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summary

By using some distributional properties, we obtain some results on recurrence re-
lations for single and product moments of order statistics from doubly truncated
Burr XII distribution. These results complement earlier results of Begum and
Parvin [2002], as well as, generalize results obtained by Balakrishnan and Gupta
[1998], Balakrishnan et al. [1994], and Saran and Pushkarna [1999]. Simulation
results are consistent with those obtained by Begum and Parvin [2002] and are
given for single and product moments in Tables 1 and 2. Applications to least
squares estimation of the Best Linear Unbiased Estimates of location-scale pa-
rameters involving singly and doubly censored life-testing data are considered.
The estimation results compare favorably with those by Balakrishnan and Gupta
[1998] in estimating the scale parameter of the censored data using the exponen-
tial distribution.

Keywords and phrases: order statistics; Burr XII distribution; single and product
moments; truncation.

1 Introduction

The Burr distribution is very important in modelling of finance and insurance data. Ex-

perience has shown that the Pareto formula is often an appropriate model for claim size

distribution, particularly where exceptionally large claims may occur. However, there is

sometimes a need to find heavy tailed distributions which offer greater flexibility than the

Pareto law. Such flexibility is provided by the Burr distribution with distribution function

given by
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F (x) = 1 − (
λ

λ + xθ
)α; x > 0 where α, λ, θ > 0. (1.1)

Its mean exists for α, θ > 1.

The distribution has been used extensively to model franchise deductible premium, fixed

amount deductible premium, proportional deductible premium, limited proportional de-

ductible premium and disappearing deductible premium (see Burnecki et al. [2004]).

The distribution (1.1) reduces to the Lomax distribution for α = 1 = θ. The Lomax

distribution has been used in connection with studies in income, size of cities and reliability

modelling. The Lomax distribution , a subclass of the Burr distribution, is also known as

the Pareto II distribution (see Arnold [1983]). Lomax (1954) used the distribution in the

analysis of business failure data. In this paper, we consider a truncated version of the Burr

XII distribution with probability function given by, Begum and Parvin [2002],

F (x) =























0; x < Q1

1−Q−(1+θxα)−λ

P−Q Q1 ≤ x ≤ P1, λ, θ, α > 0

1; x > P1.

(1.2)

and probability density function (pdf)

f(x) =
λθαxα−1(1 + θxα)−(λ+1)

P − Q
; Q1 ≤ x ≤ P1, λ, θ, α > 0 (1.3)

where Q and (1−P ), (Q < P ) are the proportions of truncation on the left and right of the

distribution respectively and

Q1 =

[

(1 − Q)−
1
λ − 1

θ

]
1
α

and P1 =

[

(1−P )−
1
λ −1

θ

]
1
α

The quantities Q and P are assumed to be known. Denote Q2 = 1−Q
P−Q and P2 = 1−P

P−Q , it is

easy to see that (Begum and Parvin [2002]),

(1 + θxα)f(x) = λθαxα−1[P2 + (1 − F (x))] (1.4)

or equivalently

(1 + θxα)f(x) = λθαxα−1[Q2 − F (x))] (1.5)

Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n be order statistics from a continuous distribution function

(df) F (x) and probability density function (pdf) f(x). Let

µ(i)
r:n = E[X i

r:n] 1 ≤ r ≤ n

and

µ(i,j)
r,s:n = E[X i

r:nXj
s:n] 1 ≤ r < s ≤ n.
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David [1970] give the density function of Xr:n(1 ≤ r ≤ n) as

fr:n(x) = Cr:n[f(x)]r−1[1 − F (x)]n−rf(x) −∞ < x < ∞ (1.6)

where Cr:n = n!
(r−1)!(n−r)! and the joint density function of x = Xr:n and y = Xs:n as

fr,s:n(x, y) = Cr,s:n[F (x)]r−1[F (y) − F (x)]s−r−1[1 − F (y)]n−sf(x)f(y) −∞ < x < y < ∞
(1.7)

where Cr,s:n = n!
(r−1)!(s−r−1)!(n−s)!

In this paper, we present some results on recurrence relations for single and product

moments of order statistics from doubly truncated Burr XII distribution. These results

complement those recently obtained by Begum and Parvin [2002]. Simulation results show

consistency with those obtained by the authors.

2 Single Moments

Single moments of order statistics from the doubly truncated Burr XII distribution obeys

the recurrence relations presented below.

Relation 2.1 For α, λ > 0

µ
(α+1)
1:1 =

λα

2θ

{

P 2
1 P2 − Q2

2(P2 + 1) + µ
(2)
1:1

}

− 1

θ
µ1:1 (2.1)

Proof. From (1.6) for n = r = 1, we have

µ1:1 + θµ
(α+1)
1:1 = λθα

∫ P1

Q1

x[P2 + (1 − F (x))]dx (2.2)

having used (1.4). Integrating (2.2) by parts and simplifying the resulting expressions, we

have
2

λα
[µ1:1 + θµ

(α+1)
1:1 ] = P2(P

2
1 − Q2

1) − Q2
1 + µ

(2)
1:1 (2.3).

By rewriting (2.3), we obtain the relation (2.1)

Relation 2.2 For λ 6= α+1
nα and n ≥ 2

µ
(α+1)
1:n =

λ[(n − 1)P2µ
(α+1)
1:n−1 + nQα+1

1 (1 − P2)]

(1 − nλ) + 1
α

− α + 1

θ[(α + 1) − nλα]
(2.4)

Proof. From (1.6) for r = 1, we have

µ1:n + θµ
(α+1)
1:n = nλθαP2

∫ P1

Q1

xα[1 − F (x)]n−1dx + λθα

∫ P1

Q1

xα[1 − F (x)]ndx (2.5)
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having used (1.4). By integrating (2.5) by parts and simplifying the resulting expression, we

get

µ1:n + θµ
(α+1)
1:n =

(n − 1)λP2

[(1 − nλ) + 1
α ]

µ
(α+1)
1:n−1 −

α + 1

θ[(α + 1) − nλα]
µ1:n +

nλαQα+1
1 (1 + P2)

(α + 1) − nλα

By rewriting the above expression, we obtain the relation (2.4)

Remark The moments of the first order statistics based on a random sample of size n. is

given by (2.5).

Relation 2.3 For λ 6= α+1
α(n−r+1) λ, α, θ > 0 and 1 ≤ r ≤ n − 1

µ(α+1)
r:n =

nλαP2

(α + 1) − λα(n − r + 1)
[µ

(α+1)
r:n−1 − µ

(α+1)
r−1:n−1] −

(α + 1)µr:n

θ[(α + 1) − λα(n − r + 1)]

− λα(n − r + 1)

(α + 1) − λα(n − r + 1)
µ

(α+1)
r−1:n (2.6)

Proof. From (1.6), we have

µr:n + θµ(α+1)
r:n = Cr:nλαθ{P2

∫ P1

Q1

xα[F (x)]r−1[1 − F (x)]n−rdx

+

∫ P1

Q1

xα[F (x)]r−1[1 − F (x)]n−r+1dx} (2.7)

having used (1.4). Upon integrating (2.7) by parts and simplifying the resulting expressions,

we obtain

µr:n + θµ(α+1)
r:n =

nλαθP2

α + 1
µ

(α+1)
r:n−1 −

nλθαP2

α + 1
µ

(α+1)
r−1:n−1

+
λθα(n − r + 1)

α + 1
µ(α+1)

r:n − λθα(n − r + 1)

α + 1
µ

(α+1)
r−1:n (2.8)

By rewriting (2.8), we have the relation (2.6)

Corollary 2.1. By replacing (α + 1) with k, any positive constant, we have the result of

Begum and Parvin [2002 p. 183].

Relation 2.4 For λ 6= α+i
α(n−r+1) , λ, α, θ > 0 and 1 ≤ r ≤ n , i = 0, 1, 2, ....

µ(α+i)
r:n =

nλαP2

(α + i) − λα(n − r + 1)
[µ

(α+i)
r:n−1 − µ

(α+i)
r−1:n−1]

− α + i

θ[(α + i) − λ(n − r + 1)]
µ(i)

r:n − λα(n − r + 1)

(α + i) − λα(n − r + 1)
µ

(α+i)
r−1:n. (2.9)
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Proof. From (1.6) for 1 ≤ r ≤ n , i = 0, 1, 2, ...

µ(i)
r:n + θµ(α+i)

r:n = λθαCr:n{P2

∫

xα+i[F (x)]r−1[1 − F (x)]n−rdx

+

∫

xα+i−1[F (x)]r−1[1 − F (x)]n−r+1dx}. (2.10)

having used (1.4). By integrating (2.10) by parts, we obtain

µ(i)
r:n + θµ(α+i)

r:n =
Cr:nλθαP2

α + i
{(n − r)

∫

xα+i[F (x)]r−1[1 − F (x)]n−r−1f(x)dx

−(r − 1)

∫

xα+i[F (x)]r−2[1 − F (x)]n−rf(x)dx}

+
Cr:nλθα

α + i
{(n − r + 1)

∫

xα+i[F (x)]r−1[1 − F (x)]n−rf(x)dx

−(r − 1)

∫

xα+i[F (x)]r−2[1 − F (x)]n−r+1f(x)dx}. (2.11)

By simplifying (2.11) and rewriting the resulting expression, we get the result as in (2.9).

Corollary 2.2. For λ 6= 1, r = n and i = 0,

µ(α)
n:n =

nλP2

1 − λ
[P α

1 − µ
(α)
n−1:n−1] −

1

1 − λ
[1 + λµ

(α)
n−1:n]. (2.12)

3 Product Moments

Product moments of order statistics from the doubly truncated Burr XII distribution

obeys the recurrence relations presented below.

Relation 3.1 For λ, θ, α > 0 and 1 ≤ r < s ≤ n,

µ(α)
r,s:n = nλα{P2[µr,s:n−1 − µr,s−1:n−1] −

n − s + 1

n
[µr,s−1:n − µr,s:n] − 1

θ
µr:n}. (3.1)

Proof. From (1.7), we have

µr:n + θµ(α)
r,s:n = λθαCr,s:n

{P2

∫ P1

Q1

x[F (x)]r−1f(x)I1(x)dx +

∫ P1

Q1

x[F (x)]r−1f(x)I2(x)dx}. (3.2)

having used (1.4), where

I1(x) =

∫ P1

x

[F (y) − F (x)]s−r−1[1 − F (y)]n−sdy (3.3)

and

I2(x) =

∫ P1

x

[F (y) − F (x)]s−r−1[1 − F (y)]n−s+1dy (3.4)
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Upon integrating (3.3) and (3.4) by parts and putting in (3.2), we have

µr:n + θµ(α)
r,s:n = λθαCr,s:nP2

×{(n − s)

∫ P1

Q1

∫ P1

x

xy[F (x)]r−1[F (y) − F (x)]s−r−1[1 − F (y)]n−s−1f(x)f(y)dxdy

−(s − r − 1)

∫ P1

Q1

∫ P1

x

xy[F (x)]r−1[F (y) − F (x)]s−r−2[1 − F (y)]n−sf(x)f(y)dxdy}

+λθαCr,s:n{(n− s+1)

∫ P1

Q1

∫ P1

x

xy[F (x)]r−1[F (y)−F (x)]s−r−1[1−F (y)]n−sf(x)f(y)dxdy

−(s− r− 1)

∫ P1

Q1

∫ P1

x

xy[F (x)]r−1[F (y)−F (x)]s−r−2[1−F (y)]n−s+1f(x)f(y)dxdy}. (3.5)

By simplifying (3.5) and rewriting the resulting expression, we have the relation (3.1).

Corollary 3.1. For s = r + 1 , λ, α, θ > 0

µ
(α)
r,r+1:n = nλα[µr,r+1:n−1 +

n − r

n
µr,r+1:n] − 1

θ
µr:n. (3.6)

Relation 3.2 For λ, θ, α > 0 and 1 ≤ r < s ≤ n − 1,

µ(α,α)
r,s:n = nλαP2[µ

(α)
r,s:n−1 − µ

(α)
r,s−1:n−1 − µ

(α)
r,s−1:n]

+
λθα(n − s + 1)

θ
µ(α)

r,s:n. (3.7)

and for s = r + 1

µ
(α,α)
r,r+1:n = nλαP2µ

(α)
r,r+1:n−1 +

nλα(n − r) − 1

θ
µ

(α)
r,r+1:n. (3.8)

Proof.

µ(α)
r,s:n + θµ(α,α)

r,s:n = Cr,s:n{P2

∫ P1

Q1

xα[F (x)]r−1f(x)H1(x)dx

+

∫ P1

Q1

xα[F (x)]r−1f(x)H2(x)dx}. (3.9)

having used (1.7), where

H1(x) =

∫ P1

x

[F (y) − F (x)]s−r−1[1 − F (y)]n−sdy (3.10)

and

H2(x) =

∫ P1

x

[F (y) − F (x)]s−r−1[1 − F (y)]n−s+1dy (3.11)
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By integrating (3.10) and (3.11) by parts and substituting into (3.9), we have

µ(α)
r,s:n + θµ(α,α)

r,s:n = λθαCr,s:nP2

×{(n− s)

∫ P1

Q1

∫ P1

x

xαy[F (x)]r−1[F (y) − F (x)]s−r−1[1 − F (y)]n−s−1f(x)f(y)dxdy

−(s − r − 1)

∫ P1

Q1

∫ P1

x

xαy[F (x)]r−1[F (y) − F (x)]s−r−2[1 − F (y)]n−sf(x)f(y)dxdy}

+λθαCr,s:n{(n−s+1)

∫ P1

Q1

∫ P1

x

xαy[F (x)]r−1[F (y)−F (x)]s−r−1[1−F (y)]n−sf(x)f(y)dxdy

−(s−r−1)

∫ P1

Q1

∫ P1

x

xαy[F (x)]r−1[F (y)−F (x)]s−r−2[1−F (y)]n−s+1f(x)f(y)dxdy}. (3.12)

By simplifying (3.12), we have the relation (3.7). For s = r + 1 in (3.12), we have the

equation (3.8).

Relation 3.3 For λ, θ, α > 0 and 1 ≤ r < s ≤ n − 1, and i, j = 0, 1, 2, ...

µ(i,j+α)
r,s:n =

nλαP2

j + 1
[µ

(i,j+1)
r,s:n−1 − µ

(i,j+1)
r,s−1:n−1]

−λα(n − s + 1)

j + 1
[µ(i,j+1)

r,s:n − µi,j+1
r,s−1:n] − µi,j+1

r,s:n

θ
(3.13)

and for s = r + 1

µ
(i,j+α)
r,r+1:n =

nλαP2

j + 1
µ

(i,j+α)
r,r+1:n−1 +

λα(n − r)

j + 1
µ

(i,j+1)
r,r+1:n − 1

θ
µi,j

r,r+1:n. (3.14)

Proof. From (1.7)

µ(i,j+α)
r,s:n + θµ(i,j+α)

r,s:n = Cr,s:nλθ

×{P2

∫ P1

Q1

xi[F (x)]r−1f(x)J1(x)dx +

∫ P1

Q1

xi[F (x)]r−1f(x)J1(x)dx}. (3.15)

having used (1.7), where

J1(x) =

∫ P1

x

yi[F (y) − F (x)]s−r−1[1 − F (y)]n−sdy (3.16)

and

J1(x) =

∫ P1

x

yi[F (y) − F (x)]s−r−1[1 − F (y)]n−s+1dy (3.17)

By integrating (3.16) and (3.17) by parts and putting into (3.15), we have

µ(i,j)
r,s:n + θµ(i,j+α)

r,s:n =
λθαCr,s:nP2

j + 1
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×{(n − s)

∫ P1

Q1

∫ P1

x

xiyj+1[F (x)]r−1[F (y) − F (x)]s−r−1[1 − F (y)]n−s−1f(x)f(y)dxdy

−(s − r − 1)

∫ P1

Q1

∫ P1

x

xiyj+1[F (x)]r−1[F (y) − F (x)]s−r−2[1 − F (y)]n−sf(x)f(y)dxdy}

+
λθαCr,s:n

j + 1
{(n−s+1)

∫ P1

Q1

∫ P1

x

xiyj+1[F (x)]r−1[F (y)−F (x)]s−r−1[1−F (y)]n−sf(x)f(y)dxdy

−(s − r − 1)

∫ P1

Q1

∫ P1

x

xiyj+1[F (x)]r−1[F (y) − F (x)]s−r−2[1 − F (y)]n−s+1f(x)f(y)dxdy}.
(3.18)

By simplifying (3.18) and rewriting the resulting expression, we have the relation (3.13). By

setting s = r + 1 in (3.18), and simplifying the resulting expression, we have the relation

(3.14)

Remark

1. For non-truncated i.e.,Q = 0 and P = 1, Balakrishnan et al .[1994 , 1998 ] considered

Lomax distribution which follows as a special case for the recurrence relations of Burr

XII distribution when α = 1, θ = 1 and λ = α.

2. By using the relations (1.4) and (1.5) for α = 0, θ = 1 and λ = α, Saran and

Pushkarna [1999] have established the recurrence relations for the single and product

moments of order statistics from doubly truncated Lomax distribution.

3. Tables 1 and 2 give the mean of single and product moments of order statistics from

the doubly truncated Burr XII distribution for α = 1, θ = 1, λ = 3, P = 0.95, and

Q = 0.05.

4 Least Squares Estimation of Location and Scale Pa-
rameters.

In this section, we consider least squares estimation of scale-location parameters based on

doubly Type II censored samples. Let Y = µ + Xσ be a random variable with probability

density function given by (1.2), then Y is the location-scale form of the model (1.2), where

µ, and σ are the location and scale parameters respectively. Let Y1, Y2, ......, Yn be a random

sample of size n from the distribution of Y and Y1:n≤Y2:n≤....≤Yn:n be its order statistics.

The ordered X and Y variates (in random sample of n) are linked by

X(i) =
Y(i) − µ

σ
, i = 1, 2, .....n.

The moments of the Y(i) depend only on the form of the distribution of Y and not on µ and

σ.
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Let

EX(i) = αi, cov(X(i), X(j)) = βij , j = 1, 2, ..., n. (4.1)

Then

EY(i) = µ + σαi, cov(X(i), Y(j)) = σ2βij . (4.2)

where the αi and βij are easily evaluated by using the results in the previous sections with

σ2 unknown.

We write

EY = µ1 + σα

EY = AΘ (4.3)

where Y, α are, respectively, the column vectors of the Y(i), αi and 1 is a column vector of

n 1′s and

A = (1; α), Θ′ = (µ, σ)

Therefore, the best linear unbiased estimators BLUE’s of µ and σ are then given, [David

1970 p. 103] and Balakrishnan and Gupta [1998], by

µ? = −µ′ΓX = a′X =

n
∑

i=1

aiX(i) (4.4)

and

σ? = 1′ΓX = b′X =

n
∑

i=1

biX(i) (4.5)

where a and b are vectors of coefficients for BLUE’s of the location and scale parameters

respectively.

Γ =
1

∆
[Σ−1(1µ′ − µ1)Σ−1]

∆ = (1Σ−11)(µ′Σ−1µ) − (µ′Σ−11)
2
1 = [1, 1, .., 1]n×1 µ = [µ1:n, µ2:n, ..., µn:n]

′
n×1 (4.6)

and

Σ =
∑∑

i,j
σij:n. (4.7)

The variances and covariances of the BLUE’s µ? and σ? are given by

V ar(µ?) =
σ2µ′Σ−1µ

∆
V ar(σ?) =

σ21′Σ−11

∆

cov(µ?, σ?) =
(σ2−1Σ−1µ)

∆
. (4.8)

We present numerical results for the vectors a and b. Because many tables are involved

for the various values of α, λ, θ, we present tables for α, λ, θ = 1(0.5)2.5 considered in

the following examples. These examples are those considered by Balakrishnan and Gupta

[1998] for the exponential distribution.
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Example 1. Twelve components were placed on a life-test and the time-to-fail of the first

eight components that failed were recorded and the experiment was terminated as soon as

the eight failure occurred. The Type-II right-censored sample resulting from the experiment

is given below

31, 58, 157, 185, 300, 470, 497, 673, . . . .

We have n = 12, r = 0 and s = 4 corresponding to Table 3.

We have µ? = 191.5449, var(µ?) = 3.64626 and σ? = 631.68824, var(σ?) = 1.4084.

Example 2. The following data represent failure times, in minutes, for a specific type of

electrical insulation in an experiment in which the insulation was subjected to a continuously

increasing voltage stress:

. . . , 24.4, 28.6, 43.2, 46.9, 70.7, 75.3, 95.5, 98.1, 138.6, . . . .

In this case we have n = 12, r = 2 and s = 1 corresponding to Table 4.

We have, in this case, µ? = 51.3288, var(µ?) = 0.1991 and σ? = 71.3848, var(σ?) =

0.08985.

Example 3. This data arise from an experiment on insulting fluid breakdowns. Among

the n = 12 specimens tested at 45kV, 3 failed before 1 second and the times to breakdown

(in seconds) of the remaining 9 specimens were

2, 2, 3, 9, 13, 47, 50, 55, 71.

We assume the data to be doubly Type-II censored with n = 12, r = 3 and s = 0. This corre-

sponds to Table 1, we have µ? = 20.1893, var(µ?) = 0.6572 and σ? = 20.7864, var(σ?) =

0.2551.

Remark For the same set of examples considered, Balakrishnan and Gupta [1998] ob-

tained estimates of the scale parameter using the exponential distribution. Our results

compare favorably well with their estimates for this (scale) parameter:
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Appendix

Table 1: The Means of the r-th order statistics from doubly truncated Burr XII distribution
α = 1, θ = 1, λ = 3, P=0.95 and Q=0.05

r=0, s=4, k=.1667 r=0, s=4, k=.25 r=0, s=4, k=.50

n/r 1 2 3 4 5 6 7 8 9 10

1 0.38444

2 0.19621 0.57266

3 0.13320 0.32222 0.69788

4 0.10270 0.22478 0.41965 0.79062

5 0.08482 0.17420 0.30059 0.49897 0.86354

6 0.07311 0.14337 0.23582 0.36551 0.56570 0.92311

7 0.06485 0.12266 0.19515 0.29005 0.42210 0.32313 0.97300

8 0.05871 0.10779 0.16727 0.24161 0.33848 0.47228 0.67341 1.01591

9 0.05398 0.09661 0.14697 0.20788 0.28378 0.38224 0.51731 0.71802 1.05315

10 0.05021 0.08787 0.13152 0.18302 0.24517 0.32239 0.42214 0.55809 0.75800 1.08595
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Table 2: Product moments of order statistics from doubly truncated Burr XII distribution
α = 1, θ = 1, λ = 3, P=0.95 and Q=0.05

r=0, s=4, k=.1667 r=0, s=4, k=.25 r=0, s=4, k=.50

n s/r 1 2 3 4 5

1 1 0.27993

2 1 0.07525

2 2 0.14779 0.48464

3 1 0.03309

3 2 0.05910 0.15957

3 3 0.10810 0.27618 0.64717

4 1 0.01871

4 2 0.03172 0.07623

4 3 0.05207 0.12090 0.24290

4 4 0.08935 0.20164 0.39108 0.78192

5 1 0.01220

5 2 0.02005 0.04470

5 3 0.03104 0.06741 0.12353

5 4 0.04800 0.10227 0.18368 0.32250

5 5 0.07827 0.16395 0.28903 0.49240 0.89678

Table 3: α = 1 = λ = θ Coefficients of BLUE

r=3, s=0, k=.125 r=3, s=0, k=.25 r=3, s=0 r=3, s=0, k=.50

a b a b a b a b

0.0028 -1.441 0.0125 -0.5320 0.0127 -0.9067 0.0119 0.0386

0.0302 1.2633 0.0195 1.0519 0.0199 1.1878 0.0183 0.7569

0.0191 0.1598 0.0280 0.1615 0.0287 0.1608 0.0258 0.1556

0.0558 1.1263 0.0435 0.0716 0.0450 1.0723 0.0394 0.7367

0.0941 0.0688 0.0685 0.2082 0.0822 0.1245 0.0689 0.3124

0.0892 0.0093 0.0707 0.5093 0.0928 0.0093 0.0504 0.0093

0.2129 0.0136 0.2240 0.0135 0.2115 0.0136 0.2003 0.0134

0.0077 0.0186 0.0172 0.4184 0.0175 0.0186 0.0163 0.0181

0.0426 0.0272 0.0288 0.0267 0.0306 0.0270 0.0267 0.0258
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Table 4: Coefficients of BLUE

r=2, s=1, k=.125 r=2, s=1, k=.25 r=2, s=1 r=2, s=1, k=.50

a b a b a b a b

0.0114 0.8807 0.0114 0.7868 0.0114 0.8491 0.0115 0.7054

0.0174 0.3261 0.0173 0.3352 0.0174 0.3313 0.0171 0.3178

0.0251 0.0143 0.0247 0.0144 0.0249 0.0144 0.0241 0.0144

0.0393 0.0231 0.0384 0.0229 0.0390 0.0230 0.0367 0.0225

0.0722 0.0355 0.0693 0.0348 0.0712 0.0353 0.0641 0.0337

0.1048 0.0617 0.1028 0.0597 0.1021 0.0610 0.0934 0.0561

0.3114 0.1348 0.3002 0.1270 0.3108 0.1322 0.2488 0.1137

0.0151 0.1337 0.0147 0.1094 0.0149 0.1184 0.0140 0.0920

0.0246 0.0413 0.0238 0.0303 0.0243 0.0387 0.0222 0.0219


