (3.4)

where µ is the p × 1 vector of centers µij . Each hypothesis above can be expressed as a
contrast in the µijs.

3.2 The KMR Procedure

The KMR procedure is based on the rank-based analysis proposed by Kloke et al. (2005).
The estimate of µ is the R-estimator for the univariate linear model. It is briefly dis-
cussed in Section 3.4. The theory for the procedure requires that the distribution of
eik = (ei1k, . . . , eink)T is exchangeable. The analysis is a generalization of the rank-based
analysis for independent errors; see Chapter 4 of Hettmansperger and McKean (1998) and/or
Chapter 9 of Hollander and Wolfe (1999). The test statistic for parallelism is FKMR which
is defined in expression (3.8). This is a Wald-type test statistic and its nominal α rejection
rule is:

Reject H0P if FKMR ≥ F (α, (g − 1)(n− 1), (n− 1)(N − g + 1)). (3.5)

The recommendation on the denominator degrees of freedom is same as for the ATR proce-
dure discussed next. The associated estimate of the contrast hT µ is hT µ̂KMR is discussed
in Section 3.4, where a confidence interval for hT µ is also described.

3.3 The ATR Procedure

In addition to exchangeability, the second procedure assumes the existence of second mo-
ments; hence, the variance-covariance matrix for the random vector of errors, eik is com-
pound symmetric. Under this assumption, the traditional LS analysis is based on an or-
thogonal transformation of the responses. These transformed responses are uncorrelated;
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see Chapter 14 of Arnold (1981). Kloke and McKean (2004) proposed a rank-based pro-
cedure which utilizes this orthogonal transformation. After transformation, the rank-based
methods for univariate linear models are used. The estimator of µ is given by µ̂ATR and
the test statistic for parallelism are discussed in Section 3.5. We call the test statistic for
parallelism FATR. Similar to FKMR, it is a Wald-type test statistic and its nominal level α

rejection rule is:

Reject H0P if FATR ≥ F (α, (g − 1)(n− 1), (n− 1)(N − g + 1)). (3.6)

The denominator degrees of freedom is discussed in Section 3.5. Similar to the KMR proce-
dure, the associated estimate of the contrast hT µ is hT µ̂ATR. In Section 3.5, a confidence
interval for this contrast is described.

3.4 Details for the KMR Procedure

As in Section 2, we prefer to use the rank regression scores so we can handle skewed as well
as symmetric error distributions. Using the elementary column matrix (2.9), (here it is a
p× p matrix), we can write Model (3.4) as

Y = W ∗EE−1µ + e = [1W ∗
1]

 α

β

+ e. (3.7)

Both the hypotheses of parallelism and coincidence can be expressed as contrasts of the
cell means µij . Let HI be a (g − 1)(n− 1)× gn whose rows are independent contrasts for
testing parallelism. Then the null hypothesis of parallelism is HIµ = 0. Further, because
HI is a contrast matrix, HIµ = HI1β, where HI1 is the last gn− 1 columns of HI . Thus
in the notation of Model (3.7), the hypothesis of parallelism is

H0P : HI1β = 0 versus HAP : HI1β 6= 0 . (3.8)

Likewise the hypotheses of coincidence can be written similarly with a contrast matrix,
assuming that HIµ = 0. An easy way to conduct this last test is to use an additive
two-way model as the full model and then test the hypothesis that the group effects are
zero.

In this subsection, we assume additionally that the error distributions are exchangeable;
that is, for all i = 1, . . . , g; k = 1, . . . , ni

L(eij1k, . . . , eijnk) = L(eis1k, . . . , eisnk), (3.9)

for all permutations jl and sl of {1, . . . , n}, where L means distribution. In particular, let
fe(t) and Fe(t) denote the common marginal pdf and cdf, respectively.

For the linear model (3.7), consider the same norm as (2.13) but note that it is a now a
function over Rm instead of RN . Denote it by ‖u‖ϕ,m. The rank-based estimator of β is
given by

β̂ϕ = Agrmin ‖Y −W ∗
1β‖ϕ,m. (3.10)
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This is the usual univariate R estimator of the regression parameters first proposed by
Jaeckel (1972). As in the multivariate section, we estimate the intercept α by the median
of the residuals, i.e., α̂ = med {ε̂l} where ε̂ = Y − W ∗

1β̂ϕ Hence, using the elementary

transformation matrix E, the KMR estimate of the vector µ is µ̂KRM = E[α̂ β̂
T

ϕ ]T . Robust
profile plots can be graphed based on these estimators of center.

Let W ∗
1,c be the centered design matrix corresponding to W ∗

1. Let W ∗
1,c,ik denote the

submatrix of this matrix corresponding to the subject (i, k), i = 1, . . . , g; k = 1, . . . , ni.
Under the assumption of exchangeable errors and regularity conditions Kloke, McKean and
Rashid (2005) showed that

β̂ϕ is asymptotically Np(β, τ2V ϕ), (3.11)

where

V ϕ = (W ∗T
1,cW

∗
1,c)

−1

(
g∑

i=1

ni∑
k=1

W ∗T
1,c,ikΣϕW ∗

1,c,ik

)
(W ∗T

1,cW
∗
1,c)

−1; (3.12)

Σϕ = (1− ρϕ)In + ρϕJn,

τϕ =
[∫ 1

0

ϕ(u)ϕfe
(u) du.

]−1

,

for ϕfe(u) given by (2.14), and ρϕ = cov {ϕ[F (e11)], ϕ[F (e12)]} = E{ϕ[F (e11)]ϕ[F (e12)]}.
Similar to traditional analysis, we need to assume that ρϕ > −1/(n − 1) to ensure that
covariance matrix is positive definite.

To use the inference described above, we need estimates of V ϕ, τϕ and ρϕ. Briefly, for
τϕ, consider the multivariate situation of Section 2. In estimating the covariance structure,
componentwise estimates of τ

(j)
ϕ , j = 1, . . . , n are needed. Under exchangeability these

parameters are the same. So simply take the average of these componentwise estimators
which serves as a consistent estimator of τϕ. Kepner and Robinson (1988) proposed an
estimate of 1 − ρϕ for the iid case. In our case, this estimate based on the residuals from
the KMR fit of the full model is given by

1̂− ρϕ =
(N + 1)2

(N2 − 1)m(n− 1)

m∑
k=1

n∑
j=1

[a(R(êkj))− ak·]2. (3.13)

As discussed in Kloke et al. (2005), this is a consistent estimator of 1− ρϕ.
The corresponding Wald type test statistic for the hypotheses of parallelism, (3.8), is

given by

FKMR =
(HI β̂ϕ)T

[
HI V̂ ϕHT

I

]−1

(HI β̂ϕ)

τ̂ϕ(g − 1)(n− 1)
. (3.14)
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3.5 Details of the ATR Analysis

Let yik and eik denote respectively the vector of responses and errors for the jth subject in
group i. Then we can write Model (3.1) as

yik = µi + eik, i = 1, . . . g; k = 1, . . . , ni. (3.15)

The theory of Section 3.4 was under the assumption that the error distributions for a subject
are exchangeable. Here we further assume that the errors have finite second moments; hence,
the variance-covariance structure is compound symmetric, i.e.,

V (eik) = σ2A(ρ) = σ2[(1− ρ)In + ρJ ], (3.16)

where σ2 > 0 and |ρ| < 1.
The traditional LS analysis of this model is facilitated by first using an orthogonal

transformation on the responses. This is discussed in detail in Chapter 14 of Arnold (1981).
Let Γ be the n× n matrix

Γ =

 1√
n
1T

CT

 ,

where 1 is an n× 1 matrix of ones and the columns of C are an orthonormal basis for 1⊥;
that is, CT 1 = 0. Transform each subject’s response vector by applying Γ on the left, i.e.,
for i = 1, . . . g, k = 1, . . . ni, let

y∗ik = Γyik =

 1√
n
1T yik

CT yik

 =

 y∗ik1

y∗ik2

 .

Write the mean response of a subject from group i in the overparameterized fashion as
µij = θi + γij , j = 1, . . . , n, where without loss of generalilty

∑
j γij = 0. It follows that the

expected value of the transformed response y∗ik is,

E

 y∗ik1

y∗ik2

 =

 √
nθi

CT γi,k

 =

 θ∗i

γ∗i,k

 .

and its covariance matrix is

Var

 y∗ik1

y∗ik2

 =

 σ2[1 + (n− 1)ρ] 0T

0 σ2(1− ρ)In−1

 .

Thus the transformation results in uncorrelated responses.
Notice that we have written the transformed responses in two parts. The scalars y∗ik1,

i = 1, . . . , g, k = 1, . . . , ni are independent random variables. The second parts y∗ik2,
i = 1, . . . , g, k = 1, . . . , ni have uncorrelated components. Let Y ∗

2 = (y∗T
112, . . . ,y

∗T
gng2)

T be
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the vector of second parts and let γ∗i = (γ∗T
i1 , . . . ,γ∗T

ini
)T , i = 1, . . . , g. Then Y ∗

2 follows the
linear model

Y ∗
2 =


1n1 ⊗ In−1 · · · 0

...
. . .

...

0 · · · 1ng ⊗ In−1




γ∗1
...

γ∗g

+ e∗2, (3.17)

where e∗2 are the transformed errors. Further, it is easy to see that the hypothesis of
parallelism is equivalent to

H0P : γ∗i = γ∗i′ , i, i′ = 1, . . . , g versus HAP : γ∗i 6= γ∗i′ , for some i 6= i′.

Note that the vector 1m is in the column space of the design matrix; hence, the R
estimates can be obtained as discussed in Section 3.4. For instance, the R estimator of β

is given by (3.10) where in this case W ∗
1 is the centered design matrix of the design matrix

found in (3.17). The estimate of the intercept is the median of the residuals and, once again,
we can back transform to estimate µ.

Asymptotic distribution theory is similar to the theory discussed in Section 3.4; see Kloke
and McKean (2004) for details. Further, the Wald type test for parallelism would also be of
the same form as (3.14). We label this test statistic FATR. For a nominal α rejection rule,
it should be compared with F -critical values having (g − 1)(n− 1) and (n− 1)(N − g + 1)
degrees of freedom; see Chapter 14 of Arnold (1981).

The test for coincidence, though, differs. The information on levels is in the first part, i.e,
the parameters θ∗i , for i = 1, . . . , g. The observations are the y∗ik1s, which are independent
random variables. This is a one-way model with g levels and the appropriate rank-based
analysis would be the one-way univariate rank-based analysis as discussed in Chapter 4 of
Hettmansperger and McKean (1998).

Note that if one assumes uncorrelated errors imply independent errors then the ATR test
for parallelism is the same as the rank-based test of that hypothesis based on independent
errors.

4 Example and Sensitivity Analysis

In this section, we present an example and use it to perform a sensitivity analysis of several
of the rank-based procedures discussed in the last section. One purpose of our discussion is
to show that these rank-based analyses are as versatile as the LS analysis in terms of testing
and estimation.

Morrison (1976, p. 229) presents a data set on a one-way design with four repeated
measures. Sixteen dogs were divided evenly into four groups. The dogs in Group 1 received
morphine sulphate, while the dogs in Group 2 first had their supply of histamine depleted
and then received morphine sulphate. The treatment of the dogs in Groups 3 and 4 mirrored
that of Groups 1 and 2, respectively, except that the drug trimethaphan was used on them
instead of morphine sulphate. The response was the level of histamine in a dog measured
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Table 1: Results of Tests for parallelism for Dog Data. For comparison purposes, divide the
χ2 test statistics by nine.

Method Test Statistic p-value

KMR 11.53 0.000

DM 81.067 0.000

TRR 120.60 0.000

MLS 62.72 0.000

at these four times: baseline, one minute, three minutes, and five minutes. The data can
be found in Morrison (1976). The left panel of Figure 1 displays the sample profile plots of
the four groups based on cell medians. It appears from this plot that the profiles are not
parallel. Also the effect of depleting the animal’s histamine, which was done in Groups 2
and 4, is quite evident in the plot.

For brevity we confine our discussion mostly to the KMR analysis. For this, we chose
as our full model the univariate model (3.1) and for the fit we chose the rank-based R fit
discussed in Section 3.4, using Wilcoxon scores. Hence, the procedure under discussion is
the KMR procedure. The right panel of Figure 1 shows the studentized residual plot based
on this fit. As discussed in Section 3.4, the fitted values for the full model are estimates
of the sixteen cell medians for this 4 × 4 data set. The overlap on the left side of the plot
is due closeness of some of these estimated cell medians. The studentized residuals that
form the ordinates in the residual plot are those proposed by Kloke et al. (2005), similar to
the studentized residuals discussed in Hettmansperger and McKean (1998) for robust fits
of linear models with independent errors. We have overlayed the usual ±2 benchmarks for
Studentized residuals. Studentized residuals with absolute value beyond 2 are often thought
of as potential outliers. In this data set, as the figure depicts there are five such cases, the
largest of which is the second repeated measure of the fourth dog in Group 3.

Table 1 displays the outcome of the test statistics for the KMR, DM and TRR rank-
based analyses. For comparison, we chose the multivariate least squares (MLS) analysis.
The multivariate test statistics are asymptotically distributed as χ2 with nine degrees of
freedom under H0, while the univariate tests are based on F -critical values with 9 and 37
degrees of freedom. Hence, to facilitate comparisons with the F -test statistics, divide the χ2

test statistics by nine. The results are then similar and we can see the effect of the outliers
on the LS test.

The sample profile plots for the groups in which the animal’s histamine was not first
depleted are much different than the other two groups. The responses strongly suggest
fitting a quadratic model. This is easy to do for the univariate analyses because covariates
can vary over the times of the repeated measures. Since the fits vary by groups, we chose
the quadratic model

yijk = αi + β1itj + β2it
2
j + eijk, (4.1)
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Table 2: Estimated Linear and Quadratic Coefficients and (Standard Errors) for the KMR
Procedure based on the R Fit of the Quadratic Model for the Dog Data

Linear Quadratic

Group 1 0.1903 ( 0.0600) −0.0363 (0.0115)

Group 2 −0.0007 ( 0.0600) 0.0007 (0.0115)

Group 3 0.6903 ( 0.0600) −0.1163 (0.0115)

Group 4 −0.0050 ( 0.0600) 0.0008 (0.0115)

where i = 1, . . . , 4 denotes the group and (t1, t2, t3, t4)T = (0, 1, 3, 5) are the times. As in the
full model, we assume that the error vectors (ei,1,k, . . . , ei,4,k)T have a compound symmetric
covariance structure.

For the quadratic model, we once again used the KMR procedure with Wilcoxon scores
for discussion. Figure 2 displays the studentized residual plot for this fit and the quadratic
fit for each group.

We tested the hypotheses that different quadratic models are necessary for the groups.
The value of the test statistic form the KMR procedure is 16.808 with a p-value of 0.000;
hence, as the figure suggests the quadratic models differ for the groups. Table 2 displays the
linear and quadratic estimated coefficients for the four groups. The corresponding standard
errors are also tabled. Based on the estimates and standard errors, for both linear and
quadratic estimates, we can say that the fits for Group 3 and Group 1 differ significantly
and both of them differ significantly from Groups 2 and 4; while the fits for Groups 2 and
4 do not differ significantly. Also, neither the linear nor the quadratic terms for Groups 2
and 4 differ significantly from 0.

4.1 Sensitivity Analysis

The data as presented by Morrison contained a missing value for the fourth measurement
of the second dog in Group 2. Morrison imputed the value 0.11, which is the average of
the first three histamine measurements for that dog. This led us to conducting a sensitivity
analysis for the procedures based on changes to that response. We chose the full model so
that we could include the multivariate procedures also. In Figure 3, we use the letter c to
denote the changing point. This figure shows graphs of the changes to some of the statistics
involved in the KMR analysis as c increases.

In Figure 3, Panel A displays the absolute relative change in the norm of the regression

KMR estimators; i.e., | ‖β̂
(i)
‖2−‖β̂

(0)
‖2 |/‖β̂

(0)
‖2, where β̂

(i)
and β̂

(0)
denote the estimates

based on the ith change in the data and on the original data, respectively for the KMR
analysis. Panel B shows the values of ρ̂ϕ for the univariate procedures which indicates
how the estimate of correlation structure is changing. Panel C shows the values of τ̂ϕ for
the KMR procedure which indicates how the estimate of variation is changing. Finally,
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Panel D displays the values the test statistic FKMR for testing parallelism. In all the plots,
relative to the ordinate axis, there is a small fluctuation for small changes of c which levels
off as c reaches 2 to 3, which is about the maximum value of the response (3.13). These
changes were small compared with the changes to the LS multivariate analysis. Over the
range of c, the relative changes in the LS estimates ranged from 0.02 to 2.2. The values
of the corresponding LS test statistic ranged from 62.7 to 27.9. In order to compare the
F and χ2-test statistics divide the LS test statistic by 9 obtaining a range of 7.0 to 3.1.
We also considered the changes to DM analysis. Over the range of c, the relative changes
in the DM estimates of β was only 0.01; i.e., they hardly changed. For the corresponding
test statistics, the DM test statistic ranged from 81.1 to 50.9 (9.0 to 5.6). In general, the
rank-based analyses were much less sensitive to the changes in c than the LS analysis.

5 Small Sample Studies

The foremost purpose of this small sample study is to check the validity of the rank based
profile analyses described in Sections 2 and 3 over moderate to heavy tailed error distri-
butions. The second purpose is to compare the empirical powers of the valid procedures.
We focus mostly on families of contaminated normals. As we demonstrate below all of the
Wilcoxon procedures out perform the least squares procedures for these contaminated error
distributions.

5.1 Model, Procedures and Error Distributions

For simplicity we considered the two-sample repeated measures design

y =

 W 1 0

0 W 2

 µ1

µ2

+ e, (5.1)

where W 1 = 1m1 ⊗ In and W 2 = 1m2 ⊗ In are incidence matrices. For this study we
took n = 4 repeated measures on each subject (experimental unit) and samples of sizes
m1 = m2 = 21 for the two groups. We considered the hypothesis of parallel profiles. We
took as our models µ1 = 0 and µ2 = γ[0, 0.05, 0.10, 0.15]T . So that H0 (parallel profiles) is
true if and only if γ = 0. Furthermore, the power functions of the procedures are functions
of γ.

Our study included the following rank-based procedures: DM (Section 2.2), TRR (Sec-
tion 2.3), KMR (Section 3.2), and ATR (Section 3.3). For each procedure we used Wilcoxon
scores. We chose the Wald F -type test statistics with the decision rules given in the re-
spective sections. For the univariate procedures, the degrees of freedom for the F -critical
values are 3 and 123. These are the recommended values for the LS analysis; see Arnold
(1981). For the multivariate procedures the degrees of freedom for the χ2-critical values are
3. For comparisons, we included the LS analysis based on Arnold’s transformation (ATLS);
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see page 217 of Arnold (1981). As Arnold shows, if the errors have a normal compound
symmetric distribution then this test is UMP invariant.

Besides the multivariate normal distribution, we generated elliptical contaminated nor-
mal and Cauchy distributions as discussed in Muirhead (1982). Let ε denote the proportion
of contamination and σc denote the ratio of scale between contaminated and noncontami-
nated distributions. We considered two variance-covariance structures, (scale matrix for the
Cauchy errors). The first was the compound symmetric (CS) structure (1 − ρ)In + ρJn

with ρ = 0.75. For this case the assumptions behind the univariate procedures are true.
For our second covariance structure, we selected the errors within a subject to follow the
autoregressive one (AR1) series

ei,j,k = ρei,j−1,k + aijk,

where ρ was set at 0.75 and aijk are iid with the stated distribution, (i.e., normal, contam-
inated normal or Cauchy). The resulting covariance structure is not compound symmetric.
so the study also considers the sensitivity of the rank-based univariate procedures to non
exchangeable error distributions. For each situation, we ran 2000 simulations.

5.2 Results

We briefly summarize the validity of the procedures at the nominal α = 0.05, then consider
their empirical power.

5.2.1 Validity

For a nominal 0.05 level, Tables 3 and 4 contain the empirical levels of the procedures for
the compound symmetry (CS) and autoregressive (AR1) situations, respectively. Note that
since the simulation size is 2000 the error in the table based on two standard errors for
a proportion at the nominal 0.05 level is about 0.01. Hence, one way of summarizing the
results is to view a situation as “liberal” if the empirical level exceeds two standard errors,
i.e., exceeds 0.06.

First consider the compound symmetry results displayed in Table 3. Besides the normal
and Cauchy distributions, the distributions simulated included three (σc = 3, 5, 10) families
of contaminated normals, each having four settings of ε. Thus there are fourteen compound
symmetry situations in all. Over these situations the ATLS, ATR and KMR procedures were
never liberal. The KMR procedure was quite conservative, while the ATR procedure was
slightly conservative in only four of the situations. The empirical values of the multivariate
rank-based procedures were higher but each of them have liberal empirical levels in only
three of the situations, the worse being the TRR procedure at the normal with an empirical
level of 0.082.

Table 4 contains the empirical levels, at nominal α = 0.05, of the six situations for the
distributions having autoregressive error structure, a family of contaminated normals with
σc = 5, besides the normal and Cauchy distributions. For these errors, the ATR procedure
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Table 3: Empirical Levels – Compound Symmetry

Error Distribution ATLS ATR DM KMR TRR

Normal 0.058 0.055 0.063 0.037 0.082

Cauchy 0.019 0.037 0.026 0.016 0.021

CN(0.05, 3) 0.038 0.036 0.057 0.030 0.056

CN(0.10, 3) 0.052 0.050 0.059 0.030 0.062

CN(0.15, 3) 0.050 0.053 0.061 0.039 0.068

CN(0.20, 3) 0.045 0.040 0.052 0.027 0.056

CN(0.05, 5) 0.038 0.043 0.062 0.030 0.060

CN(0.10, 5) 0.043 0.048 0.058 0.030 0.058

CN(0.15, 5) 0.044 0.047 0.047 0.032 0.050

CN(0.20, 5) 0.046 0.037 0.039 0.017 0.048

CN(0.05, 10) 0.030 0.043 0.052 0.027 0.059

CN(0.10, 10) 0.035 0.051 0.050 0.028 0.051

CN(0.15, 10) 0.043 0.045 0.041 0.026 0.044

CN(0.20, 10) 0.047 0.040 0.026 0.014 0.029

was liberal in half the situations while the KMR was conservative in all the situations. The
multivariate rank-based procedures had slightly more conservative behavior than under
compound symmetry. Hence, in this study, in terms of validity, only the ATR procedure
was sensitive to the non-exchangeable distributions.

5.2.2 Empirical Power

For the alternative situations, generally, γ varied from one to nine. Plots of the empirical
powers versus γ are the best summaries, so we display several situations in Figures 4-6.

Figure 4 shows the power curves for the two extreme distributions in the study, namely
the normal and Cauchy distributions. Each plot contains five power curves which are defined
by the legend containing the acronyms. For each procedure its line type remains the same
in all the plots. At the normal distribution, the ATLS analysis is most powerful; however,
the empirical power curves of all the rank-based procedures differ little from the the ATLS
power curve and, further, they differ little among themselves. At the Cauchy distribution,
all the rank-based analyses are much more powerful than the ATLS analysis. For the rank-
based analyses, although the power curves are fairly tight, the ATR analysis dominates the
other procedures for all values of γ. Both of these plots, however, clearly show that the
disparity in the empirical levels of the procedures is distorting the comparison of powers.
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Table 4: Empirical Levels – AR(1)

Error Distribution ATLS ATR DM KMR TRR

Normal 0.062 0.074 0.065 0.048 0.071

Cauchy 0.037 0.081 0.033 0.025 0.020

CN(0.05, 5) 0.011 0.062 0.051 0.035 0.055

CN(0.10, 5) 0.031 0.050 0.040 0.026 0.041

CN(0.15, 5) 0.053 0.042 0.021 0.018 0.021

CN(0.20, 5) 0.059 0.026 0.006 0.006 0.007

This is obvious for the Cauchy situations, but even at the normal, the TRR beats the ATLS
analysis for the first few values of γ, which is due, of course, to the inflated empirical level
of the TRR.

A practical solution to this dilemma is to use the quantiles of the empirical null distri-
bution as the test statistics’ critical values. This ensures that all procedures have the same
level, 0.05 is this case. We will call these the adjusted empirical powers. This is really a
local alternative “fix,” hence, summaries of these adjusted powers should be viewed with
some caution. Figures 5 and 6 contrast the empirical powers and adjusted powers for the
contaminated normal situations in the study with ε = 0.15. The adjustment has tighten the
power curves. We shall discuss these adjusted powers for the remainder of this subsection.

Turning our attention to Figure 6, even at the mildly contaminated situation (σc = 3)
the power of all the rank-based analyses dominate the power of the ATLS analysis, and this
dominance increases as ε and/or σc increase. This is true for all the non-normal situations,
so we confine ourselves to the rank-based analyses. Although the power curves are tight
for the rank-based analyses for σc = 3 in Figure 6, the ATR tends to beat the TRR and
the KMR with the DM analysis slightly lagging. We denote this by the schematic ATR ≥
TRR ≥ KMR > DM. For the other two compound symmetry situations in Figure 6 this
schematic is more or less true. For the autoregressive situation, though, the univariate
analyses clearly dominate the multivariate analyses, with the ATR winning.

Obviously we can not present all the empirical power plots. A Friedman-type statistical
analysis seems appropriate. For a given distribution, rank the empirical powers from low to
high at each value of γ and then sum the ranks for each procedure. Based on these sums
of ranks, in the five autoregressive power situations, similar to the σc = 5 case in Figure
6, the schematic is ATR > KMR >> TRR ≥ DM. For the fourteen compound symmetry
situations, the ATR dominated in 10, the TRR in 3, and the KMR in 1. A typical schematic
is ATR > TRR ≥ KMR > DM, although there was some variation.
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6 Conclusion

In this paper, we have discussed four rank-based profile analyses for repeated measure de-
signs. Each offers a complete analysis of fitting, testing, and confidence procedures. All are
easily computed with existing R code. Two of the procedures (DM and TRR) are multi-
variate analyses, requiring no assumptions on the covariance of the repeated measures. The
TRR analysis is affine invariant. The other two (KMR and ATR) are univariate analyses,
requiring an exchangeable error distribution for the repeated measures, which in many appli-
cations is a tenable assumption. The univariate analyses offers more flexibility in modeling
as shown in the example.

We presented the results of a Monte Carlo study which focused on the validity and power
of the analyses. The simulation study covered fourteen compound symmetric situations and
six autoregressive situations. For the compound symmetry situations, generally, all the
rank-based analyses were valid. In terms of power, in this study, all the rank-based analyses
performed much better than the traditional LS analysis over all the situations with con-
taminated normal or Cauchy distributed errors. At the normal the LS procedure performed
best but the rank analyses performed almost as well. Among the rank-based analyses, the
ATR analysis performed the best overall. Its empirical power function dominated the power
functions of the other analyses for almost all the situations. As seen in Section 3, the major
difference between the ATR and KMR analyses is the beginning orthogonal transformation
for the ATR procedure. Viewed in this light, it is not surprising that this transformation
to “independence” (at least at the normal distribution) results in a more powerful analysis.
Also, the KMR analysis was too conservative. This certainly had a negative impact on its
empirical power. Further study is needed on the estimation of its standardizing parameters
τ and ρϕ.

Although, the multivariate procedures (TRR and DM) do not use the CS information,
their performances were generally good, especially the TRR which in several situations
had power performances which were quite close to the ATR power performance. This was
surprising. Between the two rank-based multivariate procedures, it is generally known that
high dependence has a negative impact on componentwise rank procedures; see, for instance,
Bickel (1964, 1965). In our study, all the situations had high dependence, (ρ at both CS and
AR1 situations was set at 0.75). Hence, because the TRR is an affine invariant procedure
and the DM analysis is a componentwise rank-based procedure, it is not surprising that the
TRR analysis generally out performed the DM analysis.

For the six autoregressive situations, in terms of validity, the only cause of concern was
the liberalism of the ATR in the autoregressive situations. It is somewhat surprising that
the valid univariate KMR procedure, here, out performed the multivariate analyses.
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the KMR fit using Wilcoxon Scores for the Dog Data
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Figure 2: R Studentized Residual Plot and the KMR Fit of Quadratic Models by Group for
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Figure 3: Plots for Sensitivity Analysis of the KMR Procedure: Panel A, relative changes
in β̂KMR; Panel B, relative changes in ρ̂ϕ; Panel C, relative changes in τ̂ϕ; Panel D, relative
changes in FKMR.
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Figure 4: Empirical Power Curves of the Procedures at the Normal and Cauchy Error
Distributions
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Figure 5: Empirical Power Curves of the Procedures for Three Selected Contaminated
Normal CS Situations and one AR1 Situation
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Figure 6: Adjusted Empirical Power Curves of the Procedures for the Same Situations
Plotted in Figure 5.
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