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SUMMARY

This study explores the small-sample properties of five estimators (the unre-
stricted maximum likelihood estimator, the shrinkage restricted estimator, the
shrinkage preliminary test estimator, the shrinkage estimator and the positive-
rule shrinkage estimator) using Monte Carlo experiments to confirm the asymp-
totic findings of Matin and Saleh (2005). It also explores the properties of test
procedures (the Wald, the score and the likelihood ratio) in performing in esti-
mators and tests under consideration. This study confirms the theoretical results
in cases where comparisons are possible. When the number of explanatory vari-
ables is greater than or equal to 3 the shrinkage and the positive-rule shrinkage
estimators always perform well. Considering the MSE the positive-rule shrinkage
estimator performs better than the shrinkage estimator. The likelihood ratio test
stands out to be the best. However, we lean toward the use of the Wald statistic
when the problem of estimation is of paramount interest as it provides lower bias
and MSE for the estimators.
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1 Introduction

Matin and Saleh (2005) deals with the problem of estimating the parameters of logistic
regression model when it is known from extraneous sources that the uncertain prior in-
formation in the form of the hypothesis Hy : By = ... = fBr_1 = B° (pivot) may hold.
They have proposed five estimators namely the unrestricted maximum likelihood estimator
(UMLE), the shrinkage restricted estimator (SRE), the shrinkage preliminary test estimator
(SPTE), the shrinkage estimator (SE) and the positive-rule shrinkage estimator (SE1). The
SE and SE™ are the Stein-type estimators based on the preliminary test approach of Saleh
and Sen (1987). Matin and Saleh (2005) have sorted out the preferences toward the applica-
tion of five proposed estimators under local alternatives through the analysis of asymptotic
mean square error (MSE) matrix and distributional risk. It reveals that when k > 3, we
should use the SE or SE* and for k < 2 it is advisable to use the preliminary test estimator
(PTE).

Matin and Saleh (2005) made use of the test statistic Wald (WALD) in their proposed
estimators SPTE, SE and SET. However, one can use the score statistic (SCT) as well as
the likelihood ratio statistic (LRT) as they are asymptotically equivalent. In practice, they
are used to test the significance of the parameter vector 8 = (8y, 81, ..., 0k_1)7. They have
optimal asymptotic properties however, the small-sample behavior is less well known (see
Matin (2005) for some detail results).

This attempt is made to explore the small sample properties of the said estimators to con-
firm the asymptotic findings using Monte Carlo experiments with skew-normally distributed
explanatory variables. This also explores the small-sample properties of test procedures as
performing in estimators and tests under consideration. Seection 2 describes the design
along with the computer program of the study. Results with discussion are given in section
3 and summary in section 4.

2 Design of the Study

The logistic regression model considered here consists of a dichotomous dependent variable
and two (four) skew-normally (see Azzalini (1985) and Henze (1986) for details) distributed
explanatory variables with an intercept term (i.e., k¥ = 3 (5)). The salient features of the
skew-normal distribution are mathematical tractability and strict inclusion of the normal
density as a special case (A = 0); where the shape parameter A controls the index of
skewness. Two degrees of skewness designated by the values -7.0 and 0.0 of the shape
parameter were taken into account to represent negative and no skewness (better feeling of
the skewness implied by our choice of shape parameter can be seen in Matin (2005)) in the
explanatory variables. As there is a great influence of sample size on the bias of regression
coeflicients, four different sample sizes 40, 50, 100 and 200 were considered. Two sets of
regression coefficients (1, 1, 1) ((1, 1, 1, 1, 1)) and (2, 2, 2) ((2, 2, 2, 2, 2)) were included
in the design for k = 3 (5). Three test statistics (WALD, SCT and LRT) were considered
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to test the null hypothesis (Ho : By = B1 = 2 = 2 (1) ie., 3° = 2 (1) for k = 3 and
Ho:Bo=p1=03=p3=01=2(1)ie, =2 (1) for k =5) and three different levels
of significance ((.40, .45, .50) for k = 3 and (.10, .15, .20) for k = 5) were considered for
each of the test statistic to see how the preliminary test estimator behaves with an increase
or decrease of the significance level. One of the three significance levels for k = 3 (5) was
chosen by the Akaike information criterion with a* = P(x3 > 2) as the optimal level and
the other two were chosen as neighborhood values to the optimal level. However, to make
the design of the study less burdensome we excluded some parameter combinations. The
number of replications was 1000 for each experiment.

To perform the Monte Carlo experiments, a FORTRAN program was written in double
precision. The pseudo random numbers were generated by the Wichmann and Hill (1982)
algorithm. The pseudo standard normal variate was generated by the Polar Marsaglia
method (Morgan, 1984). The skew-normal distribution was generated by exploiting the
result

A 1
Z = Ul + V ~SN(A
\/1+)\2| | V142 A

where U and V were independent standard normal random variables given by Henze (1986).
Other routines needed to run the program were taken from the SLATEC library and from
a book on algorithm edited by Griffith and Hill (1985). The Newton-Raphson method
was used to maximize the log likelihood function. The condition for a Newton-Raphson
iteration to converge was set to the absolute value of (3(1-“) - B(i))/ﬁ(i) less than or equal
to 1076, The maximum number of iterations was fixed at 10 which is sufficient enough
for our purpose. The convergence of the iterative procedure used in general is very fast.
Additional pre-simulation experiments indicated that the maximum iteration limit of 10 was
a reasonable choice and did not lead to the “throwing away” of “good samples” (samples
where convergence would have been obtained with a higher iteration maximum).

The dependent variable (Y) was generated from a uniform random variable (u(0 1))
conditional on x as in equation,

™

log =00+ Bix1+ ...+ Br_1Tp_1 (2.1)

1—m
whereby Y = 1 with probability [1 + e_'GTx]_l, and = 0 otherwise. The chosen parameter
set was used to compute the probability mentioned above where x was generated as a
skew-normal variate. Once the dependent variable and the matrix of explanatory variables
were generated the program computed the regression estimates for the logistic model first
by unrestricted ML method and then by other methods. It should be noted here that
we have used the term %7 as a small sample adjustment, instead of k — 2 in the
formulas for the estimators SE and SE* (see Matin and Saleh (2005)). Note that as n — oo,
%éi;k) — k — 2. The program also done the necessary computation regarding the tests
WALD, SCT and LRT.

An obvious limitation of this study is that we only consider the case where the null

hypothesis is true. However, small-scale investigations confirm the asymptotic results under
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the local alternatives too. To have a better understanding of the behavior of the estimators
and tests under local alternatives further detailed simulation study is necessary.

3 Results and Discussion

3.1 Description of the Results

In order to study the properties of the estimators and their relative performance, the bias
and mean square error were computed for each estimator, for each sample size and for each
parameter. To have a general idea about overall performance of each of the estimators norm
bias (NBIAS) and summed MSE (SMSE) were also computed (Table 1, Table 2 and Table
3). The norm of a vector x € R" is given by ||z|| = (z.z)'/? = (3 2?)'/? while the SMSE
of an estimator 3 is defined as Y {E(3; — 3)?}.

To judge the capability of the estimators to reflect the true parameter value, we report the
coverage probability (CP) (Table 1, Table 2 and Table 3) of 95% confidence set for the
estimators by using the formula

Po{B € Ca(X)} = Ps{B: (B, = AT (XTVX)B~B) <xEoy=1-a  (31)

where [ standing for an estimator and the formula defines the 1 — « confidence ellipsoid
for 8. In doing so, we followed the George and Casella (1994) formulation of the recentered
confidence set. Recentered set estimators are the set estimators where the usual “centre”
has been replaced by an alternative estimator (see Robert and Saleh (1989)).

Given the observation of a k-dimensional multivariate normal vector X ~ Ny (3,1I) the
classical confidence set for 3 is defined by Co(X) = {8 : ||8 — X||* < ¢?}. For all § the
coverage probability, Py(3 € Co(X)) = P{xi < ¢*} =1 — «, is consistent and in practice
we report that Cy(X) contains § with confidence 1 — a.

Hwang and Casella (1982, 84) showed that for k& > 3 the set Cyp(X) can be improved by
recentering at a positive-rule Stein estimator d,(X) = uq (|| X||), where u,(r) = maz{[1 —
(a/7?)], 0} to obtain C,(X) = {B: |8 — 6.(X)||? < ®}. Cu(X) dominates Co(X) in the
sense that both sets possess equal volume but for @ in a certain range, C,(X) has uniformly
higher coverage probability for all 3, that is

Pg{B € Co(X)} > Ps{B € Co(X)} =1—a. (3.2)

Thus, we are better off in reporting C,(X) than Cy(X) as a 1 — « confidence region for S.

These recentered confidence sets are merely pointing out the inadequacy of the usual con-
fidence sets rather a useful alternative. Criticism of being related to the Neyman-Pearsonian
approach is still hold. Their coverage probability is always above the nominal level 1 — «
while the minimum is still 1 — « (Robert and Saleh, 1989).
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To show the properties of the three large-sample test statistics, the mean, standard deviation,
mean p-value, proportion significant (Table 4) and quantiles (Table 5) were computed for
each of the three tests over the number of replications. In doing so, we considered only the
case of A = 0. The standard errors for the mean p-value and proportion significant were
also computed by the square root of the quantity p(1 — p)/(number of replications). The
a-th quantile was computed by the formula

'7‘/(K71)+(1_7)VK fl<K<m
‘/(m) fK=m+1
where V(1) < V() < ... < V) are the order statistics for V; i = 1,2,...,m. Here

0<a<l K=[m+1al+1and v = {K — (m+ 1)a}. The motivation behind
the use of this formula was provided by Lewis and Orav (1989) in page 149. In our case
a € {.10, .20, .30, .40, .50, .60, .70, .80, .90, .95, .99}. To facilitate the comparison between the
empirical and theoretical quantiles of the test statistics, we present the theoretical quantiles
of a chi-square distribution for the degrees of freedom 3 (5) in Table 5.

3.2 Bias

In general, as the sample size increases the bias for each of the regression coefficient of UMLE;,
SRE(c = .50) and SPTE (¢ = .50) decreases however, the exceptions are SPTE(c = 1.00),
SE and SE™ particularly for small samples. In large samples, the biases are remarkably close
to zero. Generally, for a specific sample size with k& = 3 the biases are found to be smaller
than the case with k = 5 for the corresponding regression coefficients. For the estimators
where the level of significance « is directly involved, as « increases the bias of each regression
coeflicient also increases. Theoretically it is possible to have larger biases for the estimators
compared to the UMLE however, we did not encounter such a possibility. In the worst
possible case the estimators can reduce at least 10% of the bias incurred in the UMLE
while the best possible scenario can reach up to 50%. Considering the observed biases, the
estimators can be ordered as SPTE(c = 1.00) < SRE (¢ = .50) < SPTE(c = .50). No clear
conclusion can be drawn about the SE and SE* however, the SE (SE*) < SRE(c = .50).
For the choice of test statistics, we observed differences in the biases (of the regression
coefficients) of SE, SET with ¥ = 3 (5) which follows a regular pattern Biasyrr > Biasscor
> Biasw arp. Considering the use of different level of «, the bias-differences are found to
be smaller with the WALD however, larger with the SCT and LRT.

So far we have discussed the results for the case of 3° = 2. Comparing this case (for
k = 5 with the LRT) with the case of 3° = 1, the biases are smaller in the latter case for
a specific sample size (for the corresponding regression coefficients) than the former for all
the estimators. (This gives an indication of how the bias changes with the changes in the
size of the parameter.) In this case, as the sample size increases the biases decrease for all
the estimators considered. In large samples, the biases are remarkably close to zero.
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So far we have discussed above the results for the case of A = 0. Considering a single
case where A = —7 (for k = 5 with the LRT) with the case of 3° = 1, the biases are found
to be larger than the case of its counterpart A = 0.

The NBIASs of the estimators portray a better scenario of the remarks we have just
made above. We can order the estimators according to their NBIASs more clearly.

3.3 Mean Square Error

In general, as the sample size increases the mean square error for each of the regression
coefficients of all the estimator decreases. Generally, for a specific sample size with k£ = 3
the MSEs are found to be smaller than the case with k = 5 for the corresponding regression
coeflicient. For the estimators where the level of significance « is directly involved, as the
level of o decreases the MSEs also decrease. Considering the observed MSEs, the estimators
can be ordered as SPTE (¢ = 1.00) < SRE(c = .50) < SPTE(c = .50), SET < SE and SE
(SET) < SRE(C = .50). For the choice of test statistics, the MSEs (of the regression
coefficients) of SPTE, SE and SE* are found to be different with k£ = 3 (5) that follows a
regular pattern MSE g > MSEscr > MSEw a1, p. Considering the different level of a, the
MSE-differences are found to be smaller when the WALD statistic is used however, larger
with the SCT and LRT.

So far we have discussed the results for the case of 3° = 2. Comparing this case (for k = 5
with the LRT) with the case of 3° = 1, we observed that the MSEs are smaller in the latter
case for a specific sample size (for the corresponding regression coefficients) than the former
for all the estimators; the exceptions are the case of SPTE where the MSEs increase. In this
case, as the sample size increases the MSEs decrease for each of the regression coefficient
for all the estimators.

So far we have discussed above the results for the case A = 0. Considering a single case
where A\ = —7 (for k = 5 with the LRT) with 8% = 1, we found that the MSEs are extremely
larger than its counterpart A = 0 however, regarding the MSE reduction (to the UMLE)
the scenario remains almost the same. For large samples, particularly for the sample size
200 the MSEs for all the estimators are remarkably close to each other.

The SMSEs of the estimators portray a better scenario of the remarks we have just made
above. We can order the estimators according to their SMSEs more clearly.

3.4 Coverage Probability

In general, as the sample size increases the coverage probabilities of UMLE, SPTE(c = .50)
and SPTE(c = 1.00) tend to .950. In addition, with & = 3 the CPs are remarkably close
to .950 while with k£ = 5 they are slightly different. Generally, for a specific sample size
with £ = 5 the CPs are larger than the case of k = 3. Considering the SPTE where the
level of significance « is directly involved, we did not find any significant difference in the
CPs for different levels of «, the only exception being the case with & = 5 when the LRT
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Table 1: NBIAS, SMSE and CP of the estimates for £k = 3 with A = 0 and 3° = 2.

‘WALD

SCT

LRT

n

NBIAS SMSE CP

NBIAS SMSE CP

NBIAS SMSE CP

UMLE

40
50
100
200

0.8895 5.7079 0.961
0.7255 3.7808 0.959
0.3540 1.3416 0.965
0.1564 0.4513 0.954

0.8895 5.7079 0.961
0.7255 3.7808 0.959
0.3540 1.3416 0.965
0.1564 0.4513 0.954

0.8895 5.7079 0.961
0.7255 3.7808 0.959
0.3540 1.3416 0.965
0.1564 0.4513 0.954

SRE(0.50)

40

100
200

0.4447 1.4270 1.000
0.3628 0.9452 1.000
0.1770 0.3354 1.000
0.0782 0.1128 1.000

0.4447 1.4270 1.000
0.3628 0.9452 1.000
0.1770 0.3354 1.000
0.0782 0.1128 1.000

0.4447 1.4270 1.000
0.3628 0.9452 1.000
0.1770 0.3354 1.000
0.0782 0.1128 1.000

SPTE(0.50)
a = .40

40
50
100
200

0.5034 2.8536 0.961
0.4741 2.2825 0.959
0.2660 1.0752 0.965
0.1198 0.3520 0.954

0.5952 3.8555 0.961
0.5447 2.9201 0.959
0.3124 1.0945 0.965
0.1198 0.3545 0.954

0.7870 5.1213 0.961
0.6477 3.3870 0.959
0.3124 1.1678 0.965
0.1365 0.3676 0.954

SPTE(0.50)

40
50
100
200

0.5296 3.0949 0.961
0.5065 2.5541 0.959
0.2802 1.1253 0.965
0.1274 0.3725 0.954

0.6320 4.1827 0.961
0.5713 3.0905 0.959
0.2853 1.1396 0.965
0.1285 0.3741 0.954

0.8005 5.2148 0.961
0.6570 3.4356 0.959
0.3228 1.2026 0.965
0.1372 0.3785 0.954

SPTE(0.50)
a = .50

40
50
100
200

0.5764 3.5665 0.961
0.5499 2.8628 0.959
0.2974 1.1785 0.965
0.1320 0.3836 0.954

0.6750 4.4558 0.961
0.6008 3.2916 0.959
0.3007 1.1899 0.965
0.1320 0.3841 0.954

0.8143 5.3086 0.961
0.6673 3.5085 0.959
0.3279 1.2283 0.965
0.1469 0.3959 0.954

SPTE(1.00)
a = .40

40
50
100
200

0.1180 1.9022 0.961
0.2230 1.7830 0.959
0.1781 0.9863 0.965
0.0833 0.3189 0.954

0.3009 3.2381 0.961
0.3640 2.6332 0.959
0.1902 1.0121 0.965
0.0830 0.3222 0.954

0.6845 4.9258 0.961
0.5699 3.2558 0.959
0.2709 1.1098 0.965
0.1166 0.3399 0.954

SPTE(1.00)
a = .45

40
50
100
200

0.1699 2.2238 0.961
0.2877 2.1453 0.959
0.2065 1.0532 0.965
0.0984 0.3463 0.954

0.3746 3.6742 0.961
0.4171 2.8604 0.959
0.2166 1.0723 0.965
0.1007 0.3483 0.954

0.7116 5.0504 0.961
0.5884 3.3205 0.959
0.2915 1.1563 0.965
0.1180 0.3543 0.954

SPTE(1.00)
a = .50

40
50
100
200

0.2634 2.8527 0.961
0.3743 2.5568 0.959
0.2408 1.1242 0.965
0.1076 0.3611 0.954

0.4605 4.0384 0.961
0.4761 3.1285 0.959
0.2473 1.1393 0.965
0.1085 0.3617 0.954

0.7392 5.1756 0.961
0.6091 3.4178 0.959
0.3017 1.1906 0.965
0.1375 0.3775 0.954

SE

40
50
100
200

0.4197 2.3891 0.969
0.3761 1.7427 0.969
0.1845 0.7856 0.976
0.0960 0.2662 0.974

0.4925 2.9284 0.968
0.4207 2.0360 0.966
0.1932 0.8293 0.975
0.0975 0.2701 0.973

0.6708 3.8795 0.974
0.5397 2.5275 0.973
0.2442 0.9249 0.976
0.1187 0.2851 0.973

SE*

40
50
100
200

0.4231 2.1692 0.977
0.3888 1.6393 0.977
0.2083 0.7112 0.983
0.0959 0.2399 0.981

0.4944 2.7118 0.976
0.4324 1.9343 0.974
0.2168 0.7553 0.982
0.0973 0.2438 0.980

0.6529 3.6658 0.981
0.5368 2.4300 0.980
0.2601 0.8556 0.983
0.1153 0.2588 0.980
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Table 2: NBIAS, SMSE and CP of the estimates for k£ = 5 with A = 0 and 3° = 2.

WALD

SCT

LRT

n

NBIAS SMSE CP

NBIAS SMSE CP

NBIAS SMSE CP

UMLE

40
50
100
200

1.5202 11.6631 0.968
1.3326 8.6147 0.969
0.7496 3.5689 0.968
0.3895 1.1946 0.966

1.5202 11.6631 0.968
1.3326 8.6147 0.969
0.7496 3.5689 0.968
0.3895 1.1946 0.966

1.5202 11.6631 0.968
1.3326 8.6147 0.969
0.7496 3.5689 0.968
0.3895 1.1946 0.966

SRE(0.50)

40

100
200

0.7601 2.9158 1.000
0.6663 2.1537 1.000
0.3748 0.8922 1.000
0.1948 0.2987 1.000

0.7601 2.9158 1.000
0.6663 2.1537 1.000
0.3748 0.8922 1.000
0.1948 0.2987 1.000

0.7601 2.9158 1.000
0.6663 2.1537 1.000
0.3748 0.8922 1.000
0.1948 0.2987 1.000

SPTE(0.50)
a = .10

40
50
100
200

0.7437 3.3019 0.968
0.6528 2.4034 0.969
0.3640 1.0438 0.968
0.1981 0.3961 0.966

0.7761 3.8449 0.968
0.6778 2.7931 0.969
0.3824 1.2370 0.968
0.2025 0.4304 0.966

0.8578 4.6054 0.974
0.7655 3.4871 0.976
0.4875 1.9620 0.970
0.2562 0.6032 0.968

SPTE(0.50)

40
50
100
200

0.7477 3.4201 0.968
0.6616 2.6412 0.966
0.3708 1.1216 0.968
0.2057 0.4628 0.969

0.8041 4.2110 0.968
0.6960 3.0396 0.969
0.4025 1.4525 0.968
0.2143 0.5023 0.966

0.9167 5.3375 0.969
0.8091 3.9858 0.974
0.5345 2.3175 0.968
0.2824 0.7185 0.966

SPTE(0.50)
a = .20

40
50
100
200

0.7507 3.5156 0.968
0.6721 2.8245 0.969
0.3775 1.2204 0.968
0.2208 0.5270 0.966

0.8101 4.3670 0.968
0.7108 3.2559 0.969
0.4188 1.5909 0.968
0.2330 0.5736 0.966

0.9712 6.1134 0.969
0.9046 5.1269 0.969
0.5714 2.5466 0.968
0.3004 0.7966 0.966

SPTE(1.00)
a =.10

40
50
100
200

0.0395 0.5148 0.968
0.0311 0.3329 0.969
0.0238 0.2021 0.968
0.0091 0.1299 0.966

0.0361 1.2388 0.968
0.0293 0.8525 0.969
0.0189 0.4597 0.968
0.0172 0.1756 0.966

0.1967 2.2528 0.974
0.1987 3.4871 0.976
0.2254 1.7779 0.970
0.1229 0.4061 0.968

SPTE(1.00)
a=.15

40
50
100
200

0.0315 0.6724 0.968
0.0240 0.6500 0.966
0.0133 0.3058 0.968
0.0236 0.2188 0.969

0.0889 1.7269 0.968
0.0616 1.1813 0.969
0.0562 0.7470 0.968
0.0394 0.2715 0.966

0.3137 3.2290 0.969
0.2862 2.4429 0.974
0.3195 1.9004 0.968
0.1754 0.5597 0.966

SPTE(1.00)
a = .20

40
50
100
200

0.0303 0.7998 0.968
0.0272 0.8944 0.969
0.0169 0.4376 0.968
0.0524 0.3044 0.966

0.1010 1.9349 0.968
0.0924 1.4697 0.969
0.0894 0.9316 0.968
0.0766 0.3665 0.966

0.4225 4.2635 0.969
0.4768 3.9643 0.969
0.3933 2.2058 0.968
0.2113 0.6640 0.966

SE

40
50
100
200

0.1406 2.5705 0.981
0.0933 1.9388 0.985
0.1274 0.8349 0.988
0.1017 0.3762 0.988

0.1542 2.9850 0.981
0.1411 2.2813 0.986
0.1921 1.0696 0.986
0.0533 0.4033 0.985

0.6417 4.0332 0.984
0.5584 3.0446 0.989
0.3725 1.5256 0.987
0.1892 0.4854 0.986

SE*

40
50
100
200

0.2036 1.1969 0.987
0.1985 0.9392 0.996
0.2004 0.6328 0.997
0.1407 0.2855 0.998

0.3762 2.0855 0.987
0.3399 1.5925 0.995
0.2567 0.8805 0.995
0.1515 0.3147 0.996

0.6988 3.5936 0.989
0.6121 2.6847 0.999
0.3994 1.3705 0.997
0.2080 0.4080 0.996
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Table 3: NBIAS, SMSE and CP of the estimates for k = 5 with 8% = 1.

A=0

A=-7

n

NBIAS SMSE CP

NBIAS SMSE CP

UMLE

40
50

200

0.7951 5.0308 0.978
0.5743 2.7477 0.975
0.2539 0.7545 0.975
0.1039 0.3009 0.962

1.2970 17.6507 0.979
1.0810 12.6502 0.959
0.4672 3.6295 0.957

0.1812 1.2642 0.957

SRE(0.50)

40

100
200

0.3976 1.2577 1.000
0.2872 0.6869 1.000
0.1269 0.1886 1.000
0.0520 0.0752 1.000

0.6485 4.4127 1.000
0.5405 3.1625 1.000
0.2336 0.9074 1.000
0.0906 0.3161 1.000

SPTE(0.50)
a=.10

40
50

200

0.5594 3.3585 0.978
0.3892 1.6519 0.976
0.1668 0.3807 0.976
0.0657 0.1398 0.962

0.8567 9.4953 0.984
0.6725 6.9649 0.963
0.3112 1.8927 0.961
0.1114 0.5739 0.958

SPTE(0.50)
a=.15

40
50
100
200

0.6128 3.7792 0.978
0.4126 1.8163 0.975
0.1757 0.4249 0.975
0.0679 0.1591 0.962

0.8887 10.8005 0.980
0.7382 8.0480 0.960
0.3360 2.1821 0.957
0.1188 0.6534 0.957

SPTE(0.50)
a = .20

40
50

200

0.6381 4.0036 0.978
0.4394 1.9812 0.975
0.1793 0.4525 0.975
0.0722 0.1765 0.962

0.9468 11.9207 0.970
0.7982 9.0435 0.959
0.3512 2.3573 0.957
0.1264 0.7266 0.957

SPTE(1.00)
a=.10

40
50
100
200

0.3246 2.8010 0.978
0.2049 1.2867 0.976
0.0799 0.2561 0.976
0.0279 0.0860 0.962

0.4186 6.7769 0.984
0.2676 5.0698 0.963
0.1566 1.3138 0.961

0.0425 0.3438 0.958

SPTE(1.00)
a=.15

40
50

200

0.4310 3.3620 0.978
0.2517 1.5058 0.975
0.0980 0.3151 0.975
0.0322 0.1119 0.962

0.4829 8.5171 0.980
0.3995 6.5140 0.960
0.2060 1.6996 0.957

0.0571 0.4497 0.957

SPTE(1.00)
a=.20

40
50
100
200

0.4815 3.6612 0.978
0.3051 1.7257 0.975
0.1052 0.3518 0.975
0.0412 0.1350 0.962

0.5991 10.0107 0.979
0.5163 7.8413 0.959
0.2358 1.9333 0.957

0.0723 0.5473 0.957

SE

40
50

200

0.4424 2.4204 0.989
0.3071 1.2188 0.989
0.1070 0.3066 0.987
0.0485 0.1228 0.983

0.6449 7.2347 0.991
0.5158 5.3482 0.990
0.2330 1.6733 0.984

0.0738 0.5133 0.984

SE*

40
50
100
200

0.4612 2.3030 0.997
0.3175 1.1360 0.994
0.1235 0.2494 0.998
0.0510 0.0941 0.994

0.6979 6.7316 0.998
0.5550 4.9396 0.996
0.2578 1.3288 0.995

0.0891 0.3826 0.995
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is used. For the choice of different test statistics, we observed differences in the CPs of the
estimators SE and SE™ with k = 3 (5) that does not follow any regular pattern though.

The results discussed above hold for the case of 3 = 2. Comparing this case (for k =5
with the LRT) with 8 = 2, we observed that the former case produces larger CPs than the
latter for all the estimators.

Table 4: Sampling properties of the test statistics with A = 0 and 8% = 2.

a = .05 a = .40 a = .45 a = .50
n Mean sd Mean se PSIG se PSIG se PSIG se PSIG se

p-value
WALD 40 2.66 2.408  .54799 .016038  .0395 .00627  .2970 .01471  .3396 .01528  .3905 .01571
50 2.76 2.364  .52585 .015902  .0406 .00628  .3448 .01513  .4047 .01563  .4574 .01587
100  2.952.327  .49791 .015811  .0350 .00581  .4050 .01552  .4550 .01575  .5110 .01581
200 2.93 2.356  .50256 .015811  .0460 .00662  .3900 .01542  .4450 .01572  .4870 .01581

SCT 40 3.06 2.997  .51632 .016104  .0665 .00803 .3458 .01533  .3967 .01576  .4538 .01604
50 3.07 2.798  .49901 .015923 .0568 .00737  .3945 .01556  .4452 .01583  .4959 .01592
100 3.11 2.554  .48626 .015805 .0510 .00696 4180 .01560  .4700 .01578  .5250 .01579
200  3.00 2.467  .49757 .015811 .0480 .00676 .4000 .01549  .4490 .01573  .4910 .01581

LRT 40 3.18 2.667  .48438 .016104  .0602 .00767  .4299 .01595  .4683 .01608  .5130 .01611
50 3.22 2,506  .47137 .015897  .0629 .00779 .4442 .01582  .4757 .01590  .5325 .01589
100 3.24 2.600  .47177 .015786 .0580 .00739  .4460 .01572  .5000 .01581 .5410 .01576
200  3.08 2.505 48997 .015808 .0500 .00689  .4080 .01554  .4530 .01574  .5180 .01581

a = .05 a=.10 a=.15 a = .20

WALD 40 4.13 3.189  .59894 .018005 .0324 .00650  .0594 .00868  .0837 .01017  .1039 .01121
50 4.15 2.751 .58584 .016925 .0307 .00593 .0626 .00832  .0921 .00994  .1240 .01132
100 4.59 2.862 .53314 .015856 .0323 .00562  .0687 .00804  .0929 .00923 .1404 .01104
200 4.79 2.870  .51077 .015808 .0340 .00573 .0760 .00838  .1230 .01039  .1690 .01185

SCT 40 5.07 4.465 .53113 .018332 .0675 .00922 .1066 .01134  .1431 .01286  .1741 .01393
50 4.89 3.531 .52660 .017156 .0685 .00868 .1063 .01059  .1429 .01202 .1842 .01332
100  5.02 3.298  .50119 .015891 .0556 .00728  .0889 .00904  .1404 .01104  .1859 .01236
200  5.00 3.089  .49642 .015811 .0490 .00683  .0960 .00927  .1430 .01107  .1940 .01250

LRT 40 5.05 3.131 49199 .018366 .0513 .00810 .0891 .01046 1417 .01281 .1916 .01446
50 5.06 3.018 48698 017174 .0460 .00720 .0909 .00988 .1358 .01173 .2161 .01414
100  5.30 3.274 47180 .015866 .0546 .00722 .1162 .01014 .1838 .01231 .2323 .01340
200  5.23 3.220 47821 .015796 .0550 .00721 .1210 .01031 .1840 .01225 .2380 .01347

So far we have discussed above the results about the case of A = 0. Considering a single
case where A = —7 (for k = 5 with the LRT) with 3° = 1, we found that the CPs are larger
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Table 5: Sample quantiles of the test statistics with A = 0 and 8% = 2.

k=3
n 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 99%
WALD 40 0.59 0.97 1.30 1.65 1.99 2.34 2.89 3.86 5.83 7.36 11.34
50 0.62 1.04 1.45 1.80 2.13 2.67 3.19 3.92 5.30 7.14 12.84
100 0.62 1.06 1.54 1.95 2.40 2.98 3.59 4.59 5.98 7.25 11.36
200 0.63 1.04 1.47 1.90 2.31 2.91 3.53 4.46 5.84 7.48 11.07
SCT 40 0.60 1.00 1.38 1.74 2.20 2.62 3.32 4.50 6.80 8.71 14.71
50 0.63 1.07 1.50 1.89 2.33 2.91 3.61 4.42 6.00 8.18 15.01
100 0.57 1.08 1.57 1.98 2.48 3.08 3.77 4.88 6.48 7.84 12.45
200 0.64 1.05 1.48 1.92 2.33 2.95 3.60 4.59 6.08 7.64 11.40
LRT 40 0.61 1.46 1.38 1.92 2.43 3.14 3.82 5.11 6.56 8.29 12.64
50 0.66 1.59 1.50 2.03 2.54 3.30 4.10 5.00 6.51 8.39 11.37
100 0.57 1.57 1.57 2.12 2.64 3.29 4.04 5.03 6.43 7.24 12.49
200 0.62 1.49 1.48 1.93 2.43 3.00 3.68 4.73 6.24 7.84 13.10
TQ" 0.58 1.01 1.42 1.87 2.37 2.95 3.66 4.64 6.25 7.81 11.34
k=5
WALD 40 1.43 2.01 2.41 2.91 3.34 3.84 4.57 5.78 7.34 9.82 19.32
50 1.51 2.01 2.51 2.98 3.48 4.11 4.75 5.80 7.90 9.90 14.22
100 1.55 2.25 2.92 3.55 4.13 4.70 5.39 6.44 7.97 10.29 14.41
200 1.58 2.35 3.08 3.67 4.26 4.97 5.86 6.93 8.68 10.21 14.04
SCT 40 1.55 2.18 2.75 3.28 3.96 4.56 5.55 6.81 9.54 12.21 25.34
50 1.63 2.18 2.74 3.32 4.04 4.75 5.52 7.07 9.40 12.04 17.59
100 1.60 2.34 3.07 3.72 4.43 5.14 5.92 7.02 8.89 11.36 16.89
200 1.58 2.38 3.15 3.76 4.39 5.17 6.10 7.22 9.10 11.05 14.95
LRT 40 1.76 2.40 3.11 3.75 4.44 5.33 6.15 7.12 9.05 11.23 15.43
50 1.71 2.52 3.11 3.79 4.53 5.26 6.18 7.40 8.93 10.91 14.70
100 1.67 2.45 3.16 3.99 4.79 5.52 6.48 7.72 9.63 11.31 16.06
200 1.66 2.41 3.14 3.84 4.60 5.41 6.49 7.78 9.74 11.28 14.66
TQ" 1.61 2.34 3.00 3.66 4.35 5.13 6.06 7.29 9.24 11.07 15.09

* = Theoretical Quantiles

than the case of its counterpart A = 0. Ordering of the estimators according to their CPs
looks like SET > SE > SPTE > UMLE.

3.5 Test Statistics

The mean values of the test statistics strictly follow the inequality WALD < SCT < LRT
with k = 3 (5), with SCT for the sample size 40 (k = 5) the only exception in the present
case. Considering individual samples we find that in almost 60% of the samples the values of
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the test statistics follow the inequality. Roughly speaking, in almost all samples the WALD
statistic gives a smaller value than the SCT, in an around 60-70% samples the WALD is
smaller than the LRT while in an around 55-60% samples the SCT possesses a smaller value
than the LRT. The distributions of the test statistics (with degrees of freedom 3 (5)) clearly
represent a chi-square distribution with the corresponding degrees of freedom (see Figure 3,
Figure 4).

For the proportion significant (PSIG) of the test statistics, the inequality clearly holds at
all level of significance considered with k = 3 (5). No sharp trend in the values of the PSIG
is found for an increase in the sample size. However, in large samples the PSIG is close
enough to the value what it would be for the corresponding level of significance considered.
In this criterion, the SCT and LRT behaves more or less in a similar fashion and give more
closer result to (.05, .40, .45, .50) ((.05, .10, .15, .20)) with & = 3 (5). On some occasions
(with higher significance level) the SCT is found to be well-performed compared to the LRT.
However, the performance of the WALD statistic is not that good.

With k = 5, the quantiles of the test statistics give the inequality WALD < SCT <
LRT with few exceptions in the higher quantiles. However, the inequality holds with few
exceptions in the lower and higher quantiles for the case with & = 3. No recognizable
difference is observed for an increase in the sample size. However, in large samples the test
statistics behaves more or less in a similar fashion. The SCT and LRT give closer results.
The performance of the WALD statistic can easily be differentiated from the other two. As
expected, the empirical quantiles of the test statistics tend to approximate the theoretical
quantiles very well with few exceptions in the larger quantiles.

It is interesting to note that the behavior of the test statistics that we observed here is
totally in agreement with the results in Matin (2005) though in different context.

3.6 Graph Analysis

Frequency Histogram for Estimators: Frequency histograms for UMLE, SRE(c = .50),
SPTE (c = .50), SPTE(c = 1.00), SE and SE™ are displayed in Figure 1 and Figure 2 for
the sample sizes 40, 50, 100, and 200 for only 8; (83) with k = 3 (5) with A = 0 where the
LRT is used. Examination of the histograms reveals that the distribution of the unrestricted
estimator is negatively skewed, but approaches a normal curve as the sample size increases.
However, for the other estimators the distribution resembles a symmetric curve with a very
steep peakedness, and a slightly longer tail on the right. This nature of the curves become
smoother as the sample size increases, but in no way approaches a normal curve. (So, it
may be concluded that as the sample size increases the estimators approach toward the true
value.)

Frequency Histogram for Test Statistics: Frequency histograms for the WALD,
SCT and LRT are displayed in Figure 3 and Figure 4 for the sample sizes 40, 50, 100,
and 200 for k = 3 (5). It is clear that as the sample size increases the distribution of
the test statistics approximates the chi-square distribution nicely for both k£ = 3 and 5.
Close examination of the histograms reveals the differences among test statistics in small
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Figure 1: Frequency histogram of the regression coefficient 3; for the estimators UMLE,
SRE(c = .50), SPTE(c = .50), SPTE(c = 1.00), SE and SE* with & = 3 while the LRT is

used to test Hy : By = 81 = B2 = 2.
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Figure 2: Frequency histogram of the regression coefficient 33 for the estimators UMLE,
SRE(c = .50), SPTE(c = .50), SPTE(c = 1.00), SE and SE* with k = 5 while the LRT is
used to test Hy: Bop =01 = P2 =P = [s = 2.
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samples. The impact of an increase in the number of explanatory variables can be seen
in the histogram of the sample size 200. If we compare the histograms of the sample size
200 for k = 3 with the same for £ = 5 we see that the convergence of the distribution to
chi-square is much smoother in k¥ = 3 than in k¥ = 5. This indicates that a much larger
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Figure 3: Frequency histogram of the test statistics WALD, SCT and LRT while used to

teStHolﬁ():ﬂl:[32:2Withk:3.
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Figure 4: Frequency histogram of the test statistics WALD, SCT and LRT while used to
test Hy: Bg = (1 = B2 = B3 = B4 = 2 with k = 5.
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sample size is necessary to have a close approximation to the chi-square distribution for the
case of k = 5.

Risk Graph for Estimators: From the formulas (4.27-4.31 in Matin and Saleh (2005))
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Figure 5: Risk curves for the estimators UMLE, SPTE(c = .50) and SPTE (¢ = 1.00) for
k = 5. The solid line (__) represents the UMLE. The dashed line (- - - -), dotted line (. . .
.) and dash 1-dotted line (- . - . - .) represent the significance level o = .10, o = .15 and
a = .20 respectively, for SPTE(c = .50) in (a) and for SPTE(c = 1.00) in (b).
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Figure 6: Risk curves for the estimators UMLE, SE and SE™ for k = 5. The solid line (_.),
dashed line (- - - -) and dotted line (. . . .) represent the UMLE, SE and SE* respectively.

10
Delta

of the risks of the estimators it is clear that their values depend on the two matrices Q and
D', For an ideal situation, we let Q = D;*' so that tr(QD;) = tr(I;) = k. Thus the
risk of the unrestricted estimator becomes k and the other formulas in 4.28-4.31 changed
accordingly and are given in 4.32-4.36 in Matin and Saleh(2005). These risks for the estima-
tors were computed and used in for drawing risk graphs as a function of the noncentrality
parameter, A. And comparisons are made with the risk line of k = 5 for the unrestricted
estimator UMLE.

In Figure 5(a, b), we present the risk graphs for SPTE(c = .50) in (a) and SPTE(c =
1.00) in (b) to see how the levels of significance effect the risk level of the estimators. It is
observed that at all significance levels the risk curves in (a) ((b)) cross the line (k = 5) and
intersect each other at a certain level of A and spread out again but never cross the line.
The co-ordinates of this intersection point are not the same in (a) and (b). We could see
that the distance between the y-axis and the intersection point in (a) is larger than in (b). A
closer look tells that the three curves corresponding to the three levels of significance, do not
show the same behavior before and after the intersection point in (a) and (b). The curve for
the optimal level of significance remains in the middle however, the other two interchanges
their position after the intersection point. It is also clear that the curves are very much
closer to the line (k = 5) in (a). The superiority of SPTE over the unrestricted estimator
up to a certain level of A is quite clear from the graph while the graph for SPTE(c = .50)
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Figure 7: Risk curves for the estimators UMLE, SPTE(c = .50), SPTE (¢ = 1.00), SE and
SET for k = 5. The solid line (__), dashed line (- - - -), dotted line (. . . .), dash 1-dotted
line ( -.-.-.-.- ) and dash 2-dotted line (- .. - .. - ..) represent the UMLE, SPTE(c = .50),
SPTE(c = 1.00), SE and SE* respectively, in (a) for the significance level o = .10, in (b)
for the significance level & = .15 and in (c¢) for the significance level o = .20.

starts at a higher risk level than SPTE(c = 1.00).

Figure 8: Risk curves for the estimators UMLE, SRE(c = .50), SPTE(c = .50), SPTE(c =
1.00), SE and SE+ for k = 5. The solid line (-_), dashed line (- - - -), dotted line (. . . .),
dash 1-dotted line (- . - . - .), dash 2-dotted line (- .. - .. - ..) and dash 3-dotted line (- ... -
.. - ...) represent the UMLE, SRE(c = .50), SPTE(c = .50), SPTE(c = 1.00), SE and SE*
respectively, in (a) for the significance level a = .10, in (b) for the significance level o = .15
and in (c) for the significance level a = .20.
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Figure 6 displays the risk curves for SE and SE* along with the risk line (k = 5). The
superiority of SE and SET over the unrestricted estimator is clearly observed. Furthermore,
the dominance of SE* over SE is also seen from the graph. It is observed that SE (SE™)
begins at 2 (0) and approaches to the risk line at k¥ = 5 while the gap between them decreases
as A increases. At a certain level of A they nearly touch the line and both maintain the
same space and run along the line.

Figure 7 (a, b, c¢) displays the risk curves for SPTE(c = .50), SPTE(c = 1.00), SE and
SET along with the risk line of the unrestricted estimator for a = .10 in (a), for o = .15
in (b), and for & = .20 in (c). These graphs allow us to see the superiority picture of the
estimators along the line of change in the level of significance in SPTE. Here, one can easily
identify the superiority of SPTE(c = .50) over the SPTE(c = 1.00) at all the three levels of
significance. Other comments in the analysis of Figure 5 and Figure 6 remain valid for this
case also.

Figure 9: Risk curves for the estimators UMLE, SRE(¢ = .50), SRE(c = 1.00), SPTE
(¢ = .50), SPTE(c = 1.00), SE and SE™ for k¥ = 5. The solid line (__) UMLE, dashed line
(- - - -), dotted line (. . . .), dash 1-dotted line (- . - . - .), dash 2-dotted line (- .. - .. -
..), dash 3-dotted line (- ... - ... - ...) and long dashed line (— — —) represent the UMLE,
SRE(c = .50), SRE(c = 1.00), SPTE(c = .50), SPTE(c = 1.00), SE and SE™ respectively
in (a) for the significance level @ = .10, in (b) for the significance level & = .15 and in (c)
for the significance level o = .20.
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Figure 8 is nothing but an extension of Figure 7 with the inclusion of the risk curve
for SRE(c = .50). For A = 0 (i.e., under null hypothesis) the risk of SRE(c = .50) is the
smallest one compared to others. However, as A increases it also increases unboundedly
crossing the risk line at a certain level of A. Figure 9 is a further extension of Figure 8 with
the inclusion of the risk curve SRE(c = 1.00). It gives the smallest risk at A = 0 however,
its tremendous unboundedness makes the difference between the other curves smaller.
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4 Summary

It is theoretically possible to have larger bias for the estimators compared to the UMLE
however, no such case is encountered. In general, the estimators reduce the bias inherent in
the UMLE by approximately 10-50%. Note that, an increase in the number of explanatory
variables shows an increase in the bias of the estimators. For SPTE (where the level of
significance is directly involved), for an increase within the chosen levels of significance the
bias also increases. For SE and SE™ (where the value of the test statistic is directly involved),
we observe a regular pattern Bias;rr > Biasscr > Biasy arp. This is also true for SPTE.
As the size of the parameter value (i.e., the true value of the regression coefficient) tend
towards zero the bias decreases. An increase in the degree of skewness in the explanatory
variables leads to an increase in the bias of the estimators. In large samples, the bias for all
of the estimators is remarkably close to zero.

In general, as the sample size increases the mean square error for all of the estimators
decreases. Note that, the estimators have smaller MSE compared to the UMLE. An increase
in the number of explanatory variables leads to an increase in the MSE, too. For SPTE
(where the level of significance is directly involved), for a decrease within the chosen levels of
significance the MSE also decreases. For SE and SET (where the value of the test statistic is
directly involved), we observe a regular pattern MSEy grr > MSEscr > MSEw arp. This is
also true for SPTE. As the size of the parameter value (i.e., the true value of the regression
coefficient) increases the MSE increases too. An increase in the degree of skewness of the
explanatory variables leads to an increase in the MSE too. In large samples, the MSE for
all of the estimators is remarkably close to each other.

In general, as the sample size increases the coverage probabilities for the estimators
UMLE and SPTE tend toward the nominal level. Note that, the SE and SE™ possess larger
CPs as expected compared to UMLE and SPTE. An increase in the number of explanatory
variables leads to an increase in CPs also. For SPTE (where the level of significance is
directly involved), we do not observe any significant effect on the CPs of the estimators
for an increase or decrease within the chosen level of significance. For SE and SET (where
the value of the test statistic is directly involved), we observe differences in the CPs of the
estimators however, that does not follow any regular pattern. As the size of the parameter
value (i.e., the true value of the regression coefficient) increases the CPs decrease slightly.
Increase in the degree of skewness of the explanatory variables shows larger CPs compared
to its counterpart.

Considering the sampling properties of the test statistics the LRT stands out as the best.
However, the strict inequality WALD < SCT < LRT holds for the mean value of the test
statistics. This confirms Matin (2005) results. In large samples, all the three test statistics
give identical results and quite nicely approximate the chi-square distribution with appro-
priate degrees of freedom.

Our simulation study thus confirms the theoretical results of Matin and Saleh (2005) in cases
where comparisons are possible. It is clear that when the number of explanatory variables
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is greater than or equal to 3 the shrinkage and the positive-rule shrinkage estimators always
perform well. Considering the MSE the positive-rule shrinkage estimator performs better
than the shrinkage estimator. The sampling properties of the test statistics indicate that
the likelihood ratio test is the best. However, we lean toward the use of the Wald statistic
when the problem of estimation is of paramount interest as it provides lower bias and lower
MSE for the estimators compared to the score statistic and likelihood ratio statistic.

Acknowledgement

The work of both the authors sponsored by the NSERC Grant No. A3088, Canada. The
first author was also partially funded by the Department of Statistics, Uppsala University,
Sweden. Authors would like to thank Reinhold Bergstrém for his valuable comments on an
earlier version of the paper.

References

[1] Azzalini, A. (1985). A class of distributions which includes the normal ones, Scandina-
vian Journal of Statistics, 12, 171-178.

[2] George, E. I. and Casella, G. (1994). An empirical Bayes confidence report, Statistica
Sinica, 4, 617-638.

[3] Griffiths, P. and Hill, I. D. (1985). Applied statistical algorithm. Ellis Horwood Limited

[4] Henze, N. (1986). A probabilistic representation of the ’skew-normal’ distribution, Scan-
dinavian Journal of Statistics, 13, 271-275.

[5] Hwang, J. T. and Casella, G. (1982). Minimax confidence sets for the mean of a mul-
tivariate normal distribution, Annals of Statistics, 10, 868-881.

[6] Hwang, J. T. and Casella, G. (1984). Improved set estimators for a multivariate normal
mean, Statistics and Decisions, Supplement Issue, 1, 3-16.

[7] Lewis, P. A. W. and Orav, E. J. (1989). Simulation methodology for statisticians, op-
erations analysts, and engineers Vol. 1, Wadsworth & Brooks/Cole Advanced Book &
Software, Pacific Grove, California.

[8] Matin, M. A. (2005). Small-sample properties of estimators and tests in logistic regres-
sion model with skew-normally distributed explanatory variables, Mauscript.

[9] Matin, M. A. and Saleh, A. K. Md. E. (2005). Some improved estimators in Logistic
regression model, Journal of Statistical Research, Vol. 39, NO. 2, 37-58.

[10] Morgan, B. J. T. (1984). Elements of simulation. Chapman and Hall.



Small-Sample Properties of Some . .. 21

[11] Robert, C. and Saleh, A. K. Md. E. (1989). Recentered confidence sets: An overview,
Technical Report, Laboratorie de statistique theorique et applique, Universite Pierre et
Marie Cuuie.

[12] Saleh, A. K. Md. E. and Sen, P. K. (1987). Estimation of regression parameters un-
der uncertain prior restriction in a subspace. In Recent development in statistics and
actuarial science, pp. 171-187. New York, SCTEX Publications.

[13] Wichmann, B. A. and Hill, I. D. (1982). Algorithm AS 183: An efficient and portable
pseudo-random number generator, Applied Statistics (Correction in Applied Statistics,
33, 123, 1984), 31, 188-190.



