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summary

The Gamma Distribution is widely used in Engineering and Industrial applica-
tions. Estimation of parameters is revisited in the two–parameter Gamma dis-
tribution. The method of product spacings is implemented to this distribution.
A comparative study between the method of moments, the maximum likelihood
method, and the method of product spacings is performed using simulation. For
the scale parameter, the maximum likelihood estimate performs better and for
the shape parameter, the product spacings estimate performs better.

Keywords and phrases: Di–gamma function; Newton–Raphson root finding
method.

1 Introduction

The random variable X has a Gamma distribution with two parameters β and α if it has a

probability density function of the form:

f(x; β, α) =
xα−1e−x/β

Γ(α)βα
; β > 0, α > 0, (1)

where α is known as the shape parameter and β as the scale parameter. The distribution

function of the Gamma distribution (1) can be written as

F (x; β, α) =

∫ x

0

tα−1e−t/β

Γ(α)βα
dt; β > 0, α > 0. (2)
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The random variables X1:n, X2:n, · · · , Xn:n are defined as an ordered random sample from

the Gamma distribution (1).

In the literature, estimation of parameters in the two parameter Gamma distribution is

discussed extensively. Readers are referred to the following references: Harter and Moore

(1965), Choi and Wette (1969), Wilks (1990), Lee (1992), Dang and Weerakkody (2000),

and Evans et al., (2000). In this paper, the method of product spacings is implemented

in estimating parameters in a two parameter Gamma distribution. The method of product

spacings is compared with the method of moments and the method of maximum likelihood

using simulation.

The organization of the paper is as follows: Different estimation procedures are presented

in Section 2. In Section 3, a comparison study is conducted using simulation. An application

is presented in Section 4. Finally, a concluding summary is presented in Section 5.

2 Estimation Procedures

2.1 Method of Moment Estimates (MME)

The method of moment estimates for β and α are respectively,

β̂M =
S2

X̄
and α̂M =

(

X̄

S

)2

,

where X̄ = 1
n

∑n
i=1 Xi and S2 = 1

n

∑n
i=1(Xi − X̄)2.

2.2 Maximum Likelihood Estimates (MLE)

The maximum likelihood estimates for β and α are respectively,

β̂L =
X̄

α̂L

with α̂L found as the solution of the following non–linear equation

logα̂L − Ψ(α̂L) = log



X̄/

(

n
∏

i=1

Xi

)
1
n



 (3)

where Ψ(α) = Γ′(α)
Γ(α) and Γ′(α) is the derivative of Γ(α) with respect to α. Ψ(α) is also

known as the Di–gamma function.

The solution of (3) can easily be obtained using the Newtom–Raphson method with α̂M

as the starting value for α̂L.
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2.3 Method of Product Spacings (MPS)

The method of product spacings (MPS) was concurrently introduced by Cheng and Amin

(1983) and Ranneby (1984). Let

Di =

∫ xi:n

xi−1:n

f(x; θ)dx, i = 1, 2, · · · , n + 1,

where x0:n is the lower limit and xn+1:n is the upper limit of the domain of the density

function f(x; θ), and θ can be vector–valued. Also, X1:n, X2:n, · · · , Xn:n are defined as an

ordered random sample from f(x; θ). Clearly, the spacings sum to unity, that is
∑

Di = 1.

The MPS method is, quite simply, to choose θ to maximize the geometric mean of the

spacings,

G =

(

n+1
∏

i=1

Di

)
1

n+1

or, equivalently, its logarithm

H = lnG.

MPS estimation gives consistent estimators under much more general conditions than MLEs.

MPS estimators are asymptotically normal and are asymptotically as efficient as MLEs

when these exist. For detailed goodness properties of MPS estimators, readers are referred

to Cheng and Amin (1983), Ranneby (1984), Cheng and Iles (1987), Shah and Gokhale

(1993), Rahman and Pearson (2002) and the references therein.

Using the density function (1) and the cdf (2), H can be written as follows:

H = 1
n+1 [lnF (X1:n; β, α) + ln {1 − F (Xn:n; β, α)}]
+ 1

n+1

[

∑n−1
i=1 ln {F (Xi+1:n; β, α) − F (Xi:n; β, α)}

] (4)

By maximizing (4) for different values of β and α, the MPS estimates can be obtained as β̂P

and α̂P . The Newton–Raphson method can be used in solving when the two first derivatives

are equal to zero. The MME’s are used as the starting values. The first derivatives of H

with respect to β and α are respectively,

H ′
β = 1

n+1

[

F ′

β(X1:n;β,α)

F (X1:n;β,α) +
∑n−1

i=1

F ′

β(Xi+1:n;β,α)−F ′

b(Xi:n;β,α)

F (Xi+1:n;β,α)−F (Xi:n;β,α)

− F ′

β(Xn:n;β,α)

1−F (Xn:n;β,α)

] (5)

and

H ′
α = 1

n+1

[

F ′

α(X1:n;β,α)
F (X1:n;β,α) +

∑n−1
i=1

F ′

α(Xi+1:n;β,α)−F ′

α(Xi:n;β,α)
F (Xi+1:n;β,α)−F (Xi:n;β,α)

− F ′

α(Xn:n;β,α)
1−F (Xn:n;β,α)

] (6)

where

F ′
β(x; β, α) =

α

β
[F (x; β, α + 1) − F (x; β, α)] ,
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F ′
α(x; β, α) = Ex(lnx; β, α) − F (x; β, α)(lnβ + Ψ(α)),

and

Ex(lnx; β, α) =

∫ x

0

lnt
tα−1e−t/β

Γ(α)βα
dt.

The second derivatives of H with respect to β and α are respectively,

H ′′
ββ = 1

n+1

[

F (X1:n;β,α)F ′′

ββ(X1:n;β,α)−{F ′

β(X1:n;β,α)}2

{F (X1:n;β,α)}2

+
∑n−1

i=1

{F (Xi+1:n;β,α)−F (Xi:n;β,α)}{F ′′

ββ(Xi+1:n;β,α)−F ′′

ββ(Xi:n;β,α)}
{F (Xi+1:n;β,α)−F (Xi:n;β,α)}2

−{F ′

β(Xi+1:n;β,α)−F ′

β(Xi:n;β,α)}2

{F (Xi+1:n;β,α)−F (Xi:n;β,α)}2

−{1−F (Xn:n;β,α)}F ′′

ββ(Xn:n;β,α)+{F ′

β(Xn:n;β,α)}2

{1−F (Xn:n;β,α)}2

]

,

(7)

H ′′
βα = 1

n+1

[

F (X1:n;β,α)F ′′

βα(X1:n;β,α)−F ′

β(X1:n;β,α)F ′

α(X1:n;β,α)

{F (X1:n;β,α)}2

+
∑n−1

i=1

{F (Xi+1:n;β,α)−F (Xi:n;β,α)}{F ′′

βα(Xi+1:n;β,α)−F ′′

βα(Xi:n;β,α)}
{F (Xi+1:n;β,α)−F (Xi:n;β,α)}2

−{F ′

β(Xi+1:n;β,α)−F ′

β(Xi:n;β,α)}{F ′

α(Xi+1:n;β,α)−F ′

α(Xi:n;β,α)}
{F (Xi+1:n;β,α)−F (Xi:n;β,α)}2

−{1−F (Xn:n;β,α)}F ′′

βα(Xn:n;β,α)+F ′

β(Xn:n;β,α)F ′

α(Xn:n;β,α)

{1−F (Xn:n;β,α)}2

]

(8)

and

H ′′
αα = 1

n+1

[

F (X1:n;β,α)F ′′

αα(X1:n;β,α)−{F ′

α(X1:n;β,α)}2

{F (X1:n;β,α)}2

+
∑n−1

i=1

{F (Xi+1:n;β,α)−F (Xi:n;β,α)}{F ′′

αα(Xi+1:n;β,α)−F ′′

αα(Xi:n;β,α)}
{F (Xi+1:n;β,α)−F (Xi:n;β,α)}2

−{F ′

α(Xi+1:n;β,α)−F ′

α(Xi:n;β,α)}2

{F (Xi+1:n;β,α)−F (Xi:n;β,α)}2

−{1−F (Xn:n;β,α)}F ′′

αα(Xn:n;β,α)+{F ′

α(Xn:n;β,α)}2

{1−F (Xn:n;β,α)}2

]

,

(9)

where

F ′′
ββ(x; β, α) =

α(α + 1)

β2
[F (x; β, α + 2) − 2F (x; β, α + 1) + F (x; β, α)] ,

F ′′
βα(x; β, α) = α

β [Ex(lnx; β, α + 1) − Ex(lnx; β, α)]

−α
β F (x; β, α + 1)(lnβ + Ψ(α) − 1

β F (x; β, α)(1 − αlnβ − αΨ(α),

F ′′
αα(x; β, α) = Ex((lnx)2; β, α) − 2Ex(lnx; β, α)(lnβ + Ψ(α))

+F (x; β, α)
[

(lnβ)2 + 2lnβΨ(α) − Ψ′(α) + Ψ(α)
]

,

with Ψ′(α) being the derivative of Ψ(α), and

Ex((lnx)2; β, α) =

∫ x

0

(lnt)2
tα−1e−t/β

Γ(α)βα
dt.
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Then, the multivariate Newton–Raphson iteration is performed as





β̂
(l+1)
P

α̂
(l+1)
P



 =





β̂
(l)
P

α̂
(l)
P



−





H
′′(l)
ββ H

′′(l)
βα

H
′′(l)
βα H

′′(l)
αα





−1 



H
′(l)
β

H
′(l)
α



 , (10)

where l is the index for the iterations.

3 Simulation Results

One thousand samples are generated for two different parameter settings {(β = 0.5, α =

0.5) and (β = 2.0, α = 4.0)} and for two different sample sizes (n = 20 and n = 50). Means

(MEAN), standard deviations (SD), biases (BIAS), mean of the absolute biases (MAB) and

mean squared errors (MSE) are computed and displayed in Table 1. MATLAB software is

used in all computations and the codes are readily available.

4 Application

The following data in Table 2 represents failure times of machine parts from manufacturer

A and are taken from http : //v8doc.sas.com/sashtml/stat/chap29/sect44.htm:

For this data, β̂M = 483.22, β̂L = 550.60, β̂P = 604.13, α̂M = 0.97, α̂L = 0.85, and

α̂P = 0.80.

5 Summary and Concluding Remarks

From Table 1, it is observed that all the estimates appear to be consistent and asymptotically

unbiased. In terms of estimating β it should be noted that β̂P has higher bias, mean absolute

bias, standard deviation and mean squared error compared to β̂M and β̂L. However, α̂P

has lower bias, mean absolute bias, standard deviation and mean squared error compared

to α̂M and α̂L. Thus, the performance of β̂L is better compared to β̂M and β̂P and α̂P is

better compared to α̂M and α̂L.

Such comparative studies are performed by implementing MPS method for the Weibull

distribution by Rahman and Pearson (2003a), for the Pareto distribution by Rahman and

Pearson (2003), for the Two–parameter Exponential distribution by Rahman and Pearson

(2002), and for Burr XII distributions by Shah and Gokhale (1993).
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Table 1: Simulation Results

β̂M β̂L β̂P α̂M α̂L α̂P

β = 0.5 α = 0.5 n = 20

MEAN 0.4383 0.4783 0.6780 0.6755 0.5657 0.4699

SD 0.2546 0.2046 0.4679 0.2725 0.1644 0.1337

BIAS -0.0617 -0.0217 0.1780 0.1755 0.0657 -0.0301

MAB 0.1990 0.1602 0.2591 0.2334 0.1188 0.1024

MSE 0.0686 0.0423 0.2506 0.1050 0.0313 0.0188

β = 0.5 α = 0.5 n = 50

MEAN 0.4718 0.4782 0.5845 0.5756 0.5344 0.4714

SD 0.1755 0.1220 0.1865 0.1653 0.0846 0.0909

BIAS -0.0282 -0.0218 0.0845 0.0756 0.0344 -0.0286

MAB 0.1409 0.0972 0.1400 0.1401 0.0669 0.0747

MSE 0.0316 0.0154 0.0419 0.0330 0.0083 0.0091

β = 2.0 α = 4.0 n = 20

MEAN 1.8816 1.9094 2.5214 4.7944 4.6453 3.6000

SD 0.6997 0.6368 0.8486 1.7524 1.6308 1.2461

BIAS -0.1184 -0.0906 0.5214 0.7944 0.6453 -0.4000

MAB 0.5653 0.5195 0.7415 1.3696 1.2184 1.0451

MSE 0.5037 0.4137 0.9919 3.7021 3.0758 1.7128

β = 2.0 α = 4.0 n = 50

MEAN 1.9589 1.9749 2.2743 4.3179 4.2389 3.7237

SD 0.4639 0.4158 0.4814 0.9858 0.8708 0.7600

BIAS -0.0411 -0.0251 0.2743 0.3179 0.2389 -0.2763

MAB 0.3705 0.3360 0.4292 0.7839 0.6873 0.6579

MSE 0.2168 0.1736 0.3070 1.0729 0.8153 0.6540
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Table 2: Failure Times

620 470 260 89 388 242 103 100 39 460 284

1285 218 393 106 158 152 477 403 103 69 158

818 947 399 1274 32 12 134 660 548 381 203

871 193 531 317 85 1410 250 41 1101 32 421

32 343 376 1512 1792 47 95 76 515 72 1585

253 6 860 89 1055 537 101 385 176 11 565

164 16 1267 352 160 195 1279 356 751 500 803

560 151 24 689 1119 1733 2194 763 555 14 45

776 1


