
Journal of Statistical Research ISSN 0256 - 422 X

2006, Vol. 40, No. 2, pp. 29-39

Bangladesh

BAYESIAN ANALYSIS OF P [Y < X] IN ITS LIMITING FORM

K. K. Sharma

Department of Statistics, C.C.S.University, Meerut 250005, UP, India.
Email: sharmakkstat@rediffmail.com

Bhupendra Singh

Department of Statistics, C.C.S.University, Meerut 250005, UP, India
Email: bhupendra.rana@gmail.com

Shubhi Rathi

Department of Statistics, C.C.S.University, Meerut 250005, UP, India
Email: shubhi.rathi@gmail.com

summary

The persent study deals with the Bayesian estimation of the remodeled stress-
strength system reliability, P [Y < X]. Here, X and Y represent strength and
stress variables respectively.The random variables X and Y have been respec-
tively redefined as U = min(X1, X2, . . . , Xm) and V = max(Y1, Y2, . . . , Yn) to
conceptualize the concept of limiting stress-strength reliability, P [V < U ], for
meeting the requirements of the systems in defense. For such systems, the de-
signer wishes to attach high probability to the event that the system remains
operable at its minimum strength encountering with the maximum stress.

Keywords and phrases: Stress-strength reliability model, Limiting reliability
model, Bayesian analysis, Squared error loss function, Linex loss function.

1 Introduction

Studies in [2, 4, 5, 6, 7, 8] dealt with the classical estimation of stress-strength reliability,

P [Y < X]. This reliability model, known as the stress-strength model, is concerned with

reliability of a component’s strength X subject to a stress Y . Assuming prior variations in

the parameters of the strength and stress variables, the study in [3] analyzed the problem

of estimating P [Y < X] in the Bayesian framework. The study considered the multi-

component stress-strength system which functions if at least s out of k identical components

simultaneously operate. Exact and approximate asymptotic posterior distributions for the

reliability are derived when stress and strength variables are assumed to be independently

exponentially distributed.

However, in practice, especially in defense, the designers and reliability engineers wish

to attach high probability to the event that the system remains operable at its minimum

strength encountering maximum stress at that time epoch subject to the following practical

considerations:
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1. The strength of the system deteriorates with time.

2. The system experiences increasing trend in stress due to advancements in science and

technology.

Thus, to meet the objective of designers and reliability engineers, it makes sense to con-

ceptualize the limiting stress-strength reliability, P [V < U ], where U = min(X1,X2, . . . ,Xm)

and V = max(Y1, Y2, . . . , Yn). Here, it is assumed that a system’s strength and stress are

measurable during its operation at m and n random time epochs respectively. Accordingly,

the limiting stress-strength reliability defines the probability that the system will function

successfully till its minimum strength exceeds the maximum stress encountered during its

operation.

Further, variations in material and manufacturing processes give random character to

the strength variable that is assumed to be continuous in nature, whereas advancements in

technology and environmental variations introduce randomness to stress variable, which is

considered to be discrete. As an example, we consider bunkers or tanks that are bombed

by aeroplanes with the assumption that a single direct hit after some failures is enough to

damage the target. Here, bunkers or tanks have continuous strength X which is subjected

to discrete stress Y.

In view of the above discussion, the present study gives a Bayesian treatment to the

limiting stress-strength reliability, P[V<U]. Initially, the squared error loss function (SELF),

symmetric in nature, has been used in the analysis.However, recognizing the fact that over-

estimation of the reliability function is more serious than its under-estimation, therefore, the

LINEX (linear-exponential) loss function, which is asymmetric in nature, is used to counter

this situation. The theoretical results are highlighted with examples. For analyzing the

data, relevant computer programs in C++ are developed and available with the authors.



Bayesian Analysis of . . . 31

2 Notation

X Strength variable.

Y Stress variable.

<x> Least positive integer value greater than x.

(X1,X2, ....,Xm) Measures on X.

(Y1, Y2, ...., Yn) Measures on Y.

U min[X1,X2, ....,Xm].

<u> Least positive integer value greater than u.

V max[Y1, Y2, ...., Yn].

u
¯

= (u1, u2, ...., un1
) Simulated sample information on U.

v
¯

= (v1, v2, ....., vn2
) Simulated sample information on V.

p.d.f. Probability density function.

p.m.f Probability mass function.

SELF Squared error loss function.

LINEX Linear exponential.

LLF Linex loss function.

R1 P [Y<X].

R2 P [V<U].

R ∗1S (R∗1L) Bayes estimates of R1 when SELF (LLF) is used.

R ∗2S (R∗2L) Bayes estimates of R2 when SELF (LLF) is used.

3 Statistical Background

It is assumed that-

(a) The r.v X follows exponential distribution with p.d.f

f1(x, θ) =
1

θ
exp(−

x

θ
) ;x>0 , θ>0. (3.1)

(b) The r.v Y, the number of failures before the first success, has the geometric distribution

with p.m.f.

P [Y = y] = qyp ; 0 < p < 1 , y = 0, 1, 2, .... (3.2)

Here, p is the probability of success. Here, success means hitting the target, and q=(1-p),

probability of failure, i.e., not hitting the target.
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(c) In view of (a), the p.d.f. of the r.v. U will be

f2(u, θ) =
m

θ
exp(−

mu

θ
) ;u>0 , θ>0. (3.3)

E(u) =
θ

m
V ar(u) = (

θ

m
)2.

(d) In view of (b), the p.m.f. of the r.v. v will be

P [V = v] =

n
∏

i=1

P [Yi≤ v] −

n
∏

i=1

P [Yi≤ v − 1]

= (1 − qv+1)n − (1 − qv)n ; o < q < 1 ; p = 1 − q , v = 0, 1, 2, .... (3.4)

(e) θ is a r.v. with inverted gamma prior having p.d.f.

h1(θ) =
abe−

a

θ

θb+1Γ(b)
(3.5)

E(θ) =
a

(b − 1)
; b > 1 , V (θ) =

a2

(b − 1)2(b − 2)
; b > 2.

(f) p is a r.v. with Beta one prior having p.d.f.

h2(p) =
pc−1(1 − p)d−1

B(c, d)
; (c, d) > 0 , 0 < p < 1. (3.6)

E(p) =
c

(c + d)
, V (p) =

cd

(c + d)2(c + d + 1)
.

(g) L(θ, θ̂) be the loss incurred in estimating θ by the statistic θ̂. Then, a function defined

as

L(θ, θ̂) = k(θ − θ̂)2 ; (k being a constant). (3.7)

is called a quadratic loss function. For k = 1, (3.7) reduces to a SELF. The SELF is

a symmetric function of θ̂ and θ and gives equal weightage to both over-estimation and

under-estimation of the parameter. But symmetric loss functions are not found suitable in

the estimation of reliability characteristics.

For accounting such over and under-estimation, asymmetric loss functions have been pro-

posed in the literature. In the process, the study in [1] considered linear asymmetric loss

functions. Further, the studies in [9, 10] introduced an asymmetric convex loss function

called as LINEX (linear exponential) that has the following form:

L(∆) = beq1∆ − c∆ − b ; q1 6= 0, c 6= 0, b > 0. (3.8)
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Here,∆ = (θ − θ̂)denote the scalar estimation error in using θ̂ to estimate θ. It is seen that

L (0) = 0. Also, for a minimum to exist at ∆ = 0, we must have (q1b) = c and thus (3.8)

can be re-expressed as

L(∆) = b[eq1∆ − q1∆ − 1] ; q1 6= 0, b > 0. (3.9)

There are the two parameters, q1 and b, involved in (3.9) with b serving to scale the loss

function and q1 serving to determine its shape.

4 R1 and R2 in parametric terms

In view of the respective distributions of X and Y in (3.1) and (3.2), one gets-

R1 =

∫

∞

o

[

<x>−1
∑

y=0

P [Y = y]

]

f1(x, θ)dx

=

∞
∑

j=1

∫ j

j−1

[

j−1
∑

y=0

P [Y = y]

]

f1(x, θ)dx

=

∞
∑

j=1

j−1
∑

y=0

[

∫ j

j−1

1

θ
exp(−

x

θ
)dx

]

qyp

= p

(

exp(
1

θ
) − 1

)

∞
∑

j=1

j−1
∑

y=0

qyexp(−
j

θ
).

=

[

p

1 − q exp(− 1
θ
)

]

(4.1)

Similarly, on using the respective distributions of U and V in (3.3) and (3.4), one gets-

R2 =

∫

∞

o

[

<u>−1
∑

v=0

P [V = v]

]

f2(u, θ)du

=

[

exp(
m

θ
) − 1

]

n
∑

k=0

(−1)k(n
k )

qk

[

exp(m
θ

) − qk

] . (4.2)

For n=m=1, R2 in (4.2) equals in (4.1).
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5 Bayes estimates of R1 and R2 when SELF is used

In view of (3.3) and (3.5) and for the simulated sample information u
¯
, the posterior p.d.f.

of θ becomes

Π1(θ | u
¯
) =

L(u
¯
| θ)h1(θ)

∫

∞

0
L(u

¯
| θ)h1(θ)dθ

=

exp

[

− (mn1ū+a)
θ

]

(mn1ū + a)n1+b

θn1+b+1Γ(n1 + b)
; θ > 0, ū > 0. (5.1)

Here, L(ū | θ) is the liklihood function and ū is the sample mean.

Similarly, in view of (3.4), (3.6) and simulated sample information v
¯
, the posterior p.d.f. of

p will be

Π2(p | v
¯
) =

L(v
¯
| p)h2(p)

∫ 1

0
L(v

¯
| p)h2(p)dp

=

∏ n2

s=1

[

(1 − qvs+1)n − (1 − qvs)n

]

pc−1(1 − p)d−1

∫ 1

0

∏ n2

s=1

[

(1 − qvs+1)n − (1 − qvs)n

]

pc−1(1 − p)d−1dp

; 0 < p < 1, q = 1 − p. (5.2)

On using the respective posterior distributions of θ and p in (5.1) and (5.2), the Bayes

estimates of R2 becomes

R∗

2S =

∫

∞

0

∫ 1

0

R2 π1(θ | u
¯
)π2(p | v

¯
)dθdp

=

∫

∞

0

∫ 1

0

[

exp(
m

θ
) − 1

]

n
∑

k=0

(−1)k(n
k )

qk

[

exp(m
θ

) − qk

]exp

[

−

(

mn1ū + a

θ

)]

.

.
(mn1ū + a)n1+b

θn1+b+1Γ(n1 + b)

∏ n2

s=1

[

(1 − qvs+1)n − (1 − qvs)n

]

pc−1(1 − p)d−1dpdθ

∫ 1

0

∏ n2

s=1

[

(1 − qvs+1)n − (1 − qvs)n

]

pc−1(1 − p)d−1dp

. (5.3)

In particular, when n=m=1, then (5.3) reduces to

R∗

1S =

∫

∞

0

∫ 1

0

R1 π1(θ | x
¯
)π2(p | y

¯
)dθdp

=

∞
∑

r=0

B(n2 + c + 1, n2ȳ + d + r)

B(n2 + c, n2ȳ + d)

(

1 + r
n1x̄+a

)n1+b
. (5.4)
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6 Bayes estimates of R1 and R2 when LLF is used

On using the respective posterior distributions of θ and p in (5.1) and (5.2), the Bayes

estimate of R2 becomes

R∗

2L =
−1

q1
In E

[

exp(−q1R2)
]

=
−1

q1
In

[

∫

∞

0

∫ 1

0

∞
∑

r=0

(−q1)
r

r!

[(

exp(
m

θ
) − 1

)

n
∑

k=0

(−1)k(n
k )

qk

(

exp(m
θ

) − qk

)

]r

.

.exp

[

−

(

mn1ū + a

θ

)]

(mn1ū + a)n1+b

θn1+b+1Γ(n1 + b)

∏ n2

s=1

[

(1 − qvs+1)n − (1 − qvs)n

]

pc−1(1 − p)d−1dpdθ

∫ 1

0

∏ n2

s=1

[

(1 − qvs+1)n − (1 − qvs)n

]

pc−1(1 − p)d−1dp

.

(6.1)

For n=m=1, equation (6.1) reduces to

R∗

1L =
−1

q1
In

[

∫

∞

0

∫ 1

0

∞
∑

r=0

(−q1)
r

r!

[

p

1 − q exp(− 1
θ
)

]r
exp
(

−n1x̄+a
θ

)

B(n1 + c, n2ȳ + d)
.

.
(n1x̄ + a)n1+bpn2+c+1(1 − p)n2ȳ+d−1dpdθ

θn1+b+1Γ(n1 + b)
. (6.2)

7 Discussion

While developing systems, equipments and establishments in defense, the designer has to

meet the objective of attaching high probability to the event that the system remains oper-

able at minimum strength encountering with the maximum stress. For meeting the above-

mentioned objective, the concept of a limiting stress-strength reliability model has been

introduced. Initially, in section 4.0, R1 and R2 have been defined in parametric terms.

Later, on using the past sample information, Bayes estimates of R1 and R2 with SELF and

LLF are respectively obtained in sections 5.0 and 6.0.

8 An Example

For analyzing the respective values of R1 and R2 in respect of m, n and involved parameters,

we assume θ = 24 and q = 0.4 and 0.8. Using the expressions in (4.1) and (4.2), the values

for R1 and R2 for varying m, n and q = (1-p) are summarized in Table-1. For developing

Bayes estimates, i.e, R∗

2S , R∗

1S , R∗

2L and R∗

1L , as given in sections 5.0 and 6.0, we
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Table 1: R1 and R2 for varying m, n and q

q=0.4

n

m 1 2 10

1 0.974 0.955 0.895

2 0.949 0.914 0.804

3 0.927 0.877 0.724

q=0.8

n

m 1 2 10

1 0.860 0.790 0.610

2 0.758 0.640 0.383

3 0.680 0.533 0.250

(i) Generated samples of sizes n1 and n2 from the distributions in (3.3) and (3.4).

(ii) Developed relevant computer programs in C++ and available with the authors.

The respective estimated values, i.e., R∗

2S , R∗

1S , R∗

2L and R∗

1L, for varying and fixed sets of

parameters have been summarized in Table-2.

9 Analysis

Here, it should be recognized that the intensity of strength and stress mainly depends on the

parameters involved in their respective distributions. For example, θ for the distribution in

(3.1) stands for the mean strength. Similarly, p for the distribution in (3.2) stands for the

probability of hitting the target. Obviously, the designer has to monitor the trends in the

estimated values of the remoduled reliability with variations in these parameters. Similarly,

for meeting the objective in the Bayesian set-up, the trends in estimated reliabilities can be

monitored in respect of the variations in the means of the respective priors of θ and p, i.e.

E(θ) and E(p). Studying the trends from tables, we conclude that:

(i) R1, R2 and their Bayes estimates under both the loss functions tend to decrease uniformly

as q, the probability of not hitting the target, increases.

(ii) R1, R2 and their Bayes estimates under both the loss functions tend to increase uniformly

as E(θ), i.e. mean strength increases.

(iii) R∗

1S , R∗

2S tend to increase uniformly as the means of the respective priors in (3.5) and

(3.6) increase. The same trends are observed in R∗

1L and R∗

2L.

(iv) R∗

1L(R∗

2L) tends to R∗

1S (R∗

2S) as q1→0

In this way, by analyzing the above trends, the designer can make a trade off between R1,

R2,R
∗

1S , R∗

2S , R∗

1L and R∗

2L and q, n, m, E(θ) , E(p), etc. to meet his system reliability

goals. Note that, some of the tables showing these trends could not be included due to space

restriction. However, the same are available on request.
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Table 2: Bayes estimates, R∗

1S , R∗

2S , R∗

1L and R∗

2L, for fixed n1=5[10], n2=4, E(θ)=24,
v[1]=0, v[2]=2, v[3]=2, v[4]=1 (when n=2), v[1]=2, v[2]=5, v[3]=2, v[4]=1 (when n=10),
v[1]=1, v[2]=1, v[3]=3, v[4]=0 (when n=1) for [q=0.4] and varying m, n, E(p) and ū

m=1, ū=23.467 m=3, ū=8.076

24.605] [7.7924]

E(p) n R∗

1Sand R∗

1Land R∗

1L and R∗

2S R∗

2Lat R∗

2Lat

R∗

2S R∗

2Lat R∗

2Lat q1=0.1 q1=0.00001

q1=0.1 q1=0.00001

0.2 1 0.88 0.921 0.88 0.74 0.769 0.74

[0.895] [0.938] [0.895] [0.75] [0.78] [0.75]

2 0.877 0.918 0.877 0.715 0.742 0.715

[0.89] [0.932] [0.89] [0.72] [0.747] [0.72]

10 0.845 0.883 0.845 0.633 0.654 0.633

[0.86] [0.899] [0.86] [0.64] [0.661] [0.64]

0.6 1 0.945 0.993 0.945 0.87 0.91 0.87

[0.951] [0.999] [0.951] [0.882] [0.923] [0.882]

2 0.94 0.987 0.94 0.844 0.882 0.844

[0.944] [0.992] [0.944] [0.848] [0.886] [0.848]

10 0.886 0.928 0.886 0.717 0.744 0.717

[0.90] [0.943] [0.90] [0.723] [0.751] [0.723]

0.9 1 0.956 1.00 0.956 0.89 0.932 0.89

[0.96] [1.00] [0.96] [0.894] [0.937] [0.894]

2 0.948 0.996 0.948 0.87 0.91 0.87

[0.954] [1.00] [0.954] [0.873] [0.914] [0.873]

10 0.89 0.932 0.89 0.733 0.761 0.733

[0.901] [0.944] [0.901] [0.764] [0.795] [0.764]


