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SUMMARY

This paper reviews most important properties of a location-scale multivariate
t-distribution. A conditional representation of the distribution is exploited to
outline moments, characteristic function, marginal and conditional distributions,
distribution of linear combinations and quadratic forms. Stochastic representa-
tion is also used to determine the covariance matrix of the distribution. It also
makes an attempt to justify an uncorrelated ¢- model and overviews distribution
of the sum of products matrix and correlation matrix. Estimation strategies for
parameters of the model is briefly discussed. Finally the recent trend of linear
regression with the uncorrelated t- model is discussed.
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1 Introduction

The multivariate ¢-distribution is a natural generalization of the univariate Student t¢-
distribution. Cornish (1954) derived it first in connection with a set of normal sample
deviates.

The classical theory of statistical analysis is primarily based on the assumption that er-
rors are normally distributed. Recently many authors have investigated as to how inferences
are affected if the population model departs from normality. Many economic and business
data e.g. stock return data exhibit fat-tailed distributions. The suitability of independent ¢
-distributions for stock return data was assessed by Blattberg and Gonedes (1974). Soon af-
ter that Zellner (1976) considered analyzing stock return data by a simple regression model
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under the assumption that errors have a multivariate t-distribution. However, errors in
this model are uncorrelated but not independent. Prucha and Kelejian (1984) discussed
the inadequacy of normal distribution and suggested a correlated ¢t-model for many real
world problems as a better alternative distribution. After a thorough investigation, Kele-
jian and Prucha (1985) proved that uncorrelated ¢-distributions are better able to capture
heavy-tailed behavior than independent ¢-distributions.

The multivariate ¢t-distribution is a viable alternative to the usual multivariate normal
distribution and on the other hand results obtained under normality can be checked for
robustness. For example the distribution of product moment correlation coefficient obtained
by Ali and Joarder (1991) is the same as that obtained by Fisher (1915) showing distribution
robustness. Thus the ¢-test for testing significance of correlation is also robust (Joarder
2006). Interested readers may go through Kelker (1970), Cambanis, Huang and Hsu (1981),
Fang and Anderson (1990), Kotz and Nadarajah (2004) and the references therein. In this
paper we justify an uncorrelated multivariate t-model as the model for sample and present a
modest review of the most important theories developed recently for statistical analysis with
this model. This paper is expected to attract young researchers to develop an organized
and solid foundation for the statistical analysis with correlated ¢-model.

2 The Probability Model

Different forms of multivariate t-distribution exist in literature. We will discuss some of
them in this section. The probability density function (p.d.f.) of a p-variate ¢ -distribution
is given by

‘2‘71/2 1 1 —(v+p)/2

)= ——— |1+ —(z— ) (. — , 2.1
F@) = G [ @~ w0/ E e ) (21)
where x is the realized value of a p x 1 random vector X, p is a p X 1 unknown mean vector
and X is a p X p positive definite matrix of scale parameters while the normalizing constant
C(v,p) is given by

L((v+p)/2)C(v,p) = v*/> T(v/2). (2.2)

The p-variate random variable X has a mean vector p and a covariance matrix X* = v*3,
where v* = v/(v—2) and can well be represented by T),(p, v*X) where the shape parameter
v(> 2) is assumed to be known. If p =1, p = 0,¥ = 1, then the p.d.f. in (2.1) defines
the univariate t¢-distribution. When p = 2, p = 0,3 = 1, then the p.d.f. in (2.1) is a
slight modification of the bivariate surface of Pearson distribution (Pearson, 1923). It is
well-known that the multivariate t-distribution can be written as

0o |23~ 1/2
f) = / '(;)'/ exp(— (@ — ) (W) (@ — p)/2) h(w)dw (2.3)



The Short Review of Multivariate . .. 61

which is the mixture of the multivariate normal distribution N,(p,w?¥) and w has the
inverted gamma distribution with p.d.f.

v v/2 —v
h(w) = %w(”ﬂ) exp (2w2> ) (2.4)

where v is the degrees of freedom of inverted gamma distribution. Equivalently, vw ™2 has a
chi-square distribution with v degrees of freedom. Thus given w, the random vector X has
a multivariate normal distribution i.e.

X|Q=w~ Ny(p,0*3). (2.5)

As v — o0, the random variable w becomes a degenerate random variable with all the
non-zero mass at the point unity and, consequently, the multivariate ¢-distribution in (2.1)
converges to the multivariate normal distribution N,(g,33). This also follows from the
fact that as v — oo, we have C(v,p) — 2P/2 and (1 + u/v)™" — e~ %. It is also worth
mentioning that the uncorrelatedness of the components X1, X5,..., Xy does not imply
their independence unless v — oo.

The joint p.d.f. of N independent observations each having a p-variate ¢-distribution is
given by
fi(zr, @2, .. zn) = flxn) f(@2) ... f(2N) (2.6)

which may be referred to as the independent t-model. However, recent interest is noticed in
uncorrelated t-distributions. The joint p.d.f. of N uncorrelated multivariate t-distributions
is given by

2 (1-9) SN

= (14 =
Cl, Npymvorz W F

‘ (2.7)

f2(w1,332,---,33N)=

N
where Q = Z(a:j — )2 (x; —p) and x; (j = 1,2,...,N) is the realized value of a p-
j=1

component random vector X; (j = 1,2, ..., N) having the ¢ -distribution T}, (p, v*X) where
v* =v/(v—2). The p.d.f. in (2.7) will hereinafter be called the uncorrelated t-distribution.
Kelejian and Prucha (1985) proved that the tails of the uncorrelated ¢ -model is relatively
thicker than those of the independent ¢-model given by (2.6). It may be remarked that
observations in (2.7) are independent if and only v — oo, in which case the p.d.f. in (2.7)
will be the product that of N independent p-dimensional normal distributions N, (p, X).

A more general case would be to consider k-samples each of which
(X_lh?nga"'anNg)’ g:172,...,k'

is a sample of size N, from Tp(ug, v*3), g=1,2,...,k. The joint p.d.f. of observations of
k-samples would be

(2.8)

|-N/2 L\ N2
f3($113$12,...,$k1\/k): | | ( >

C(v, Np)nNr/2 1+;Q
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k Ny
where Q = Ql + Q2 + -+ Qk = ZQ.(N Qg = Z(mg]’ - u’g)lzil(mgg‘ - u’g) and N =
g=1 j=1

k
Ni+Np+---+ Ny => N,
g=1

3 Some Properties of the Multivariate ¢- Distribution

3.1 Moments and Characteristic Function

By the use of the mixture representation in (2.5), it can be easily proved that
E(X) = B(E(X[w)) =

and
Cov(X) = E[Cov(X|w)] + Cov[E(X|w)] = E(w?E) = v*'E,

where v* = v/(v — 2). The characteristic functions of the univariate and the multivariate
t-distributions have been considered by many authors. The characteristic function of X
following a multivariate ¢-distribution with p.d.f in (2.1) is given by

it [(V2)!2]]72

ox(t) = E(eith) =e' m KV/Q(H(VE)I/%”) (3.1)

(Joarder and Ali, 1996), where K, /o(||(vX)'/?t||) is the Macdonald function with order v/2
and argument ||(v3)"/?t||.

The Macdonald function K, (t) with order « and argument ¢ admits by the following
integral representation (see e.g. Watson, 1958, p. 172):

2\“ T 1/2) [
t) (a}/)/ (1+u?)~ @ Dcostudu,  t>0, a>-1/2. (32)
™ 0

A series representation of the Macdonald function K, (r) where r» > 0 and « a nonnegative
integer is well known (cf. Joarder and Ali, 1996). The quantity Z = 2_1/2(X — p) has a
spherical ¢ -distribution T}, (0, v*I) whose product moment is given by

Ka(t) = (

0 if at least one k;(i=1,2,...,p) isodd

Tk D((v—Fk)/2) & ki
E(Ezﬁ): o M B L s

ifall k;’s (i=1,2,...,p) areeven

P
where k£ = Z k;. The product moment can also be derived by using the stochastic repre-
i=1

sentation Z = RU, where R?/p has an F(p,v) distribution, R = (Z’'Z)'/? and U has a
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uniform distribution on the surface of unit hypersphere in 7. Then

k2 Lo+ F)/2T((v - k)/2)
I'(p/2)T(v/2)
(See Theorem 2.8 of Fang, Kotz and Ng (1990) for details).

It follows from (3.1) that the characteristic function of the univariate Student ¢-distribution

E(R*) =v

,v>k (3.4)

with p.d.f.
1 22\ ~wth/2
=——(1+— 0
/(@) C(v,l)ﬁ( +y> V>
is given by
Vu/4|t|u/2

ox(t) = 2T T(y—2) K, p(Vrlt]), v>2.

Based on this characteristic function Rahman and Saleh (1975) derived the exact distribution
of the Behrens-Fisher statistic.
It may be remarked that the characteristic function of X in (3.1) can also be written as

dx (t) = B(e?X) = V1 p'st). (3.5)
The covariance matrix and the kurtosis parameter can then be written as
11
0
Cov(X) = —2¢'(0)X and x = o) 1 (3.6)

{y(0)}?

respectively (Seo and Toyama, 1996).

3.2 Marginal and Conditional Distributions

It is well-known that linear combinations, marginal and conditional distributions of the
components of X follow the multivariate ¢-distribution (see e.g. Sutradhar, 1984). Let
X, p,t and ¥ be partitioned as
X = X s B = ! , t= and X = T 2

X Mo to o1 Yoo

where Xo, o, t2 € N7 (¢ < p) and Xy is a ¢ X ¢ positive definite matrix. By the use
of the characteristic function of X given by (3.1), it may be easily checked that Xo ~
Ty (g, v*X92) where v* = v/(v — 2). The conditional distribution of X given Xy = x4
is Tp—q (W1.9, V1.2 X7;.9) Where

Bio =+ 1085 (T2 — py),
me = v/(v+q—2), and
She = (L4 (@2 — 1) (vZ2) " (@2 — 1)) B

with X110 =317 — 21222_21 351. The derivation of conditional covariance matrix discussed
among others by Cambanis et.al. (1981) is detailed in the next section.
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3.3 Determination of Covariance Matrix by Stochastic Represen-
tation

A p-dimensional random variable Z is said to have a spherical distribution if its probability
density function (pdf) can be written as

f(z) = g(z'7) (3.7)

Muirhead (1982) is the first to discuss spherical and elliptical distributions in a text book
of multivariate analysis. Much of the theoretical development are available in Fang and
Anderson (1990) and Fang, Kotz and Ng (1990). For applications of such distributions we
refer to Lange, Little and Taylor (1989), Kibria and Haq (1999a), Kibria and Saleh (2003),
Kotz and Nadarajah (2004) and the references therein.

Let Z have the multivariate ¢-distribution with p.d.f.

1 2! (v+p)/2
— () —
1) =al65) = o (1427 (.9
where c(v, p) is given by c(v, p)T'((v + p)/2) = v?/2T'(v/2). Then
R2
— ~F b,V
) (p,v)
and that
L((p+k)/2)L((v — k)/2)
E (R*) = v*/? >k 3.9
(%) T2 T/ 39
(cf. Fang, Kotz and Ng, 1990, 22). In particular,
E(R) =2 2 1
(R?) — V> (3.10)

and V (R?) = %, v>4.

Consider the elliptical random variable X = p + »i/2z , where Z has the p.d.f. given by
(3.7). It is well known (Cambanis, Hunag and Simons, 1981) that the covariance matrix
of X is given by Cov(X) = —2¢'x(0)%, where ¢ x (t) = exp (it' ) (]| BY%¢]]) is the
characteristic function of X.

Since most elliptical distributions do not have closed form for characteristic functions,
an easy way out is to exploit stochastic decomposition »-1/2 (X — pu) = Z = RU, where
R = (Z'Z)'/? is independent of U and the random variable U is uniformly distributed on
the surface of unit sphere is RP.

For any elliptical random variable X, where X = ,u—|—21/2Z with Z having the p.d.f.(3.7),
it is well known that Cov(X) = %E (Rz) 3 (Cambanis, Huang and Hsu, 1981, or Joarder,
1992). In this section we outline how the covariance matrix of multivariate t-distribution
can be derived by the above result.
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It follows from (3.10) that Cov(X) =
having the p.d.f. given by (3.8).

i)gz

i v, where X = p + 2'?Z with Z

v—

=

3.4 Distribution of a Linear Function

Suppose the random variable X has a multivariate ¢ distribution with degrees of freedom
v, mean vector p and covariance matrix X . Assume that A be an non-singular matrix
and b is a constant vector, then AX + b has the p-variate ¢ distribution with mean vector
Ap + b, degrees of freedom v and covariance matrix ARA’. The degrees of freedom for
the distribution of the linear combination remain same. This result is similar to that for
multivariate normal distribution.

3.5 Distribution of Quadratic Forms

Suppose the random variable X has a multivariate ¢-distribution with mean vector p, co-
variance matrix ¥ and degrees of freedom v, then X'¥7'X /p has the F distribution with
v and p degrees of freedoms and non-centrality parameter g/~ p/p.

4 Uncorrelated ¢- Model

4.1 Distribution of the Sum of Products Matrix Based on the Un-
correlated ¢-Model

The sum of product matrix based on the uncorrelated ¢- distribution (2.7) is given by

A= (X, X) (X, - X) = (o),

j=1

N

where X = Z X ,;/N. It follows from (2.5) that for a given w, the random matrix A has
j=1

the usual Wishart distribution

AQ=w~W,(m,w?%), m=N-1 (4.1)

i.e. the p.d.f. of A is given by

B > Pty L a1
SmPIIT (19 |A exp | —-tr(w*X) A h(w)dw, (4.2)
o 2mP/2T,(m/2) 2

where A >0, m = N — 1 > p and the generalized gamma function I',(«) is defined by

T,(a) = nPP~1/4 ﬁF((Qa —i4+1)/2)

i=1
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with vw™2 ~ x2. The completion of integration in (4.2) results in the p.d.f. of A given by

|2|7m/2
C(v, mp)2mr/2 T'\(m/2)

—(v+mp) /2
) (4.3)

1
|A|(m—p=1)/2 (1 +-trx A
14

(cf. Sutradhar and Ali, 1989).

By the use of the mixture representation in (4.1), it is easy to derive the expected values
of |[A]F,|A]FA, |A|FA™Y, (tr A)?, tr(A?) etc. which are important in developing estimation
strategies for functions based on the covariance matrix. See e.g. Joarder and Ali (1992a)
and Joarder (1995a, 1995b).

4.2 Robustness of Correlation for Uncorrelated T-Model

Fisher (1915) derived the exact sampling distribution of Pearsonian correlation coefficient
R for a random sample drawn from a bivariate normal population Na(u,X). Since then
many statisticians have tried to investigate the behavior of R for non-normal situations. Ali
and Joarder (1991) proved that both null and non-null distribution of R remain robust in
the entire class of elliptical distributions which accommodates the correlated t-distribution
as a special case. The result has been generalized for multivariate elliptical distribution by
Joarder and Ali (1992b) for the correlation matrix R. The pdf of R is given by

n—p—2
2

|R
o n—1 B
(‘P‘Hf:l p) 7Ty (nTl)

f(R) = Hn,p(r)

where

=1

(n—3)p [ o0 , P
H,,I)=2""7z / e / (V1vy ... vp)" 27V TY/2 H dv;
0 0

with v = (v1,v2,...vp) and T’ = (p}y., k), pi = W, p** denoting (i, k) th element

of p=! th element for all i,k = 1,2,...,p. Note that Joarder and Ali (1992) reported e~“

instead of e=*/2 in the above integral. For more on robustness of correlation see Joarder

(2006) among others.

5 Estimation of Parameters

5.1 Estimation of Parameters for One population

The maximum likelihood estimators of the parameters p and X of the correlated t-distribution
in (2.7) are given by it = X and s = A/N respectively (see Fang and Anderson, 1990, pp.
201-216). But maximum likelihood estimators in this case are not appealing because most
important properties of maximum likelihood estimators, follow from the independence of
the observations which is not the case for the model in (2.7) for finite value of the shape
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parameter v. The sample mean X is obviously an unbiased and consistent estimator of .
The unbiased estimator of X is given by 3 = A/(v*m), where v* = v/(v—2) and m = N —1
(see Fang and Anderson, pp. 208).

Joarder (1995a) considered the estimation of the scale matrix ¥ of the uncorrelated -
distribution under a squared error loss function. It may be remarked that the scale matrix
3 determines the covariance matrix up to a known constant v*. Joarder and Ahmed (1996)
developed estimation strategy for eigenvalues of 3 of the correlated ¢-distribution given by
(2.7). The estimation of the trace of the scale matrix ¥ under a squared error loss was
considered by Joarder and Beg (1999). The estimation of 3 under a entropy loss function
was considered by Joarder and Ali (1997).

5.2 Estimation of Parameters for Two populations

Consider a two-sample problem i.e. the case of k = 2 in the situation discussed in (2.8).
The equality of mean vectors p; and g, can then be tested by

/8 SN\N'
(X, - X3) (Nl n N2> (X, - %)

where (mq1 + m2)S, = m1S1 + maSy with my = Ny — 1 and mg = N3 —1 . The above
result was derived by Sutradhar (1988a) for a scaled correlated t-distribution obtained by
reparametrizing v*3 by ¥ in (2.7). The following derivation of T2-statistic is based on the
mixture representation of multivariate t-distribution (see e.g. Khan 1997).

By virtue of the mixture representation of (2.5 ), it follows that conditional on w,

% T2 ~ Fyn(64), (5.1)

where F, ,,(d,,) denotes a noncentral F-distribution with parameters p, m = mq+mg—p+1
and 8, = (p; — py) (W?E)~'(py — py). The unconditional distribution of %TQ can be
obtained by completing the following integral

| o 0) bl

where u;, ,(d,) is the p.d.f. of F}, ,,(d,) . It follows from (5.1) that under Hy : pq = py
p
T? ~ = Fpm.
m P
The power function of the test Hy : py = p, against Hy : py # p, was discussed by

Sutradhar (1988a) and Sutradhar (1990).

Khan (1997) considered the estimation of the mean vector of a multivariate ¢-distribution
in the presence of uncertain prior information. The usual MLE, restricted estimator and
preliminary test estimators were considered; he compared their performances under the
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unbiasedness and minimum risk criterion. Several recommendations were made based on the
condition on the departure parameter A. Khan (2004) also investigated the effect of shape
parameters for the shrinkage estimators of the mean vector of multivariate ¢-distribution.
Some properties of shrinkage and the positive-rule shrinkage estimators were discussed by
changing the value of the shape parameter. He also studied the relative performance of
these estimators under different conditions.

6 Linear Regression Models

Zellner (1976) considered univariate linear regression model to analyze stock return data
with errors having a multivariate uncorrelated ¢-distribution. It is King (1980) who laid the
rigorous mathematical foundation of linear regression analysis under broader distributional
assumptions of spherical symmetry which includes uncorrelated t-distribution as a special
case. Prompted by the works of Zellner (1976) and King (1980), many authors used uncor-
related t-distribution for modeling real world data. Sutradhar and Ali (1989) generalized
Zellner’s model with errors having a correlated t-distribution given by (1.7). Lange, Little
and Taylor (1989) applied uncorrelated ¢ -distribution to a variety of situations.

The null distribution of the usual F-statistic in a linear regression model under correlated
t-distribution in (1.7) is robust but the power function depends on the form of (1.7); see
e.g. Sutradhar(1988b,1990) for a detailed proof. For the linear regression model with errors
having an uncorrelated t¢-distribution, it is known (Singh, 1987) that the usual least square
estimator of the vector of regression coefficients is not only the maximum likelihood estimator
but also the unique minimum variance estimator. Singh (1988) also developed methods of
estimation of error variance in linear regression models with errors having an uncorrelated
t-distribution with unknown degrees of freedom.

In most applied as well as theoretical research works, the error terms in linear models are
assumed to be normally and independently distributed. However, such assumptions may
not be appropriate in many practical situation (for example, see Gnanadesikan, 1977 and
Zellner 1976). Tt happens particularly if the error distribution has heavier tails. One can
tackle such situation by using the well known ¢-distribution as it has heavier tail than the
normal distribution, specially for smaller degrees of freedom (e.g. Fama (1965), Blatberg
and Gonedes (1974)).

Because of the above reasons, Sutradhar and Ali (1989), Giles (1991, 1992), Singh (1988,
1991), Kibria (1996, 2004), Kibria and Haq (1999b), Judge et al. (1985), Kibria and Saleh
(2003), and Tabatabaey et al. (2004a, 2004b), among others were motivated to use the
multivariate t-distribution as the error distribution of the linear regression model. They
have considered several pre-test and shrinkage type estimators for estimating the regression
parameters and compared their performance with respect to various loss functions. The
predictive distribution under the multivariate ¢ -distribution was studied by Kibria & Haq
(1998, 1999b) among others. Since the application of the uncorrelated t-distribution is
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increasing in business and econometric studies especially through pre-test and shrinkage
estimation and predictive inference, an updated and comprehensive review is necessary,
which is under the current investigation.
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