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summary

We have employed ms type sampling scheme to propose two unbiased strategies

for estimating the population variance. These strategies have been compared with

certain known ones, and necessary and sufficient conditions have been obtained

for their superior performance as compared to the known ones. An unbiased

variance estimator of the population variance has also been worked out. Real-life

data are shown to yield substantial gains via these strategies.
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1 Introduction

By and large, the estimators of the population variance (based on auxiliary information) that

have been proposed in the literature were not mooted from the point of view of statistical

property of unbiasedness. Although unbiasedness should not be an obsessive property, yet

it is desirable to seek unbiasedness of estimators whenever it is feasible. For the purpose

of obtaining an unbiased estimator of the population variance, we, in this paper, take to

Midzuno-Sen type sampling scheme.
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2 Some Unbiased Estimators of the Population Vari-

ance under Midzuno-Sen Type Sampling Scheme

Consider a finite population of N units in which yi and xi are the measurements in respect

of the study variable y and the auxiliary variable x taken on the ith unit (i = 1, 2, · · · , N)

of the population from which a sample s of size n is drawn according to a certain sampling

design. Let Y and y be the population and the sample means respectively of the study

variable y and let X and x be the population and the sample means respectively of the

auxiliary variable x. We now define the following population and sample quantities:

µr,s = 1/N

N∑

i=1

(xi − X)r(yi − Y )s, mr,s = 1/N

N∑

i=1

xr
i y

s
i

(for any specified r and s),

β2(y) =
µ04

µ2

02

, θ =
µ22

µ02µ20

S2

y =
1

N − 1

N∑

i=1

(yi − Y )2 and s2

y =
1

n − 1

n∑

i=1

(yi − y)2.

We similarly define the quantities β2(x), S2

x and s2

x for the variable x which being based on

the auxiliary information are supposed to be known. Further, later in this paper, we would,

to terms of O

(
1

n

)
, use the following well-known results:

V (s2

y) =
λ

n
S4

y(β2(y) − 1), V (s2

x) =
λ

n
S4

x(β2(x) − 1)

Cov(s2

y, s2

x) =
λ

n
S2

yS2

x(θ − 1),

where λ = N−n
N .

An unbiased estimator of the population variance, under the simple random sampling

without replacement design, say, p0, when no auxiliary variable is used, is given by

t = s2

y (2.1)

Isaki (1983) proposed the ratio-type estimator of the population variance

t0 =
s2

y

s2
x

S2

x (2.2)

which is biased under the sampling design p0. Although Agrawal and Sthapit (1995) alluded

to the sampling designs which render t0 unbiased, but, to terms of O

(
1

n

)
, the variance of t0
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under these designs remains equal to the one under the design p0. Hence, we would continue

to discuss t0 under the design p0.

It is known that, under the Midzuno-Sen sampling scheme, the probability of selecting

a specified sample s is given by

p(s) =
1


N − 1

n − 1




∑

i∈s

pi

where pi is the initial probability of selecting the ith unit. If we consider pi in accordance

with either of the following schemes for a suitably chosen r,

(a) pi α xr
i

and

(b) pi α (xi − X)r,

then we obtain

p1(s) =
1


N

n




m̂r,o

mr,o

for scheme (a) and

p2(s) =
1


N

n




µ̂r,o

µr,o

for scheme (b), where m̂r,o and µ̂r,o are the sample-based quantities corresponding to mr,o

and µr,o. Now, we propose the estimators of the population variance under scheme (a) as

t1 = s2

y

mr,o

m̂r,o
(2.3)

and under scheme (b) as

t2 = s2

y

µr,o

µ̂r,o
(2.4)

Both the estimators t1 and t2 can be verified as being unbiased. For this purpose, we note
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that

Ep1
(t1) =

∑

s∈s

p1(s)t1(s)

=
1


N

n




∑

s∈s

s2

y

= Ep0
(s2

y)

= S2

y .

Similarly, the estimator t2 can be shown to be unbiased.

Denoting the strategies (p0, t), (p0, t0), (p1, t1) and (p2, t2) by D, D0, D1 and D2 respec-

tively, we compare them in the next section.

3 A Comparison of the Competing Strategies

The variance, to terms of O

(
1

n

)
, for the strategy D, when no auxiliary information is used,

is

Vp0
(t) =

λ

n
S4

y [β2(y) − 1]. (3.1)

The mean square error (MSE), to terms of O

(
1

n

)
, of the strategy D0 is given by

MSEp0
(t0) =

λ

n
S4

y [β2(y) + β2(x) − 2θ]. (3.2)

Now, we proceed to obtain the variances of the proposed estimators t1 and t2 (defined by

(2.3) and (2.4)) under the designs p1(s) and p2(s) respectively. For the strategy D1, we can

write

Vp1
(t1) = Ep1

(t2
1
) − S4

y

= mr,0
1


N

n




∑

s∈S

(s4

y/m̂r,0) − S4

y

= mr,0Ep0
(s4

y/m̂r,0) − S4

y

which, after some algebra, is obtainable, to terms of O

(
1

n

)
, as

Vp1
(t1) =

λ

n
S4

y

[
β2(y) +

µ∗
2r,0

µ∗2
r,0

−
2µ∗

r,2

µ∗
0,2µ

∗
r,0

]
(3.3)
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where µ∗
r,s =

1

N

N∑

i=1

xr
i (yi − Y )s.

In a similar manner to the above, we can work out the variance, to terms of O

(
1

n

)
, for the

strategy D2 as

Vp2
(t2) =

λ

n
S4

y

[
β2(y) +

µ2r,0

µ2

r,0

−
2µr,2

µ0,2µr,0

]
(3.4)

Now, by setting (yi −Y )2 = wi, (xi −X)2 = ui, xr
i = v∗

i and u
r/2

i = vi, the various variance

expressions given by (3.1), (3.2), (3.3) and (3.4) can be expressed respectively as

Vp0
(t) =

λ

n
W

2

C2

0
(3.5)

Vp0
(t0) =

λ

n
W

2

(C2

0
+ C2

1
− 2ρ0C0C1), (3.6)

Vp1
(t1) =

λ

n
W

2

(C2

0
+ C2

2
− 2ρ1C0C2), (3.7)

and Vp2
(t2) =

λ

n
W

2

(C2

0
+ C2

3
− 2ρ2C0C3) (3.8)

where C0, C1, C2 and C3 are the coefficients of variation of w, u, v∗ and v respectively and

ρ0, ρ1 and ρ2 are the coefficients of correlation between w and u, w and v∗, and w and v

respectively.

Needless to say, for employing the strategies D1 and D2, a proper choice of r has to be

made. Regarding the relative performance of the competing strategies D, D0, D1 and D2,

we can, based on the relevant variances given by (3.5), (3.6), (3.7) and (3.8), arrive at the

following conclusions:

(i) The strategy D0 scores over the strategy D if and only if

ρ0 ≥
1

2

C0

C1

;

(ii) The strategy D1 performs better than D2 if and only if

1

2

C3

C0

(
C2

2

C2

3

− 1

)
−

(
ρ1

C2

C3

− ρ2

)
≤ 0;

(iii) The strategy D1 will outperform the strategy D0 if and only if

1

2

C1

C0

(
C2

2

C2

1

− 1

)
−

(
ρ1

C2

C1

− ρ0

)
≤ 0;

while the strategy D2 performs better than the strategy D0 if and only if

1

2

C1

C0

(
C2

3

C2

1

− 1

)
−

(
ρ2

C3

C1

− ρ0

)
≤ 0
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and

(iv) The strategy D1 fares better than the strategy D if and only if

ρ1 ≥
1

2

C2

C0

;

while the strategy D2 scores over the strategy D if and only if

ρ2 ≥
1

2

C3

C0

.

4 Unbiased Variance Estimation

To obtain an unbiased estimator, under the design p1, of the variance of t1, we write

Vp1
(t1) = Ep1

(t2
1
) − S4

y

which yields

V̂p1
(t1) = t2

1
− Ŝ4

y . (4.1)

Now S4

y can be expressed as

S4

y =
1

(N − 1)2

[ N∑

i=1

y4

i − 2NY
2

N∑

i=1

y2

i + N2Y
4

N∑

i6=j

y2

i y2

j

]

=
1

N2(N − 1)2

[
(N − 1)2

N∑

i=1

y4

i − 4(N − 1)

N∑

i6=j

y3

i yj + (N2
− 2N + 3)

N∑

i6=j

y2

i y2

j

−2(N − 3)

N∑

i6=j 6=k

y2

i yjyk +

N∑

i6=j 6=k 6=l

yiyjykyl

]
(4.2)

Since, under the design p1, we have

Ep1

[
N

n

n∑

i=1

mr,0

m̂r,0
y4

i

]
=

N∑

i=1

y4

i ,

Ep1

[
N(N − 1)

n(n − 1)

n∑

i6=1

y2

i y2

j

mr,0

m̂r,0

]
=

N∑

i6=1

y2

i y2

j

and so on, we can, thus, replace all the terms of the right hand side of (4.2) by the respec-

tive unbiased estimating quantities and then, after some algebra, we obtain an unbiased

estimator of S4

y as

Ŝ4

y =
1

AN(N − 1)

mr,0

m̂r,0

[
C

n∑

i=1

(
y2

i −

n∑

i=1

y2

i /n

)2

+4C

{( n∑

i=1

y2

i

)2

/n − y
n∑

i=1

y3

i

}
+Bs4

y

]
(4.3)
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where A = (n − 1)(n − 2)(n − 3)

B = n(n − 1)2(N − 2)(N − 3)

C = (N − n)(N + n + 1 − Nn)

which, to terms of O

(
1

n

)
, can be expressed as

Ŝ4

y =
mr,0

m̂r,0

[(
1 +

4λ

n

)
s4

y −
λ

n2

n∑

i=1

(
y2

i −

n∑

i=1

y2

i /n

)2

−
4λ

n2

{( n∑

i=1

y2

i

)2

/n − y

n∑

i=1

y3

i

}]
, (4.4)

and the same is then inserted in (4.1) to obtain the requisite variance estimator of t1.

In a similar manner to the above, we obtain, under the sampling design p2, an unbiased

estimator of S4

y if we replace mr,0 and m̂r,0 by µr,0 and µ̂r,0 respectively, and hence the

variance estimator of t2.

5 Empirical Investigation

To illustrate the potential gain that might accrue from the use of the proposed strategies

D1 and D2 over the known ones, viz., D and D0, we consider the following Data-Sets:

Data-Set 1: We consider first fifty four (1-54) observations from Murthy (1967, p.178) and

the following quantities are obtained therefrom:

N = 54, β2(y) = 3.799, β2(x) = 2.012, θ = 1.627,
MSE(t0)

λ
nS4

y

= 2.557,
V (t)
λ
nS4

y

= 2.799,

V (t1)
λ
nS4

y

= 2.209 (for r = 4) and
V (t2)
λ
nS4

y

= 2.557 (for r = 2).

Data-Set 2: We refer to the data available in Kish (1965, p.213, Ex.6.6). However, treating

the given data as unclustered, we compute the following quantities therefrom:

N = 17, β2(y) = 10.078, β2(x) = 3.979, θ = 5.687,
MSE(t0)

λ
nS4

y

= 2.683,
V (t)
λ
nS4

y

= 9.078,

V (t1)
λ
nS4

y

= 0.370 (for r = 7) and
V (t2)
λ
nS4

y

= 0.382 (for r = 4).

Data-Set 3: We refer to the data available in Singh and Choudhary (1989, p.141) and have

computed the following quantities:

N = 22, β2(y) = 13.257, β2(x) = 5.579, θ = 7.713,
MSE(t0)

λ
nS4

y

= 3.410,
V (t)
λ
nS4

y

= 12.257,

V (t1)
λ
nS4

y

= 0.524 (for r = 7) and
V (t2)
λ
nS4

y

= 0.528 (for r = 6).

In respect of the above Data-Sets, we compute the following percent gains
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G1 =

[
V (t)

V (t1)
− 1

]
×100

G′
1

=

[
MSE(t0)

V (t1)
− 1

]
×100

G2 =

[
V (t)

V (t2)
− 1

]
×100

G′
2

=

[
MSE(t0)

V (t2)
− 1

]
×100

and presented them in the following table:

Table 1: Percent gains of t1 and t2 relative to t and t0

Data-Set G1 G′
1

G2 G′
2

1 26.71 (4∗) 15.75 (4∗) 9.46 (2∗) 0 (2∗)

2 2353.51 (7∗) 625.14 (7∗) 2276.44 (4∗) 602.36 (4∗)

3 2239.12 (7∗) 550.76 (7∗) 2221.40 (6∗) 545.83 (6∗)

(* indicates choice of r)

Table 1 bears it out that, for the estimating the population variance, the newly proposed

strategies, D1 and D2 that make use of Midzuno-Sen type sampling schemes are, apart from

being unbiased, capable of yielding substantial, gains in precision as compared to the known

strategies D and D0. However, between D1 and D2, the former is slightly better than the

latter.
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