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summary

We present Bayes estimators for the parameters of Burr type XII distribution
under the symmetric squared error loss function and the asymmetric linear-
exponential loss function based on a simple prior distribution. In all cases the
estimator turns out to be ratios of integrals. We present approximate Bayes
estimators based on different approximation techniques. We demonstrate the ap-
plication of Burr type XII distribution to model the time to death in a clinical
trial of carcinoma patients comparing two therapies.
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1 Introduction

Introduced by Burr (1942), Burr distribution of Type XII with the distribution function

F (x;α, β) = 1 − (1 + xβ)−α, x > 0, α, β > 0, (1.1)

yields a wide range of values of skewness and kurtosis and has been used as probability
models in various applications. Rodriguez (1977) gives a comprehensive overview of Burr
type XII distribution. From the perspective of inferential aspects of the parameters α and
β, frequentist approach has drawn more attention than the Bayesian approach. As an
estimator, a natural choice that the users mostly made is the maximum likelihood estimator
(MLE), mostly because of its ease of use. Wingo (1983, 1993) developed mathematical and
computational methodology for ML fitting of the Burr XII distribution to censored life test
data. A Bayesian approach to inference about the parameters of a Burr distribution was
taken by Papadopoulos (1978) where he used the distribution as a failure model. Some
theoretical results on Bayesian inference on Burr parameters, reliability and hazard rate
are given in AL-Hussaini and Jaheen (1994). Soliman (2002) considered Bayes estimators
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Figure 1: LINEX and squared error (SE) loss functions plotted as a function of the error
D = θ̂ − θ: left panel for γ < 0 and right panel for γ > 0.

of reliability function in a generalized life-model that included the Burr XII distribution.
Soliman (2005) extended their work to incorporate progressively right censored data.

Use of symmetric loss functions, such as squared error loss is common in Bayesian anal-
ysis. In most cases it is done for convenience but may not be appropriate in many real life
situations (Varian, 1975). For example, in survival analysis, an overestimation would create
false optimism and an underestimation might lead to depression and hence deteriorate the
health condition. Thus, it is of importance to consider Bayes estimators under asymmetric
loss functions such as linear-exponential (LINEX) family of loss functions introduced first
by Varian (1975) and later generalized by Zellner (1986). The LINEX loss function for
estimating a p-dimentional vector θ by θ̂ is defined as follows:

L(θ̂, θ) =
p∑
k=1

ωk

[
eγk(θ̂k−θk) − γk(θ̂k − θk) − 1

]
, ωk > 0, γk 6= 0; k = 1, 2, · · · p. (1.2)

where θ̂k and θk are the kth components of θ̂ and θ respectively. Figure 1 depicts the nature
of the LINEX loss function in comparison with the squared error loss function.

Apart from Soliman (2002, 2005), all other studies used only quadratic loss functions.
However, these studies failed to provide a case study where the application of proposed
methods would be appropriate. Additionally, these two articles employed only Lindley’s
approximation (Lindley, 1980) to obtain approximate Bayes estimators. Tierney and Kadane
(1986) has shown that their method provides better approximation to the Bayes estimators
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than Lindley’s as the error in approximation for the latter is of order O(n−1) as compared
with the O(n−2) of the former. In this paper we have considered the joint Bayes estimation of
(α, β) under both squared error (SE) and LINEX loss functions and used both approximation
techniques to approximate them. Although AL-Hussaini and Jaheen (1994) have used both
approximation techniques, the prior they have used is more complicated and needs expert
judgment in guessing the hyperparameters.

The purpose of this study is two-fold. Facilitation of functions needed to approximate
Bayes estimators for Burr parameters using a simple prior is our first goal, followed by the
demonstration of an application to a real dataset. The article is organized as follows. In
Section 2, we specify the prior and compute the joint posterior distribution for the parameter
vector (α, β) . The expressions for the Bayes estimators under LINEX and SE loss functions
and the corresponding approximations are given in Section 3. An application to a survival
dataset has been considered in Section 4. We wrap up with a discussion in Section 5.

2 Prior, Likelihood and Posterior

In this study, we have assumed, for simplicity, that the two parameters α and β are stochas-
tically independent. That is, their joint prior distribution can be constructed as the product
of the marginal priors. We assume that the marginal prior distribution of α is given by

π(α) ∝ 1
α
, α > 0. (2.1)

whereas the marginal prior distribution for β is assumed to follow a Gamma(ψ, φ) distribu-
tion. So that the joint prior for (α, β) can be written as

π(α, β) ∝ φψ

αΓ(ψ)
e−φββψ−1, α, β ≥ 0;ψ, φ > 0. (2.2)

The prior specified here is different from the more general one specified in AL-Hussaini
and Jaheen (1994) in the sense that the latter allowed the dependence of one parameter
on the other through a conditional distribution of α given β. Our prior employs only two
hyperparameters compared to the four specified for the prior in AL-Hussaini and Jaheen
(1994).

Let x = (x1, x2, ..., xn) be n independent observations from the density (1.1). Then the
likelihood function for (α, β) given the data x is obtained as

`(α, β|x) = exp [nlnα+ nlnβ + (β − 1)S1(x) − (1 + α)S2(β;x)] , (2.3)

where S1(x) =
∑n
i=1 lnxi and S2(β;x) =

∑n
i=1 ln(1 + xβi ).

A combination of the prior (2.2) and the likelihood (2.3) produces the posterior density
of (α, β) of the form

P (α, β|x) = {g(x)}−1
exp [(n− 1)lnα+ (n+ ψ − 1)lnβ + {S1(x) − φ}β − (1 + α)S2(β;x)] ,

(2.4)
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where the function g(x) is such that the expression in (2.4) is a proper density of α and β.
Integrating (2.4) with respect to (α, β) through iterative integrals, we obtain

g(x) = Γ(n)
∫ ∞

0

exp [(n+ ψ − 1)lnβ + {S1(x) − φ}β − S2(β;x)] /Sn2 (β;x)dβ.

The posterior distribution (2.4) involves an integral in the denominator which cannot be
evaluated in closed form. Accordingly, the Bayes estimators of α and β cannot be expressed
in any simple form and application of approximation techniques is essential in order to
evaluate them for a given data set. For the chosen priors, it has been observed that the
posterior is dominated by the likelihood, not the prior. Hence, the inferences made from
this posterior will rely more on data than prior belief.

3 Bayes estimators

Bayes estimator of a parameter under squared error loss function is just the posterior mean.
From the posterior distribution of the parameters (α, β) (2.4), the Bayes estimators of α
under squared error loss is given by

α̂SE = E(α|x) =
n

∫∞
0
exp [(n+ ψ − 1)lnβ + (S1(x) − φ)β − S2(β;x)] /Sn+1

2 (β;x)dβ∫∞
0
exp [(n+ ψ − 1)lnβ + (S1(x) − φ)β − S2(β;x)] /Sn2 (β;x)dβ

,

(3.1)
and that of β by

β̂SE = E(β|x) =

∫∞
0
exp [(n+ ψ)lnβ + (S1(x) − φ)β − S2(β;x)] /Sn2 (β;x)dβ∫∞

0
exp [(n+ ψ − 1)lnβ + (S1(x) − φ)β − S2(β;x)] /Sn2 (β;x)dβ

. (3.2)

Under the loss function (1.2) the Bayes estimator θ̂k of θk is given by

θ̂k = − 1
γk
lnE

(
e−γkθk |x

)
(3.3)

where E(.|x) stands for the posterior expectation given the sample data x. Using this, the
Bayes estimator of α from the joint posterior (2.4) under LINEX loss is given by

α̂LINEX = − 1
γ1

ln

[∫∞
0
exp [(n+ ψ − 1)lnβ + (S1(x) − φ)β − S2(β;x)] /{γ1 + S2(β;x)}ndβ∫∞

0
exp [(n+ ψ − 1)lnβ + (S1(x) − φ)β − S2(β;x)] /Sn2 (β;x)dβ

]
.

(3.4)
Similarly, the Bayes estimator of β under LINEX loss function (1.2) is obtained as,

β̂LINEX = − 1
γ2

ln

[∫∞
0
exp [(n+ ψ − 1)lnβ + (S1(x) − φ− γ2)β − S2(β;x)] /Sn2 (β;x)dβ∫∞
0
exp [(n+ ψ − 1)lnβ + (S1(x) − φ)β − S2(β;x)] /Sn2 (β;x)dβ

]
(3.5)
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All four estimators (3.1),(3.2),(3.4)and (3.5) are in the form of ratios of two integrals
- none of which can be simplified further to closed forms. We apply two different approx-
imation methods to evaluate the Bayes estimators of α and β. The first approximation
technique due to Lindley (1980) uses Taylor’s series expansion of the integral expression
around maximum likelihood estimator. The second is due to Tierney and Kadane(1986).
These methods are known to work well for the cases where the dimensionality of the param-
eter vector is small. For a detailed and useful description of these techniques we refer the
readers to Press (2003). The other approximation techniques are based mainly on Monte-
Carlo integration which are time consuming and are more applicable to higher dimensional
problems.

To approximate the Bayes estimators using Lindley’s approximation (Appendix A, Equa-
tion (A.3)), we introduce the following notations:

S3(β;x) =
∑n
i=1 lnxi(1 + xβi )

−1xβi = δS2(β;x)/δβ,

S4(β;x) =
∑n
i=1(lnxi)

2(1 + xβi )
−2xβi = δS3(β;x)/δβ, and

S5(β;x) =
∑n
i=1(lnxi)

3(1 + xβi )
−3xβi (1 − xβi ) = δS4(β;x)/δβ.

With these new definitions, in terms of the notations used in Equation (A.3), the first
order derivatives are ρα = α−1, ρβ = −ψ + β−1(φ − 1), Lα = n/α − S2(β;x), Lβ =
n/β+S1(x)−(1+α)S3(β;x). Similarly, the second order derivatives are Lαα = − n

α2 , Lαβ =
−S3(β;x), Lββ = − n

β2 − (1 + α)S4(β;x). The third order derivatives are then calculated
as follows: Lααα = 2n

α3 , Lαβα = Lααβ = Lβαα = 0, Lαββ = Lβαβ = Lββα = −S4(β;x),
Lβββ = 2n

β3 − (1 + α)S5(β;x). The σ-components are then σαα = − 1
Lαα

, σββ = − 1
Lββ

.

The maximum likelihood estimators for α and β, α̂ and β̂ satisfy Lα = 0 = Lβ . Explicitly,
α̂ = nS−1

2 (β̂;x) and β̂ is obtained as a solution to the equation

nβ̂−1 + S1(x) − (1 + nS−1
2 (β̂;x))S3(β̂;x) = 0.

The parametric functions, for instance, Lβββ , when parameters are substituted for the
corresponding MLE’s are denoted by putting a (̂) on it. For instance,

L̂βββ = Lβββ |α=α̂,β=β̂ =
2n

β̂3
− (1 + α̂)S5(β̂;x).

Applying Lindley’s approximation technique and using the notations defined above, we
obtain approximate Bayes estimator of α

α̂LindleySE = α̂− α̂2β̂2S4(β̂;x)/2n

n+ (1 + α̂)β̂2S3(β̂;x)
. (3.6)

Similar derivation gives the following estimator for β under Lindley’s approximation:

β̂LindleySE = β̂ +
β̂−1(ψ − 1) − φ

nβ̂−2 + (1 + α̂)S4(β̂;x)
+

nβ̂−3 − (1 + α̂)S5(β̂;x)/2

{nβ̂−2 + (1 + α̂)S4(β̂;x)}2
. (3.7)
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Following the same procedure, an application of Lindley’s approximation theorem to the
integral expression of (3.4) gives

α̂LindleyLINEX = α̂− 1
γ1

ln
[
1 +

γ1α̂
2

2n

]
. (3.8)

Similarly,

β̂LindleyLINEX = β̂ − 1
γ2

ln

[
1 +

γ2

2

{
1 + 2(φ− β̂−1(ψ − 1))

nβ̂−2 + (1 + α̂)S4(β̂;x)
− 2nβ̂−3 − (1 + α̂)S5(β̂;x)

{nβ̂−2 + (1 + α̂)S4(β̂;x)}2

}]
.

(3.9)
It is not difficult to investigate the fact that these estimators are asymptotically equivalent
to the corresponding maximum likelihood estimators.

To explain the Tierny and Kadane’s method, let us first consider estimating α under
LINEX loss function (1.2). A brief description of this approximation method is given in Ap-
pendix B. The posterior expectation that is of interest is E (e−γ1α|x). Let, u(α, β) = e−γ1α,
l(α, β) = n−1{L(α, β;x) + ρ(α, β)}, and l∗(α, β) = n−1 lnu(α, β) + l(α, β). Also let (α̂l, β̂l)
and (α̂l∗ , β̂l∗) be the values of (α, β) at which the functions l and l∗ respectively attains their
maximum. That is, (α̂l, β̂l) = arg max(α,β) l(α, β), and (α̂l∗ , β̂l∗) = arg max(α,β) l

∗(α, β). In
our case,(α̂l, β̂l) is given by the solutions of the equations

β̂−1
l (n+ ψ − 1) + S1(x) − φ− (1 + α̂l)S3(β̂l;x) = 0

n− 1 − α̂lS2(β̂l;x) = 0

and (α̂l∗ , β̂l∗) by

β̂−1
l∗ (n+ ψ − 1) + S1(x) − φ− (1 + α̂l∗)S3(β̂l∗ ;x) = 0

n− 1 − γ1αl∗ − α̂l∗S2(β̂l∗ ;x) = 0

Further let Σ(α, β) and Σ∗(α, β) are negatives of inverse Hessians of l(α, β) and l∗(α, β)
respectively. In this case,

Σ−1(α, β) = n−1

 n−1
α2 S3(β;x)

S3(β;x) (n+ψ−1)
β2 + (1 + α)S4(β;x)

 = Σ∗−1(α, β) (3.10)

Hence,

|Σ(α, β)| = |Σ∗(α, β)| = n2

[
n− 1
α2

{
(n+ ψ − 1)

β2
+ (1 + α)S4(β;x)

}
− S2

3(β;x)
]−1

.

Then, the Tierny-Kadane approximation to the Bayes estimator of α under LINEX loss
function is given by

α̂T−KLINEX = − 1
γ1

ln I(x), (3.11)
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Table 1: Functional expressions for Tierney-Kadane Approximations of Bayes estimators
α̂SE , β̂LINEX and β̂SE

Function Expressions for approximating α̂SE

u(α, β) α

|Σ∗(α, β)| n2
[
n
α2

{
(n+ψ−1)

β2 + (1 + α)S4(β;x)
}
− S2

3(β;x)
]−1

Estimating equations n− α̂l∗S2(β̂l∗ ;x) = 0

for (α̂l∗ , β̂l∗) β̂−1
l∗ (n+ ψ − 1) + S1(x) − φ− (1 + α̂l∗)S3(β̂l∗ ;x) = 0

Expressions for approximating β̂LINEX

u(α, β) e−γ2β

|Σ∗(α, β)| n2
[
n−1
α2

{
(n+ψ−1)

β2 + (1 + α)S4(β;x)
}
− S2

3(β;x)
]−1

Estimating equations n− 1 − α̂l∗S2(β̂l∗ ;x) = 0

for (α̂l∗ , β̂l∗) −γ2 + β̂−1
l∗ (n+ ψ − 1) + S1(x) − φ− (1 + α̂l∗)S3(β̂l∗ ;x) = 0

Expressions for approximating β̂SE

u(α, β) β

|Σ∗(α, β)| n2
[
n−1
α2

{
(n+ψ)
β2 + (1 + α)S4(β;x)

}
− S2

3(β;x)
]−1

Estimating equations n− 1 − α̂l∗S2(β̂l∗ ;x) = 0

for (α̂l∗ , β̂l∗) β̂−1
l∗ (n+ ψ) + S1(x) − φ− (1 + α̂l∗)S3(β̂l∗ ;x) = 0

where I(x) is given by the equation (B.1). Similar procedure can be followed to approximate
the Bayes estimators of α under SE loss function and Bayes estimators of β under LINEX
and SE loss functions. Notice that the function l and hence (α̂l, β̂l) and Σ does not change
no matter what function of the parameters is being estimated. In Table 1 we give the
expressions for the component functions of (3.11) and the estimating equations to be solved
to obtain corresponding (α̂l∗ , β̂l∗). Solving the estimating equations and consequently using
the functional forms from Table 1 in Equation (3.11), we approximated the other three
estimators (3.2),(3.4)and (3.5) and respectively denoted them by α̂T−KSE , β̂T−KLINEX and β̂T−KSE .

4 Data Analysis

We applied our techniques to a subset of carcinoma data set from a clinical trial carried out
by Radiation Therapy Oncology Group (Dataset II, Appendix A , Kalbfleisch and Prentice,
2003). Although some patients have been censored, we considered them as complete in
our analysis and hence the mean survival estimates presented here will be less than those,
had we considered a likelihood based on the censored data. This will be true for all the
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Table 2: Bayes estimates of α, β and mean (in years) for the carcinoma data

Lindley Tierney and Kadane

Treatment Parameter MLE SE LINEX LINEX SE LINEX LINEX

γ -2 -5 -2 -5

ψ = 2, φ = 1

Radiation α 0.78 0.78 0.78 0.79 0.79 0.80 0.81

Therapy β 2.24 2.23 2.22 2.22 2.19 2.24 2.31

Mean 2.01 2.02 2.01 1.97 2.01 1.92 1.80

Radiation + α 1.01 1.01 1.02 1.03 1.02 1.03 1.05

Chemotherapy β 1.96 1.96 1.95 1.95 1.93 1.96 2.02

Mean 1.58 1.59 1.57 1.54 1.59 1.53 1.46

ψ = 5, φ = 2

Radiation α 0.78 0.78 0.78 0.79 0.81 0.82 0.83

Therapy β 2.24 2.24 2.23 2.23 2.12 2.15 2.22

Mean 2.01 2.01 1.99 1.96 2.04 1.95 1.83

Radiation + α 1.01 1.01 1.02 1.03 1.03 1.04 1.06

Chemotherapy β 1.96 1.97 1.96 1.95 1.88 1.91 1.96

Mean 1.58 1.58 1.56 1.53 1.60 1.55 1.47

ψ = 5, φ = 5

Radiation α 0.78 0.78 0.78 0.79 0.81 0.81 0.83

Therapy β 2.24 2.17 2.16 2.14 2.13 2.17 2.23

Mean 2.01 2.10 2.09 2.07 2.04 1.95 1.83

Radiation + α 1.01 1.01 1.02 1.03 1.03 1.04 1.06

Chemotherapy β 1.96 1.90 1.89 1.88 1.89 1.92 1.97

Mean 1.58 1.63 1.62 1.59 1.60 1.55 1.47

ψ = 10, φ = 5

Radiation α 0.78 0.78 0.78 0.79 0.83 0.84 0.85

Therapy β 2.24 2.22 2.21 2.21 2.02 2.04 2.10

Mean 2.01 2.03 2.02 1.98 2.08 2.01 1.88

Radiation + α 1.01 1.01 1.02 1.03 1.05 1.06 1.08

Chemotherapy β 1.96 1.96 1.95 1.95 1.81 1.83 1.88

Mean 1.58 1.59 1.57 1.54 1.63 1.58 1.50
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estimators for both treatment arms. The objective is to compare the mean survival time
and survival distributions under two treatments. We demonstrate how, using the estimators
derived in previous sections, one can compare the two treatments in question.

In our analysis we have included 195 patients who have been treated for squamous
cell carcinoma with either standard radiation therapy or radiation therapy together with a
chemotherapeutic agent. The variable of interest here is the survival time, as usual defined
by the time between entry into the study and the death. We expressed the time in years
for simplicity. We calculated approximate Bayes estimators for the parameters α and β and
the corresponding survival mean and survival curves from Burr model for both radiation
therapy (standard) and radiation+chemotherapy (test). We considered only negative values
of γ since we believe, in estimating survival, underestimation results in more penalty than
over estimation. We considered two values for γ, namely, γ = −2 and γ = −5.

Table 2 shows the estimates of parameters and mean survival time under different es-
timation methods. We considered several combinations of hyperparameters to investigate
their sensitivity to the estimates. It is observed that the estimates of parameters and mean
survival time are barely sensitive to the choice of the prior parameters. For instance, the
Bayes estimate of the mean survival time for the radiation therapy group under LINEX loss
function with parameter γ = −2 approximated by Tierney and Kadane method takes val-
ues 1.92, 1.95, 1.95, 2.01 for prior parameter combinations (ψ, φ) = (2, 1), (5, 2), (5, 5), (10, 5)
respectively. Thus the proposed prior can be used without paying much attention to the
choice of prior hyperparameters. Any reasonable choice such as the ones presented in Table
2 will lead to similar conclusion. In cases, where choice of hyperparameters is a concern, one
can use empirical Bayes methods to obtain better guesses for the hyperparameters. Since
our choice of prior is such that the prior parameters had little impact on the posterior and
for that reason, on the Bayes estimators, we do not pursue it here.

In practice, the choice of γ is dictated by the relative consequence of underestimation
and overestimation. In our case of modeling survival data, we picked two such values of γ
to reflect the mild and severe consequences of underestimation compared to overestimation.
From the results in Table 2, it is also clear that the choice of the LINEX loss function
parameter γ had very little impact on the Bayes estimates. In most cases, the Bayes
estimates of parameters and the mean survival times were identical to the second decimal
places for two parameter values γ = −2 and γ = −5.

All Bayes estimators, approximated by Lindley’s method or Tierney and Kadane’s
method, gave rise to similar estimates. Although, in theory, Bayes estimators approximated
by Tierney and Kadane’s method are supposed to be more accurate than those approximated
by Lindley’s method, it is interesting to see that for this dataset, for the selected prior and
loss function parameters, they provide estimates which are very close to the corresponding
maximum likelihood estimate.

The test treatment radiation + chemotherapy seems to have no advantage over the
standard radiation therapy as seen by the lower mean survival (approx. 1.6 years) within
the test group compared to the standard group (approx. 2.0 years), no matter which method



54 WAHED

1 2 3 4 5 6
t

0.2

0.4

0.6

0.8

1

S(t) A

1 2 3 4 5 6
t

0.2

0.4

0.6

0.8

1

S(t) B

1 2 3 4 5 6
t

0.2

0.4

0.6

0.8

1

S(t) C

1 2 3 4 5 6
t

0.2

0.4

0.6

0.8

1

S(t) D

1 2 3 4 5 6
t

0.2

0.4

0.6

0.8

1

S(t) E

1 2 3 4 5 6
t

0.2

0.4

0.6

0.8

1

S(t) F

Figure 2: Estimated survival probability curves for carcinoma data for prior parameters
φ = 1 and ψ = 2 under different estimation scheme (dotted line for radiation therapy
and solid line for radiation + chemotherapy): A. Maximum Likelihood (same as SE with
Lindley’s approximation). B. LINEX under Lindley’s with γ = −2. C. LINEX under
Lindley’s with γ = −5. D. SE under Tierney-Kadane. E. LINEX under Tierney-Kadane
with γ = −2. F. LINEX under Tierney-Kadane with γ = −5.

we use for estimation. We have plotted the estimated survival curves under different methods
in Figure 2. Since the estimates of parameters were very similar to each other the graphs
were also similar across different methods. The survival curve for the standard radiation
therapy group dominates that of radiation + chemotherapy group providing further evidence
of ineffectiveness of radiation followed by chemotherapy in extending the survival.

5 Conclusion

We have derived approximate Bayes estimators for the parameters of a Burr type XII distri-
bution using several approximation techniques under symmetric (squared error) and asym-
metric (linear-exponential) loss functions. The expression for approximate Bayes estimators
provided can be readily used without requiring further derivations. The prior distribution
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used here is simpler than the one used in AL-Hussaini and Jaheen (1994) but one has to
take caution while applying this class of prior as it assumes the independence of the two
parameters.

We have shown an application of our methods to a carcinoma survival data set. Using
the data, we have shown that the Bayes estimators based on the proposed prior is insensitive
to the choice of the hyperparameters.

6 Acknowledgements

We acknowledge the remarks made by an anonymous referee which led to the improvement
of the manuscript.

A Lindley’s Approximation

For an easy reference for the readers, we describe Lindley’s approximation method here for
two parameters. The Bayes estimator of a function u(α, β) involves the evaluation of ratios
of integrals of the form:

I(x) =
∫
u(α, β)eL(α,β|x)+ρ(α,β)d(α, β)∫

eL(α,β|x)+ρ(α,β)d(α, β)
, (A.1)

where L(α, β|x) = ln `(α, β|x) is the log-likelihood and ρ(α, β) = lnπ(α, β) is the log-prior.
Let (α̂, β̂) denote the MLE of (α, β), i.e., ,

(α̂, β̂) = arg max
(α,β)

`(α, β|x). (A.2)

According to Lindley (1980), under certain regularity conditions, the ratio of integrals I(x)
can be approximated by

I(x) .= u(α̂, β̂) +
1
2
{(ûαα + 2ûαρ̂α) σ̂αα + (ûβα + 2ûβ ρ̂α) σ̂βα + (ûαβ + 2ûαρ̂β) σ̂αβ+

(ûββ + 2ûβ ρ̂β) σ̂ββ + (ûασ̂αα + ûβ σ̂αβ)
(
L̂ααασ̂αα + L̂αβασ̂αβ + L̂βαασ̂βα + L̂ββασ̂ββ

)
+ (ûασ̂βα + ûβ σ̂ββ)

(
L̂ααβ σ̂αα + L̂αββσ̂αβ + L̂βαβσ̂βα + L̂βββ σ̂ββ

)}
, (A.3)

where, for instance, uαα denotes the second derivative of the function u(α, β) with respect
to α and ûαα represents the same expression evaluated at α = α̂ and β = β̂. The σ-terms
are defined as σαα = − 1

Lαα
, σββ = − 1

Lββ
.

B Tierney and Kadane’s Approximation

Suppose u(α, β) is the parametric function of interest. Define l(α, β) = n−1{L(α, β;x) +
ρ(α, β)}, where ρ is the log-prior and L is the likelihood. In addition, define l∗(α, β) =



56 WAHED

n−1 lnu(α, β) + l(α, β). Further let (α̂l, β̂l) and (α̂l∗ , β̂l∗) be the values of (α, β) at which
the functions l and l∗ respectively attains their maximum. Then the integral

I(x) =
∫
enl

∗(α,β)d(α, β)
/ ∫

enl(α,β)d(α, β)

can be approximated by

Î(x) =

√
|Σ∗|
|Σ|

exp
[
n

{
l ∗ (α̂l∗ , β̂l∗) − l(α̂l, β̂l)

}]
, (B.1)

where |Σ| and |Σ∗| are the negatives of inverse Hessians of l(α, β) and l∗(α, β) respectively
evaluated at (α̂l, β̂l) and (α̂l∗ , β̂l∗).
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