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summary

In this paper we investigate the asymptotic properties of various estimators of
autocorrelation parameter of an ARMA(1,1) model when uncertain non–sample
prior information on the moving average component is available. In particular we
study the preliminary test and the shrinkage estimators of the autocorrelation pa-
rameter and we compare their efficiency with respect to the maximum likelihood
estimator designated as the unrestricted estimator. It is shown that near the prior
information on MA–parameter, both preliminary test and shrinkage estimators
are superior to the MLE while they lose their superiority as the MA–parameter
moves away from the prior information although preliminary test estimator gains
its efficiency to some extent but the shrinkage estimator attains its lower bound
of its efficiency.
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1 Introduction

Classical estimators of unknown parameters are based exclusively on the sample data. The

notion of non–sample information has been introduced to improve the quality of the es-

timators. We expect that the inclusion of additional information would lead to a better

estimator. Since the seminal work of Bancroft (1944) on preliminary test estimators, many

papers in the area of the so–called improved estimation have been published. Stein (1956,

1981) developed the shrinkage estimator for multivariate normal population and proved that

it performs better than the usual maximum likelihood estimator in terms of the square error

loss function. Saleh (2006) explored these two classes of improved estimators in a variety

of contexts in his recent book. Many other researchers have been working in this area,
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notably Sclove et al. (1972), Judge and Bock (1978), and Efron and Morris (1972, 1973).

This type of analysis is also useful to control overmodelling of specific models in question.

More specific reasons and benefits of such analysis may be found in the recent book of Saleh

(2006). To the best of our knowledge, these alternative estimators have not yet been applied

to ARMA model parameter estimation.

We consider the ARMA(1,1) model given by

Xt − ρXt−1 = εt − αεt−1. (1.1)

where εt are i.i.d. N (0, σ2).

We are interested in the estimation of the autoregressive parameter ρ when it is suspected

but one is not sure that α = α0. Such a situation may arise when there is prior information

that α = α0 or is very close to α0 and we want to reduce the number of parameters to be

estimated in the model (1.1) and still improve on estimating ρ with better efficiency. More

specifically we consider four estimators, namely 1) maximum likelihood estimator MLE, ρ̃n

(the unrestricted estimator); 2) restricted estimator, ρ̂n which generally performs better

than the MLE when α is equal to α0 (or very close to it), but if α is away from α0 the

restricted estimator may be considerably poorer than the MLE. (see (Saleh, 1992) in the

over–modeling context); 3) the preliminary test estimator PTE, ρ̂PT
n . This estimator may

be useful in case of uncertainty about the prior information α = α0. We attempt to strike

a compromise between ρ̃n and ρ̂n via an indicator function depending on the size γ of the

preliminary test on α and 4) the shrinkage estimator ρ̂S
n (see saleh (2006)), which is basically

a smoothed version of the PTE.

We obtain explicit forms of the asymptotic distributional bias (ADB) and the asymptotic

distributional MSE (ADMSE) of each of these estimators. We give a detailed comparison

study of the relative efficiency of these estimators.

Put

h(z) = 1 − ρz and g(z) = 1 − αz

and assume that |ρ| and |α| are less than 1. We know (see (Dzhaparidze 1986)) that the

spectral density of the process Xt is given by

f(λ) =
σ2

2π

∣

∣

∣

g(z)

h(z)

∣

∣

∣

2

with z = eiλ

Its covariance function r(k) satisfies the recurrence equation

r(k) − ρr(k − 1) = 0, k = 2, 3, . . .

Let θ = (ρ, α, σ2)′ be the unknown parameter of the ARMA(1,1) model in (1.1). The
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maximum likelihood estimator MLE (ρ̃n, α̃n, σ̃2
n) of θ satisfies

∫ π

−π

In(λ)|h(z)|2|g(z)|−4
[

cosλ − α̃n

]

dλ = 0 (1.2)

∫ π

−π

In(λ)|g(z)|−2
[

cosλ − ρ̃n

]

dλ = 0 (1.3)

and σ̃2
n =

∫ π

−π

In(λ)|1 − ρ̃n|2|1 − α̃n|2dλ (1.4)

where

In(λ) =
∣

∣

∣

n
∑

j=1

Xje
ijλ
∣

∣

∣

2

is the periodogram of X1, X2, . . . , Xn.

The limit of the Fisher information matrix is given by

Γθ =











1
1−ρ2

−1
1−ρα 0

−1
1−ρα

1
1−α2 0

0 0 1
2σ4











If we write θ = (θ1, θ2, θ3), each entry (j, k) of Γθ corresponds to

1

4π

∫ π

−π

∂

∂θj
ln f(λ)

∂

∂θk
ln f(λ)dλ

For example the value −(1− ρα)−1 in Γθ is obtained as equal to

1

4π

∫ π

−π

∂

∂α
ln f(λ)

∂

∂ρ
ln f(λ)dλ,

using the variable change z = eiλ, and taking γ = {z : |z| = 1} and applying the residuals

theorem.

The covariance matrix of (ρ̃n, α̃n, σ̃2
n) is given by

Σn =
1

n(ρ − α)2








(1 − ρ2)(1 − ρα)2 (1 − ρ2)(1 − α2)(1 − ρα) 0

(1 − ρ2)(1 − α2)(1 − ρα) (1 − α2)(1 − ρα)2 0

0 0 2σ4(ρ − α)2









+o(1/n).

Also we know (see (Dzhaparidze 1986)) that as n → ∞,




√
n(ρ̃n − ρ)

√
n(α̃n − α)



 =⇒ N (0, Σ) (1.5)
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where

Σ =
1

(ρ − α)2





(1 − ρ2)(1 − ρα)2 (1 − ρ2)(1 − α2)(1 − ρα)

(1 − ρ2)(1 − α2)(1 − ρα) (1 − α2)(1 − ρα)2



 . (1.6)

If we approximate the vector
√

n(ρ̃n−ρ, α̃n−α)′ by its asymptotic normal distribution with

the previous matrix we get after some calculations

E(ρ̃n − ρ|α̃n − α) =
1 − ρ2

1 − ρα
(α̃n − α) (1.7)

and

E
[

Var(ρ̃n|α̃n − α)
]

= (1 − ρ2). (1.8)

The equality (1.7) suggests one to consider the restricted estimator of ρ when α = α0 as

ρ̂n = ρ̃n − 1 − ρ̃2
n

1 − ρ̃nα0
(α̃n − α0). (1.9)

Now due to uncertainty that α = α0, we test H0: α = α0 versus Ha: α 6= α0 based on the

test–statistic

Ln =
n(α̃n − α0)

2(ρ̃n − α0)
2

(1 − α2
0)(1 − ρ̃nα0)2

=
n(α̃n − α0)

2(ρ − α0)
2

(1 − α2
0)(1 − ρα0)2

+ oP (1) (1.10)

which under H0 and given (1.5) and (1.6), has asymptotically a χ2
1 distribution.

Next we define the preliminary test estimator (PTE) as

ρ̂PT
n = ρ̂n1I{Ln<χ2

1
(γ)} + ρ̃n1I{Ln≥χ2

1
(γ)} (1.11)

= ρ̃n − (ρ̃n − ρ̂n)1I{Ln<χ2
1
(γ)}

= ρ̃n − 1 − ρ̃2
n

1 − ρ̃nα0
(α̃n − α0)1I{Ln<χ2

1
(γ)}

= ρ̃n − 1 − ρ2

1 − ρα0
(α̃n − α0)1I{Ln<χ2

1
(γ)} + oP (1)

Instead of making extreme choices between ρ̂n and ρ̃n using the PTE, a nicer compro-

mise would be a smooth choice that depends on the value of Ln. This can be reached by

considering

ρ̂S
n = ρ̃n − (ρ̃n − ρ̂n)

c√Ln

where c is some constant

= ρ̃n − c(1 − α2
0)

1/2(1 − ρ̃2
n)√

n|ρ̃n − α0||α̃n − αo|
(α̃n − α0) (1.12)

= ρ̃n − c(1 − α0)
1/2(1 − ρ2)√

n|ρ − α0||α − α0|
(α̃n − α0) + oP (1/

√
n)
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2 Bias and MSE under Contiguous Alternatives

We consider the alternative Hn : αn = α0 + δ√
n

where δ 6= 0. We give two theorems: one

for the bias and the other one is for the MSE.

Theorem 1. We have

√
n(α̃n − α0) =⇒ N

(

δ,
1

(ρ − α0)2
(1 − α2

0)(1 − ρα0)
2
)

(2.1)

i)

lim
n→∞

E[
√

n(ρ̃n − ρ)] = 0

ii)

lim
n→∞

E
[√

n(ρ̂n − ρ)
]

= lim
n→∞

E
[√

n(ρ̃n − ρ
]

− lim
n→∞

E

[ 1 − ρ̃2
n

1 − ρ̃nα0

√
n(α̃n − αo)

]

= 0 − 1 − ρ2

1 − ραo
δ = − 1 − ρ2

1 − ραo
δ = −C(ρ, α0)∆

where we put

C(ρ, α0) =
(1 − ρ2)(1 − α0)

1/2

ρ − α0
and ∆ =

δ(ρ − α0)

(1 − α2
0)

1/2(1 − ρα0)

iii)

lim
n→∞

E
[√

n(ρ̂PT
n − ρ)

]

= −C(ρ, α0)∆H3(χ
2
1(γ), ∆2)

where Hm(x, ∆2) denotes the cdf at x of a noncentral χ2 distribution with m degrees of free-

dom and noncentrality parameter ∆2/2 and where χ2
m(γ) is the γ–level critical value under

Hm(x, 0).

iv)

lim
n→∞

E
[√

n(ρ̂S
n − ρ)

]

= −c(1 − α2
0)

1/2(1 − ρ2)

|ρ − α0|
[2Φ(∆) − 1] = −c|C(ρ, α0)|[2Φ(∆) − 1]

where Φ is the cdf of the standard normal distribution.

Theorem 2.

i) lim
n→∞

E
[

n(ρ̃n − ρ)2
]

=
1

(ρ − α0)2
(1 − ρ2)(1 − ρα0)

2

and hence

AVar(
√

n(α̃n) =
1

(ρ − α0)2
(1 − α2

0)(1 − ρα0)
2

=
1 − α2

0

1 − ρ2
AVar(

√
nρ̃n), (2.2)
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ii)

lim
n→∞

E
[

n(ρ̂n − ρ)2
]

= (1 − ρ2) + C2(ρ, α0)∆
2

iii)

lim
n→∞

E
[

n(ρ̂PT
n − ρ)2

]

= Var(
√

nρ̃n)
[

1 − K(ρ, α0)
{

H3(χ
2
1(γ), ∆2)

−∆2
(

H3(χ
2
1(γ), ∆2) − H5(χ

2
1(γ), ∆2)

)}]

where for a random variable Yn, AVar(Yn) represents the asymptotic variance and

K(ρ, α0) =
(1 − ρ2)(1 − α2

0)

(1 − ρα0)2

vi)

lim
n→∞

E
[

n(ρ̂S
n − ρ)2

]

= AVar(
√

nρ̃n)

[

1 + K(ρ, α0)
(1 − ρα0)

2

(ρ − α0)2
2

π

(

1 − 2e−∆2/2
)

]

Proof. (Theorem 1)

Of course (2.1) is straightforward from (1.5).

i) follows from (1.7).

ii) Obvious.

iii) We use the following result: (see Judge and Bock (1978) and Saleh (2006)). If Z ∼
N (∆, 1) then

E(Zf(Z2)) = ∆E
[

f(χ2
3(∆

2))
]

(2.3)

and

E(Z2f(Z2)) = E
[

f(χ2
3(∆

2))
]

+ ∆2
E
[

f(χ2
5(∆

2))
]

(2.4)

We will use these equalities with the function

f(Z) = 1I{Z<χ2
1
(γ)}

and referring to (1.5),

Z =
(ρ − α0)

√
n(α̃n − α0)

(1 − α2
0)

1/2(1 − ρα0)
=
[

AVar(
√

nα̃n)
]−1/2√

n(α̃n − α0) (2.5)

That is, asymptotically Z ∼ N (∆, 1). We obtain

lim
n→∞

E
[√

n(ρ̂PT
n − ρ)

]

= − 1 − ρ2

1 − ρα0
lim

n→∞
E

[

(
√

n(α̃n − α0)1I{Ln<χ2
1
(γ)}

]

= − 1 − ρ2

1 − ρα0

(1 − α2
0)

1/2(1 − ρα0)

(ρ − α0)
∆H3(χ

2
1(γ), ∆2)

= −C(ρ, α0)∆H3(χ
2
1(γ), δ2).
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vi) Let U be a standard normal distribution. iv) follows from

E

( α̃n − α0

|α̃n − α0|
)

= P
[√

n(α̃n − α0) > 0
]

− P
[√

n(α̃n − α0) < 0
]

= P (U > −∆) − P (U < −∆) = Φ(∆) − 1

Proof. (Theorem 2) i) can be shown from (1.6) since α = αn → α0.

ii) We have lim
n→∞

E
[

n(ρ̂n − ρ)2
]

= lim
n→∞

Var
[√

n(ρ̂n − ρ)
)

] + lim
n→∞

E
[√

n(ρ̂n − ρ)
]2

. We only

need to show that lim
n→∞

Var
[√

n(ρ̂n − ρ)] = (1− ρ2) since lim
n→∞

E
[

n(ρ̂n − ρ)
]

is given by ii) in

theorem 1.

lim
n→∞

Var
[√

n(ρ̂n − ρ)] = lim
n→∞

Var
[√

n(ρ̃n − ρ) − 1 − ρ̃2
n

1 − ρ̃nα0

√
n(α̃n − α0)

]

=
1

(ρ − α0)2

[

(1 − ρ2)(1 − ρα0)
2

+

(

1 − ρ2

1− ρα0

)2

(1 − α2
0)(1 − ρα0)

2

−2
1 − ρ2

1 − ρα0
(1 − ρ2)(1 − α2

0)(1 − ρα0)

]

= (1 − ρ2)

iii) Using (2.4), (2.3), and (1.7), and some conditional expectation arguments, we get

lim
n→∞

E
[

n(ρ̂PT
n − ρ)2

]

= lim
n→∞

E

(

[√
n(ρ̃n − ρ) − 1 − ρ2

1 − ρα0

√
n(α̃n − α0)1I{Ln<χ2

1
(γ)}
]2

)

= AVar(
√

nρ̃n) −
(

1 − ρ2

1 − ρα0

)2

AVar(
√

nα̃n)H3(χ
2
1(γ), ∆2)

+∆2

(

1 − ρ2

1 − ρα0

)2

AVar(
√

nα̃n)
[

2H3(χ
2
1(γ), ∆2) − H5(χ

2
1(γ), ∆2)

]

.

Replacing AVar(
√

nα̃n) by its value in (2.2) we get the right hand side of iii).

vi) We will use the fact that if Z ∼ N (∆, 1), then

E(|Z|) =

√

2

π
e−∆2/2 + ∆

[

2Φ(∆) − 1
]

(2.6)
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From (1.12), we can write (in a similar way as in the calculations in iii) and applying (2.6)

with Z as in (2.5),

lim
n→∞

E
[

n(ρ̂S
n − ρ)2

]

= lim
n→∞

E

(

[√
n(ρ̃n − ρ) − c(1 − α2

0)
1/2(1 − ρ̃2

n)

|ρ̃n − α0|
α̃n − α0

|α̃n − α0|
]2
)

= AVar(
√

nρ̃n) +
c2(1 − α2

0)(1 − ρ2)2

(ρ − α0)2

−2
c(1− α2

0)
1/2(1 − ρ2)

|ρ − α0|
1 − ρ2

1 − ρα0

[

(

AVar(
√

nα̃n)
)1/2

(

√

2

π
e−∆2/2 + ∆

[

2Φ(∆) − 1
]

)

− δ
[

2Φ(∆) − 1
]

]

= AVar(
√

nρ̃n) +
(1 − α2

0)(1 − ρ2)2

(ρ − α0)2

[

c2 − 2c

√

2

π
e−∆2/2

]

The value of c that minimizes this quantity is c =
√

2
π e−∆2/2. Making c independent of

∆2, we chose c =
√

2/π. Plugging this optimal value in the previous equality we get the

minimal value for MSE

lim
n→∞

E
[

n(ρ̂S
n − ρ)2

]

= AVar(
√

nρ̃n) +
(1 − α2

0)(1 − ρ2)2

(ρ − α0)2
2

π

[

1 − 2e−∆2/2
]

which can be written in the form of the right hand side of vi).

3 MSE under Fixed Alternative Hypothesis

In this section we show that under fixed alternative

α = α0 + δ (3.1)

there is no gain in terms of MSE when we consider the PTE estimator.

Theorem 3. Under (3.1) we have

lim
n→∞

E

[

n(ρ̂PT
n − ρ̃n)2

]

= 0

Proof. We have

E

[

n(ρ̂PT − ρ̃)2
]

= n
( 1 − ρ̃2

n

1 − ρ̃nα0

)2

(α̃n − α0)
21I{Ln<χ2

1
(γ)}

= n
(α̃n − α0)

2

1 − α2
0

( (ρ − α0

1 − ρα0

)2( 1 − ρ2

ρ − α0

)2

(1 − α2
0)1I{Ln<χ2

1
(γ)} + oP (1)

=
( 1 − ρ2

ρ − α0

)2

(1 − α2
0)Ln1I{Ln<χ2

1
(γ)} + oP (1).
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Thus we need to show that

lim
n→∞

E

[

Ln1I{Ln<χ2
1
(γ)}

]

= 0. (3.2)

Under the fixed alternative hypothesis (3.1), Ln = Z2 where asymptotically

Z ∼ N (∆, 1) with ∆2 =
nδ2(ρ − α0)

2

(1 − α2
0)(1 − ρα0)2

.

Now using (2.4) and writing ∆2 = na and χ2
1(γ) = b the expectation in (3.2) can be written

as

P (χ2
3(na) ≤ b) + naP (χ2

5(na) ≤ b) (3.3)

With U ∼ N (0, 1), clearly each probability in (3.3) is bounded by

P [(U − na)2 ≤ b] = P [−
√

b + na ≤ U ≤
√

b + na] ≤ P [U ≥ na −
√

b]

∼ P [U ≥ na] ∼ 1√
2π

1

na
e−(na)2/2 as n → ∞.

The last equivalence is well known, which may be shown via integration by parts. Therefore

(3.2) is established.

We mention that this is not the case for the smoothed version ρS
n or for the restricted

estimator ρ̂n. Actually we can see that

lim
n→∞

E

[

n(ρ̂S
n − ρ̃n)2

]

=
c2(1 − α2

0)(1 − ρ2)2

(ρ − α0)2
.

4 Comparative Study

4.1 Comparing Quadratic Bias Functions

We note that from theorem 1, the usual PMLE estimate ρ̃n is asymptotically unbiased and

the alternative estimates ρ̂n, ρ̂PT
n and ρ̂S

n have the following quadratic bias functions:

i) B(ρ̂n)2 = C2(ρ, α0)∆
2,

ii) B(ρ̂PT
n )2 = C2(ρ, α0)∆

2H2
3 ,

and

iii) B(ρ̂S
n)2 = c2C2(ρ, α0)[2Φ(∆) − 1]2.

We note that for ∆ = 0,

B2(ρ̃n) = B2(ρ̂n) = B2(ρPT
n ) = B2(ρS

n) = 0
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i.e. all the estimators are asymptotically unbiased. Also as ∆2 → ∞, we get B2(ρPT
n ) → 0

while B2(ρS
n) → 2

π K2(ρ, α0), if we keep the value 2
π for c. Hence, as ∆2 → ∞,

0 = B2(ρPT
n ) < B2(ρS

n) < B2(ρ̂n),

and for a given ∆, we always have B2(ρPT
n ) < B2(ρ̂n) but the other comparisons will

depend on both ∆ and the level γ. Clearly we observe that in terms of smallest bias, the

PTE estimator is better than the unrestricted estimator but the shrinkage estimator can

give good results if we decide to choose the constant c very small. However, the usual

PMLE remains the best one since it is asymptotically unbiased. The following graphical

presentation in Figure (1) shows these properties.

Figure 1: Graph of the asymptotic quadratic bias of the three estimators.

4.2 Asymptotic Relative Efficiency (ARE)

In this section we compare the proposed estimators to the PMLE which we call here unre-

stricted estimator (UE). This comparison will be based on the ADMSE and the so-called

asymptotic relative efficiency (ARE).
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Comparing the PTE Against the UE:

Denote by ARE(ρ̂PT
n : ρ̃n) the ARE of ρ̂PT

n with respect to ρ̃n. That is the quotient of their

reciprocal MSE’s. So we have

ARE(ρ̂PT
n : ρ̃n) =

MSE(
√

nρ̃n)

MSE(
√

nρ̂PT
n )

=
[

1 − K(ρ, α0)H3 + ∆2(2H3 − H5)
]−1

In order to make notations easier, we omitted the arguments (χ2
1(γ), ∆2) in the functions

H3 and H5.

From the previous equation we conclude the following: The graph of ARE(ρ̂PT
n : ρ̃n) as a

function of ∆2 for fixed γ, is decreasing crossing the 1–line to a minimum at ∆2 = ∆2
min(γ),

then it increases towards the 1–line as ∆2 → ∞. Thus, if ∆2 ≤ (H3/(2H2 − H3) then ρ̂PT
n

is better than ρ̃ while if ∆2 ≥ (H3/(2H2 − H3), ρ̃ is better than ρ̂PT
n .

The maximum of ARE(ρ̂PT
n : ρ̃n) at ∆2 = 0 is given by

max
∆2

ARE(ρ̂PT
n : ρ̃n) =

[

1 − KH3

]−1

, K =
(1 − ρ2)(1 − α2

0)

(1 − ρα0)2

where H3 = H3(χ
2
1(γ), 0) for all γ ∈ A, the set of all possible values of γ and K = K(ρ, α0).

The value of max
∆2

ARE(ρ̂PT
n : ρ̃n) decreases as γ increases, while if

γ = 0 and ∆2 varies, the graph of ARE(ρ̂PT
n : ρ̃n) = 1 and ARE(ρ̂PT

n : ρ̃n) intersects at

∆2 = 1. In general ARE(ρ̂PT
n : ρ̃n) at γ = γ1 and γ2 intersect within the interval 0 ≤ ∆2 ≤ 1,

the value of ∆2 at the intersection increases as γ increases, therefore, for two values of γ,

the ARE(ρ̂PT
n : ρ̃n)’s will always be below the 1–line.

In order to obtain optimum level of significance γ∗ for the application of PTE, we prefix

a minimum guaranteed efficiency, say E0 and follow the following procedure

i) If 0 ≤ ∆2 ≤ 1, use ρ̃n because ARE(ρ̂PT
n : ρ̃n) is always ≥ 1 in this region of ∆2.

However, ∆2 is generally unknown and there is no way to choose uniformly best estimator

and look for the value of γ in the set

Aγ = {γ ARE(ρ̂PT
n : ρ̃n) ≥ E0}.

ii) The PT estimator chosen maximizes ARE(ρ̂PT
n : ρ̃n) over all γ ∈ Aγ and ∆2. Thus we

solve the equation

min
∆2

ARE(ρ̂PT
n : ρ̃n) = ARE(ρ̂PT

n : ρ̃n)(γ, ∆0) = E0.

The solution γ∗ obtained this way gives a PTE with minimum guaranteed efficiency of E0

which may increase to ARE(ρ̂PT
n : ρ̃n) at ∆2 = 0.

The sample table in Table (1) gives the minimum and maximum ARE(ρ̂PT
n : ρ̃n) for

chosen values of K over γ = 0.05(0.05)0.5.

To illustrate the use of the table, let us set E0 = 0.8 as the minimum guaranteed

ARE(ρ̂PT
n : ρ̃n) for K = 0.5. Then we look for 0.8 or near it for K = 0.5 and find γ∗ = 0.2.

Hence, using a PTE with γ∗ = 0.2 we obtain a minimum guaranteed ARE of 0.8 with a

possible maximum ARE of 1.21 if ∆2 is close to 0.
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Table 1: Maximum and minimum ARE of the PTE for selected K, γ values

K 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

γ

0.05 AREmax 1.08 1.17 1.28 1.41 1.56 1.76 2.02 2.36 2.85 3.58

AREmin 0.87 0.77 0.69 0.63 0.58 0.53 0.49 0.46 0.43 0.41

∆2 4.84 4.84 4.84 4.84 4.84 4.84 4.84 4.84 4.84 4.84

0.10 AREmax 1.06 1.13 1.20 1.29 1.39 1.51 1.65 1.81 2.02 2.28

AREmin 0.91 0.84 0.78 0.72 0.68 0.64 0.60 0.57 0.54 0.51

∆2 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

0.15 AREmax 1.05 1.10 1.15 1.22 1.28 1.36 1.45 1.55 1.66 1.79

AREmin 0.94 0.88 0.83 0.79 0.75 0.71 0.68 0.65 0.62 0.59

∆2 3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61

0.20 AREmax 1.04 1.08 1.12 1.16 1.21 1.27 1.32 1.39 1.46 1.54

AREmin 0.95 0.91 0.87 0.83 0.80 0.77 0.74 0.71 0.69 0.66

∆2 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24

0.25 AREmax 1.03 1.06 1.09 1.12 1.16 1.20 1.24 1.28 1.33 1.38

AREmin 0.96 0.93 0.90 0.87 0.84 0.81 0.79 0.77 0.75 0.72

∆2 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24

0.30 AREmax 1.02 1.05 1.07 1.09 1.12 1.15 1.18 1.21 1.24 1.28

AREmin 0.97 0.95 0.92 0.90 0.87 0.85 0.83 0.81 0.79 0.78

∆2 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89

0.35 AREmax 1.02 1.03 1.05 1.07 1.09 1.11 1.13 1.16 1.18 1.20

AREmin 0.98 0.96 0.94 0.92 0.90 0.89 0.87 0.85 0.84 0.82

∆2 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89

0.40 AREmax 1.01 1.03 1.04 1.05 1.07 1.08 1.10 1.11 1.13 1.15

AREmin 0.98 0.97 0.95 0.94 0.93 0.91 0.90 0.89 0.87 0.86

∆2 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89

0.45 AREmax 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.10 1.11

AREmin 0.99 0.98 0.97 0.95 0.94 0.93 0.92 0.91 0.90 0.89

∆2 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89

0.50 AREmax 1.01 1.01 1.02 1.03 1.04 1.04 1.05 1.06 1.07 1.08

AREmin 0.99 0.98 0.97 0.97 0.96 0.95 0.94 0.94 0.93 0.92

∆2 2.56 2.56 2.56 2.56 2.56 2.56 2.56 2.56 2.56 2.56
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Comparing the Shrinkage Estimator Against the UE

We have

ARE(ρ̂S
n : ρ̃n) =

[

1 +
(1 − ρ2)(1 − α2

0)

(ρ − α0)2
2

π

[

1 − 2e−∆2/2
]

]−1

Following a similar discussion as we did for the relative efficiency for PTE, we can see from

this equation that for

∆2 ≤ ln 4 ρ̂S
n is better than ρ̃n

and for

∆2 ≥ ln 4 ρ̃n is better than ρ̂S
n

Also, as ∆2 → ∞,

ARE(ρ̂S
n : ρ̃n) →

[

1 +
(1 − ρ2)(1 − α2

0)

(ρ − α0)2
2

π

]−1

≤ 1

which is the lower bound of ARE(ρ̂S
n : ρ̃n).

The maximum ARE(ρ̂S
n : ρ̃n) is

[

1 − 2

π
K

(1 − ρα0)
2

(ρ − α0)2

]−1

≥
[

1 − KH3(χ
2
1(γ), 0)

]−1

if

H3(χ
2
1(γ), 0) ≤ 2

π

(1 − ρα0)
2

(ρ − α0)2
.

Comparing the Restricted Estimator RE Against UE

From vi) in theorem 2, we can rewrite the asymptotic MSE of
√

nρ̂n as

(1 − ρ2)
[

1 + (1 − ρ2)
1 − α2

0

(ρ − α0)2
∆2
]

and we can write the MSE of
√

nρ̃n as

(1 − ρ2)
(1 − ρα0)

2

(ρ − α0)2
= (1 − ρ2)

[

1 +
(1 − ρ2)(1 − α2

0)

(ρ − α0)2

]

and therefore we can conclude

if ∆2 ≤ 1 then RE is better than UE

and

if ∆2 ≥ 1 then UE is better than RE

The graphs in the Figure (2) of the ARE’s depict the ARE properties of the estimators.
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Figure 2: Graph of ARE for shrinkage estimator for selected values of γ, α, K.
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