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summary

In selecting 2m−p designs when some of the two-factor interactions are important,
the key issues are to permit estimation of the main effects and important two-
factor interactions in a postulated model and to minimize the bias caused by the
other effects not included in the model. If the main effects need more protection
than the important two-factor interactions, we should first minimize the bias of
the main effects, and then minimize the bias of the important two-factor inter-
actions. In this paper, a two-stage minimum aberration criterion is proposed to
minimize the bias of the main effects and that of the important two-factor inter-
actions sequentially. Searching for the best designs according to this criterion is
discussed and some results for designs of 16 and 32 runs are presented.
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1 Introduction

A regular two-level fractional factorial design is commonly referred to as a 2m−p design. It

has m two-level factors with 2m−p runs, and is completely determined by p independent

defining words. This design allows us to study many factors with relatively small run

size. It is very useful for identifying important factors and is commonly used in industrial

experiments and other areas of scientific investigation. Since a 2m−p design can be chosen

in many different ways, a key question is how to choose a fraction of the full factorial design

for a given run size and number of factors. The most commonly used criterion for 2m−p

design selection is the minimum aberration criterion proposed by Fries and Hunter (1980).

This criterion selects designs by sequentially minimizing the number of defining words of

length j in the defining relation where the length of a defining word is the number of factors

it contains. It includes the resolution criterion of Box and Hunter (1961) as a special case.

The robust properties of this criterion were discussed by Tang and Deng (1999) and Cheng,

Steinberg, and Sun (1999). For small number of factors, Box, Hunter, and Hunter (1978)

provided a useful catalogue of 2m−p designs with minimum aberration. Franklin (1984)

constructed more minimum aberration designs. A more complete catalogue of 2m−p designs

ranked by the minimum aberration criterion was provided by Chen, Sun, and Wu (1993).

In this article we consider how to select 2m−p designs when some two-factor interactions

(2fi’s) are presumably important. One way of solving this design problem is to find designs

that allow joint estimation of all main effects and these presumably important 2fi’s under

the assumption that all other effects are negligible. Much work has been done on finding a

design allowing estimation of a set of specified effects, often referred to as a requirement set

in the literature. This includes Addelman (1962), Greenfield (1976), Franklin (1985), Wu

and Chen (1992), and Ke, Tang, and Wu (2005).

When some 2fi’s are important, the postulated model should consist of all main effects

and these important 2fi’s. If the effects not in the postulated model cannot be completely

ignored, they will bias the estimates of the effects in the model. To solve this problem, Ke

and Tang (2003) propose a minimum N -aberration criterion that systematically minimizes

the bias of all effects in the model caused by the other effects. In some situations, main

effects need more protection than the important 2fi’s. In such case, we should first minimize

the bias of the main effects, and then minimize the bias of the important 2fi’s. In this paper,

we propose a two-stage minimum N -aberration criterion to minimize the bias of the main

effects and that of the important 2fi’s sequentially.

Section 2 of the paper introduces and studies this two-stage minimum N -aberration

criterion. Section 3 examines how to search for designs that are best according to the

criterion and present some results for designs of 16 and 32 runs. Section 4 concludes the

paper with a discussion.
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2 Two–Stage Minimum N-Aberration Criterion

2.1 A General Criterion of Aberration: Minimum N–Aberration

Suppose that we are interested in estimating all main effects and a set of important 2fi’s.

Then the fitted model is given by

Y = β0I + W1γ1 + ε (2.1)

where Y denotes the vector of n observations, β0 is the grand mean, I denotes the vector

of n ones, γ1 is the vector of parameters containing all main effects and the important 2fi’s,

W1 is the corresponding matrix, and ε is the vector of uncorrelated random errors, assumed

to have zero mean and a constant variance. Since other interactions not in the model may

not be negligible, the true model can be written as

Y = β0I + W1γ1 + W2γ2 + X3β3 + . . . + Xmβm + ε (2.2)

where γ2 is the vector of remaining 2fi’s, W2 is the corresponding matrix, and βj is the

vector of
(

m
j

)

interactions involving j factors and Xj is the corresponding matrix. The least

square estimator γ̂1 = (W T
1 W1)

−1W T
1 Y = n−1W T

1 Y from the fitted model in (2.1) has

expectation, taken under the true model in (2.2), E(γ̂1) = γ1 + P2γ2 + P3β3 + . . . + Pmβm,

where P2 = n−1W T
1 W2 and Pj = n−1W T

1 Xj for j ≥ 3. So the bias of γ̂1 for estimating γ1

is given by

Bias(γ̂1, γ1) = P2γ2 + P3β3 + . . . + Pmβm (2.3)

Note that P2γ2 is the contribution of γ2 to the bias, and Pjβj is the contribution of βj to the

bias. As γ2 and βj are unknown, we will have to work with Pj . One size measure for a matrix

P = (pij) is given by ||P ||2 def
= trace(P T P ) =

∑

i,j p2
ij . Under the hierarchical assumption

that lower order effects are more important than higher order effects, to minimize the bias

of γ̂1 we should sequentially minimize ||P2||2, . . . , ||Pm||2. For regular designs, the entries of

Pj are 0 or 1, and thus ||Pj ||2 is simply the number of j-factor interactions aliased with the

effects in the postulated model in (2.1). Now let Nj = ||Pj ||2. Based on the above results, we

can select designs using a minimum aberration criterion, defined as the one that sequentially

minimizes N2, . . . , Nm. We call this criterion as the minimum N -aberration criterion. For

further discussion about this issue, the reader is referred to Tang and Deng (1999, 2003),

Tang (2001, 2006), Ke and Tang (2003), and Cheng and Tang (2005).

2.2 A Two–Stage Minimum N–Aberration Criterion

Sometimes in practice, we feel that the main effects need more protection than the important

2fi’s, then the bias of the main effects should be minimized first. This suggests a variation of

the minimum N -aberration criterion, which sequentially minimizes N21, N22, N31, N32, . . . ,

Nm1, Nm2, where Nj1 is the number of j-factor interactions aliased with the main effects,

and Nj2 the number of j-factor interactions aliased with the important 2fi’s. We call this
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criterion as the two-stage minimum N -aberration criterion. Clearly, Nj = Nj1 +Nj2, where

Nj is the number of j-factor interactions aliased with the effects in the postulated model.

To gain further insight into the two-stage minimum N -aberration criterion, we now

examine the criterion in detail. The model in (2.1) consists of all the main effects and all

the important 2fi’s. For the effects in the requirement set to be estimable, the important

2fi’s in the requirement set cannot be aliased with each and with main effects. In general, a

design allows estimation of the model in (2.1) if and only if none of its length 3 words contains

an important 2fi and none of its length 4 words contains two important 2fi’s that have no

letter in common. The two-stage minimum N -aberration criterion selects a design, from

among all designs satisfying the above condition for estimation, by sequentially minimizing

N21, N22, N31, N32, . . . , Nm1, Nm2. A general expression for Nj1 and Nj2 can be derived.

Let Aj be the number of defining words of length j in the defining relation. Let A
(2)
j =

∑k
i=1 ai, where k denotes the number of important 2fi’s, and ai is the number of length j

words containing the i-th important 2fi, A
(1)
j =

∑k
i=1 bi, where bi is the number of length

j words containing one and only one letter in the i-th important 2fi, and A
(0)
j =

∑k
i=1 ci,

where ci is the number of length j words without containing any letter in the i-th important

2fi. A general expression of Nj1 and Nj2 is given by

Nj1 = (j + 1)Aj+1 + (m − j + 1)Aj−1, (2.4)

Nj2 = A
(2)
j+2 + A

(1)
j + A

(0)
j−2, (2.5)

where we define Aj = 0 for j < 3 or j > m. Hence we have that

N21 = 3A3, N22 = A
(2)
4 , (2.6)

N31 = 4A4, N32 = A
(2)
5 + A

(1)
3 . (2.7)

It should be noted that A
(2)
j does not represent the number of length j words containing an

important 2fi. This is because if a length j word contains more than one important 2fi, it is

counted more than once in calculating A
(2)
j . In fact, A

(2)
j corresponds to the total number

of times a length j word contains an important 2fi. A similar interpretation holds for A
(1)
j .

The requirement set of model in (2.1) consists of all the main effects and all the important

2fi’s. The 2fi’s that are not in the requirement set generally cause a bias on the estimation

of the effects in the requirement set. The measure of this bias are given by N21 and N22

where N21 is the number of those 2fi’s outside the requirement set that are aliased with the

main effects and N22 represents the number of those 2fi’s outside the requirement set that

are aliased with the important 2fi’s. If a design has resolution IV, then A3 = 0, in which

case, N21 = 3A3 = 0. If all the important 2fi’s in the requirement set are clear, meaning that

they are not aliased with any main effects and any other 2fi’s (Wu and Hamada 2000), then

A
(2)
4 = 0, in which case, N22 = A

(2)
4 = 0. The two-stage minimum N -aberration criterion

goes on to minimize N31 and N32 once N21 and N22 are minimized. Note that N31 is the
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number of 3fi’s that are aliased with the main effects and N32 is the number of 3fi’s that

are aliased with the important 2fi’s in the requirement set.

Suppose that we want to study six factors 1, 2, . . . , 6 by using a design of 16 runs. In

addition to the main effects of the six factors, we also want to estimate the three 2fi’s

that are between factor 1 and factor 2, denoted by 12, between factor 1 and factor 3,

denoted by 13, and between factor 1 and factor 4, denoted by 14, respectively. Considering

two designs, D1, and D2, where D1 is given by I = 1235 = 2346 = 1456, and D2 by

I = 12345 = 2346 = 156. For D1, we have A3 = A5 = 0, A4 = A
(2)
4 = 3. Then we have

N21 = 3A3 = 0, N22 = A
(2)
4 = 3, N31 = 4A4 = 12, and N32 = A

(2)
5 + A

(1)
3 = 0. For D2,

we have A3 = A4 = A5 = 1, A
(1)
3 = A

(2)
5 = 3 and A

(2)
4 = 0. Then we have N21 = 3A3 =

3, N22 = A
(2)
4 = 0, N31 = 4A4 = 4, and N32 = A

(2)
5 +A

(1)
3 = 6. If the main effects need more

protection than the important two-factor interactions, we should use the two-stage minimum

N -aberration criterion to select the good design. Let (N21, N22, N31, N32, . . .) denote the

confounding pattern of two-stage minimum N -aberration. The confounding patterns of the

two designs D1, and D2 are given by

D1 : (0, 3, 12, 0)

D2 : (3, 0, 4, 6)

Based on the confounding patterns, D1 is better than D2 because N21(D1) < N21(D2) where

N21(D1) and N21(D2) denote the N21 for D1 and D2 respectively. If all the effects in the

requirement set, consisting of the main effects and important 2fi’s, are equally important,

we may choose the best design by using the minimum N -aberration criterion proposed by

Ke and Tang (2003). The best design under the two-stage minimum N -aberration criterion

may be not the best under the minimum N -aberration criterion. In the above example,

we have N2 = N21 + N22 = 3 and N3 = N31 + N32 = 12 for D1, N2 = 3 and N3 = 10

for D2. So D2 is better than D1 under the usual minimum N -aberration criterion because

N2(D1) = N2(D2) and N3(D1) > N3(D2).

In practice, we are often quite confident that interactions involving three or more factors

are negligible. In this case, we are satisfied with only minimizing N21 and N22 in finding the

best designs. This gives a weak version of the two-stage minimum N -aberration criterion.

For the above example, D1 is still better than D2 under the weak version of the two-stage

minimum N -aberration criterion because N21(D1) < N21(D2). But the two designs are

the same under the weak version of the usual minimum N -aberration criterion because

N2(D1) = N2(D2).
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3 Searching for Two–Stage Minimum N–Aberration De-

signs

3.1 Search Method

In this paper, we consider all non-isomorphic models containing up to three 2fi’s. Let k

be the number of important 2fi’s. For k = 1, there is only one non-isomorphic model, as

represented by Figure 1. For k = 2, 3, the number of non-isomorphic model is 2 and 5

respectively, and the graphs for these non-isomorphic models are given in Figures 2 and 3

respectively.

Chen, Sun, and Wu (1993) gave a complete catalog of all non-isomorphic designs of 16

and 32 runs, and all resolution IV non-isomorphic designs of 64 runs. This catalog can be

used to generate all possible designs of 16 and 32 runs containing some important 2fi’s. For

a given model containing specified 2fi’s, we select the best design by sequentially minimizing

N21, N22, N31, N32, . . . , Nm1, Nm2, where Nj1 is the number of j-factor interactions aliased

with the main effects, and Nj2 the number of j-factor interactions aliased with the important

2fi’s. Through our search effort, we have found all two-stage minimum N -aberration designs

of 16 runs for 1 ≤ k ≤ 3, and almost all two-stage minimum N -aberration designs of 32

runs for 1 ≤ k ≤ 3, where k is the number of important 2fi’s. In our search effort, we have

used (N21, N22, N31, N32) instead of the entire vector (N21, N22, . . . , Nm1, Nm2) to reduce

the computing burden.

From (2.6) in Section 2.2, we notice that N21 = 3A3. So the two-stage minimum N -

aberration criterion firstly minimizes A3 as the usual minimum aberration does. If a model

containing specified 2fi’s exists in the designs that have the smallest A3, the best designs

under the two-stage minimum N -aberration criterion must come from these designs. Hence

we firstly search for the best design from the designs in the catalog with the smallest A3.

If the given model does not exist in these designs, we search for the best design from the

designs in the catalog with the second smallest A3, and so on. By this way the computing

burden can be further reduced.

3.2 Two–Stage Minimum N–Aberration Designs of 16 and 32 Runs

Tables 1, 2, and 3 present two-stage minimum N -aberration designs of 16 runs for models

with one, two, and three important 2fi’s respectively. In Tables 2 and 3, the entries under

“model” indicate which model is under consideration; for example, an entry of 2(a) denotes

the model represented by Figure 2(a). The entries under “parent design” give the designs

from which two-stage minimum N -aberration designs are found; the design labels from

Chen, Sun, and Wu (1993) are used here. These parent designs can be reconstructed based

on the information in Table 4, which provides the design columns for each design. Column j

in Table 4 denotes the j-th column in the 16 run saturated design with its columns arranged
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in Yates order, which can be written as

(a1, a2, a1a2, a3, a1a3, a2a3, a1a2a3, a4, a1a4, a2a4, a1a2a4, a3a4, a1a3a4, a2a3a4, a1a2a3a4),

(3.1)

where a1, a2, a3, and a4 are four independent columns. The entries under “2fi’s” tell how to

assign the factors involved in the important 2fi’s. The last column in these tables gives the

confounding pattern (N21, N22, N31, N32). Tables 5, 6, and 7 present two-stage minimum N -

aberration designs of 32 runs for models with one, two, and three important 2fi’s respectively.

The parent designs of 32 runs are given in Table 8.

3.3 An Illustrative Example

Suppose that in an experiment, the experimenter want to study six factors: time, temper-

ature, moisture, pressure, weight, and size. She would like to use a two-level fractional

factorial design of 16 runs. In addition to the main effects of these factors, she also wants

to estimate the three 2fi’s that are between time and temperature, between time and mois-

ture, and between time and pressure. The graph for this model is 3(c) as in Figure 3. The

two-stage minimum N -aberration design for this model can be found in Table 3 at the row

for m = 6 and model 3(c). From this row in Table 3, we see that the parent design is

design 6-2.1, which, according to Table 4, collects columns 1, 2, 4, 8, 7, and 11. To complete

the specification of the two-stage minimum N -aberration design, the six factors need to be

appropriately assigned to the six columns. The 2fi’s column in Table 3 says that we should

assign time to column 4, and assign temperature, moisture, and pressure to column 1, 2,

and 8. Other factors can be arbitrarily assigned to the remaining columns. This design has

N21 = 0, N22 = 3, meaning that no 2fi’s outside the model are aliased with the main effects,

but three 2fi’s not in the model are aliased with the important 2fi’s in the model.

4 Discussion

In selecting 2m−p designs when some 2fi’s are presumably important, the effort is focused

on estimating the main effects and important 2fi’s in the postulated model and on mini-

mizing the bias caused by the other effects not included in the model. If we have taken

the view that all the effects in the requirement set, consisting of the main effects and im-

portant 2fi’s, are equally important, the minimum N -aberration criterion proposed by Ke

and Tang (2003) can be used to sequentially minimize the bias. If we consider that the

main effects need more protection than the important 2fi’s, then the two-stage minimum

N -aberration designs can be used to solve this problem. From (2.6) in Section 2.2, we know

that N21 = 3A3. Hence if the minimum aberration design proposed by Fries and Hunter

(1980) is estimable under the given model and is the only one that minimizes A3, the best

design under the two-stage minimum N -aberration criterion must come from the minimum

aberration design. Another interesting fact is that if the minimum N -aberration design
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comes from the minimum aberration design, then the two-stage minimum N -aberration de-

sign and the minimum N -aberration design is exactly the same. This can be explained as

follows. In a usual minimum aberration design, A3, A4, . . . , Am are minimized sequentially.

Then N21 = 3A3, N31 = 4A4, . . . , Nj1 = (j+1)Aj+1+(m−j+1)Aj−1, . . . , Nm1 = Am−1 are

also minimized sequentially. If N2 is minimized, then N22 = N2−N21 can also be minimized

given N21. The same way we know that minimizing Nj means minimizing Nj2 = Nj − Nj1

given Nj1. Hence the minimum N -aberration criterion and the two-stage minimum aberra-

tion criterion can be satisfied simultaneously.
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Table 1: Two-stage minimum N -aberration designs of 16 runs for the model containing one
2fi, as in Figure 1.

m parent design 2fi (N21, N22, N31, N32)

5 5-1.1 (1, 2) (0, 0, 0, 1)

6 6-2.1 (1, 4) (0, 1, 12, 0)

7 7-3.1 (1, 2) (0, 2, 28, 0)

8 8-4.1 (1, 2) (0, 3, 56, 0)

9 9-5.1 (2, 4) (12, 3, 56, 4)

10 10-6.1 (2, 8) (24, 3, 72, 8)

11 11-7.1 (2, 14) (36, 3, 104, 13)

12 12-8.1 (1, 6) (48, 5, 156, 16)

13 13-9.1 (2, 12) (66, 5, 220, 22)

14 14-10.1 (1, 14) (84, 6, 308, 28)
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Table 2: Two-stage minimum N -aberration designs of 16 runs for the models containing
two 2fi’s, as in Figure 2.

m model parent design 2fi’s (N21, N22, N31, N32)

5 2(a) 5-1.1 (1, 2)(4, 8) (0, 0, 0, 2)

2(b) 5-1.1 (1, 2)(1, 4) (0, 0, 0, 2)

6 2(a) 6-2.1 (1, 4)(2, 8) (0, 2, 12, 0)

2(b) 6-2.1 (1, 4)(2, 4) (0, 2, 12, 0)

7 2(a) 7-3.1 (1, 2)(4, 8) (0, 4, 28, 0)

2(b) 7-3.1 (1, 2)(1, 4) (0, 4, 28, 0)

8 2(a) 8-4.1 (1, 2)(4, 8) (0, 6, 56, 0)

2(b) 8-4.1 (1, 2)(1, 4) (0, 6, 56, 0)

9 2(a) 9-5.1 (2, 4)(3, 8) (12, 6, 56, 8)

2(b) 9-5.1 (2, 4)(3, 4) (12, 6, 56, 8)

10 2(a) 10-6.1 (2, 8)(3, 14) (24, 6, 72, 16)

2(b) 10-6.1 (2, 8)(3, 8) (24, 6, 72, 16)

11 2(a) 11-7.1 (1, 14)(2, 5) (36, 7, 104, 25)

2(b) 11-7.1 (1, 13)(2, 13) (36, 7, 104, 25)

12 2(a) 12-8.1 (1, 10)(2, 5) (48, 10, 156, 32)

2(b) 12-8.1 (1, 6)(1, 10) (48, 10, 156, 32)

13 2(a) 13-9.1 (2, 13)(4, 10) (66, 10, 220, 44)

2(b) 13-9.1 (2, 12)(3, 12) (66, 10, 220, 44)
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Table 3: Two-stage minimum N -aberration designs of 16 runs for the models containing
three 2fi’s, as in Figure 3. (A row having entries “−” indicates the situation where the
specified model does not exist for the given number of m factors.)

m model parent design 2fi’s (N21, N22, N31, N32)

5 3(a) − − −
3(b) 5-1.1 (1, 2)(4, 8)(4, 15) (0, 0, 0, 3)

3(c) 5-1.1 (1, 2)(1, 4)(1, 8) (0, 0, 0, 3)

3(d) 5-1.1 (1, 4)(4, 8)(8, 2) (0, 0, 0, 3)

3(e) 5-1.1 (1, 2)(1, 4)(2, 4) (0, 0, 0, 3)

6 3(a) 6-2.1 (1, 4)(2, 8)(7, 11) (0, 3, 12, 0)

3(b) 6-2.1 (1, 4)(2, 8)(7, 8) (0, 3, 12, 0)

3(c) 6-2.1 (1, 4)(2, 4)(4, 8) (0, 3, 12, 0)

3(d) 6-2.1 (1, 4)(4, 8)(8, 2) (0, 3, 12, 0)

3(e) 6-2.1 (1, 4)(1, 8)(4, 8) (0, 3, 12, 0)

7 3(a) 7-3.1 (1, 4)(2, 8)(7, 11) (0, 6, 28, 0)

3(b) 7-3.1 (1, 2)(4, 8)(7, 8) (0, 6, 28, 0)

3(c) 7-3.1 (1, 2)(1, 4)(1, 7) (0, 6, 28, 0)

3(d) 7-3.1 (1, 4)(4, 8)(8, 2) (0, 6, 28, 0)

3(e) 7-3.1 (1, 2)(1, 4)(2, 4) (0, 6, 28, 0)

8 3(a) 8-4.1 (1, 4)(2, 8)(7, 11) (0, 9, 56, 0)

3(b) 8-4.1 (1, 2)(4, 8)(7, 8) (0, 9, 56, 0)

3(c) 8-4.1 (1, 2)(1, 4)(1, 7) (0, 9, 56, 0)

3(d) 8-4.1 (1, 4)(4, 8)(8, 2) (0, 9, 56, 0)

3(e) 8-4.1 (1, 2)(1, 4)(2, 4) (0, 9, 56, 0)

9 3(a) 9-5.1 (2, 4)(3, 8)(5, 9) (12, 9, 56, 12)

3(b) 9-5.1 (2, 4)(3, 8)(5, 8) (12, 9, 56, 12)

3(c) 9-5.1 (2, 4)(3, 4)(4, 8) (12, 9, 56, 12)

3(d) 9-5.1 (2, 4)(4, 8)(8, 3) (12, 9, 56, 12)

3(e) 9-5.1 (2, 4)(2, 8)(4, 8) (12, 9, 56, 12)
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Table 3 (Continued)

m model parent design 2fi’s (N21, N22, N31, N32)

10 3(a) 10-6.1 (2, 9)(3, 14)(4, 8) (24, 9, 72, 24)

3(b) 10-6.1 (4, 8)(2, 9)(3, 9) (24, 9, 72, 24)

3(c) 10-6.1 (2, 8)(3, 8)(4, 8) (24, 9, 72, 24)

3(d) 10-6.1 (2, 14)(14, 3)(3, 8) (24, 9, 72, 24)

3(e) 10-6.1 (2, 5)(2, 8)(5, 8) (24, 10, 72, 24)

11 3(a) 11-7.1 (1, 14)(2, 9)(3, 4) (36, 11, 104, 37)

3(b) 11-7.1 (3, 4)(1, 13)(2, 13) (36, 11, 104, 37)

3(c) 11-7.1 (1, 14)(2, 14)(5, 14) (36, 11, 104, 37)

3(d) 11-7.1 (1, 10)(10, 5)(5, 2) (36, 11, 104, 37)

3(e) 11-7.1 (1, 6)(1, 10)(6, 10) (36, 12, 104, 36)

12 3(a) 12-8.1 (1, 13)(2, 9)(3, 4) (48, 15, 156, 48)

3(b) 12-8.1 (1, 6)(2, 9)(5, 9) (48, 15, 156, 48)

3(c) 12-8.1 (1, 6)(1, 10)(1, 13) (48, 15, 156, 48)

3(d) 12-8.2 (4, 10)(10, 5)(5, 8) (51, 12, 152, 51)

3(e) 12-8.1 (1, 6)(1, 10)(6, 10) (48, 15, 156, 48)



94 KE et al.

Table 4: The parent designs in Tables 1, 2, and 3. Here each design contains the four
independent columns 1, 2, 4, and 8 besides those additional columns.

m parent design additional columns

5 5-1.1 15

6 6-2.1 7 11

7 7-3.1 7 11 13

8 8-4.1 7 11 13 14

9 9-5.1 3 5 9 14 15

10 10-6.1 3 5 6 9 14 15

11 11-7.1 3 5 6 9 10 13 14

11-7.3 3 5 6 7 9 10 11

12 12-8.1 3 5 6 9 10 13 14 15

12-8.2 3 5 6 7 9 10 11 12

13 13-9.1 3 5 6 7 9 10 11 12 13

14 14-10.1 3 5 6 7 9 10 11 12 13 14
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Table 5: Two-stage minimum N -aberration designs of 32 runs for the model containing one
2fi, as in Figure 1.

m parent design 2fi (N21, N22, N31, N32)

6 6-1.1 (1, 2) (0, 0, 0, 0)

7 7-2.1 (1, 8) (0, 0, 4, 1)

8 8-3.1 (1, 16) (0, 0, 12, 2)

9 9-4.1 (1, 29) (0, 0, 24, 4)

10 10-5.1 (1, 4) (0, 1, 40, 4)

11 11-6.1 (2, 13) (0, 2, 100, 0)

12 12-7.1 (1, 16) (0, 3, 152, 0)

13 13-8.1 (1, 8) (0, 4, 220, 0)

14 14-9.1 (1, 4) (0, 5, 308, 0)

15 15-10.1 (1, 2) (0, 6, 420, 0)

16 16-11.1 (1, 2) (0, 7, 560, 0)

17 17-12.1 (2, 4) (24, 7, 560, 8)

18 18-13.1 (2, 8) (48, 7, 592, 16)

19 19-14.1 (2, 16) (72, 7, 656, 24)

20 20-15.1 (2, 29) (96, 7, 752, 32)

21 21-16.2 (2, 23) (120, 7, 884, 42)

22 22-17.1 (1, 26) (144, 7, 1052, 52)

23 23-18.1 (2, 28) (168, 7, 1260, 63)

24 24-19.1 (1, 6) (192, 11, 1512, 64)

25 25-20.1 (2, 12) (228, 11, 1768, 76)

26 26-21.1 (2, 20) (264, 11, 2072, 88)

27 27-22.1 (1, 30) (300, 11, 2424, 101)

28 28-23.1 (1, 14) (336, 13, 2828, 112)

29 29-24.1 (2, 28) (378, 13, 3276, 126)

30 30-25.1 (1, 30) (420, 14, 3780, 140)
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Table 6: Two-stage minimum N -aberration designs of 32 runs for the models containing
two 2fi’s, as in Figure 2.

m model parent design 2fi’s (N21, N22, N31, N32)

6 2(a) 6-1.1 (1, 2)(4, 8) (0, 0, 0, 0)

2(b) 6-1.1 (1, 2)(1, 4) (0, 0, 0, 0)

7 2(a) 7-2.1 (1, 8)(2, 16) (0, 0, 4, 2)

2(b) 7-2.1 (1, 8)(2, 8) (0, 0, 4, 2)

8 2(a) 8-3.1 (1, 16)(2, 29) (0, 0, 12, 4)

2(b) 8-3.1 (1, 16)(2, 16) (0, 0, 12, 4)

9 2(a) 9-4.2 (1, 16)(2, 30) (0, 0, 28, 6)

2(b) 9-4.1 (1, 29)(2, 29) (0, 0, 24, 8)

10 2(a) 10-5.1 (1, 4)(2, 8) (0, 2, 40, 8)

2(b) 10-5.1 (1, 4)(2, 4) (0, 2, 40, 8)

11 2(a) 11-6.1 (2, 21)(4, 11) (0, 4, 100, 0)

2(b) 11-6.1 (2, 25)(4, 25) (0, 4, 100, 0)

12 2(a) 12-7.1 (1, 16)(2, 21) (0, 6, 152, 0)

2(b) 12-7.1 (1, 16)(2, 16) (0, 6, 152, 0)

13 2(a) 13-8.1 (1, 8)(2, 13) (0, 8, 220, 0)

2(b) 13-8.1 (1, 8)(2, 8) (0, 8, 220, 0)

14 2(a) 14-9.1 (1, 4)(2, 8) (0, 10, 308, 0)

2(b) 14-9.1 (1, 4)(2, 4) (0, 10, 308, 0)

15 2(a) 15-10.1 (1, 2)(4, 8) (0, 12, 420, 0)

2(b) 15-10.1 (1, 2)(1, 4) (0, 12, 420, 0)

16 2(a) 16-11.1 (1, 2)(4, 8) (0, 14, 560, 0)

2(b) 16-11.1 (1, 2)(1, 4) (0, 14, 560, 0)

17 2(a) 17-12.1 (2, 4)(3, 8) (24, 14, 560, 16)

2(b) 17-12.1 (2, 4)(3, 4) (24, 14, 560, 16)

18 2(a) 18-13.1 (2, 8)(3, 14) (48, 14, 592, 32)

2(b) 18-13.1 (2, 8)(3, 8) (48, 14, 592, 32)
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Table 6 (Continued)

m model parent design 2fi’s (N21, N22, N31, N32)

19 2(a) 19-14.1 (2, 16)(3, 22) (72, 14, 656, 48)

2(b) 19-14.1 (2, 16)(3, 16) (72, 14, 656, 48)

20 2(a) 20-15.1 (2, 29)(3, 14) (96, 14, 752, 65)

2(b) 20-15.1 (2, 28)(3, 28) (96, 14, 752, 65)

21 2(a) 21-16.2 (2, 27)(3, 22) (120, 14, 884, 84)

2(b) 21-16.2 (2, 27)(5, 27) (120, 14, 884, 84)

22 2(a) 22-17.1 (1, 29)(2, 25) (144, 14, 1052, 104)

2(b) 22-17.1 (1, 26)(6, 26) (144, 14, 1052, 104)

23 2(a) 23-18.1 (1, 6)(2, 28) (168, 17, 1260, 119)

2(b) 23-18.1 (2, 28)(3, 28) (168, 17, 1260, 119)

24 2(a) 24-19.1 (1, 10)(2, 5) (192, 22, 1512, 128)

2(b) 24-19.1 (1, 6)(1, 10) (192, 22, 1512, 128)

25 2(a) 25-20.1 (2, 12)(3, 20) (228, 22, 1768, 152)

2(b) 25-20.1 (2, 12)(3, 12) (228, 22, 1768, 152)

26 2(a) 26-21.1 (2, 20)(3, 26) (264, 22, 2072, 176)

2(b) 26-21.1 (2, 20)(3, 20) (264, 22, 2072, 176)

27 2(a) 27-22.1 (1, 30)(2, 13) (300, 23, 2424, 201)

2(b) 27-22.1 (1, 25)(6, 25) (300, 23, 2424, 201)

28 2(a) 28-23.1 (1, 22)(2, 13) (336, 26, 2828, 224)

2(b) 28-23.1 (1, 14)(1, 12) (336, 26, 2828, 224)

29 2(a) 29-24.1 (2, 29)(4, 26) (378, 26, 3276, 252)

2(b) 29-24.1 (2, 28)(3, 28) (378, 26, 3276, 252)
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Table 7: Two-stage minimum N -aberration designs of 32 runs for the models containing
three 2fi’s, as in Figure 3.

m model parent design 2fi’s (N21, N22, N31, N32)

6 3(a) 6-1.1 (1, 2)(4, 8)(16, 31) (0, 0, 0, 0)

3(b) 6-1.1 (1, 2)(4, 8)(4, 16) (0, 0, 0, 0)

3(c) 6-1.1 (1, 2)(1, 4)(1, 8) (0, 0, 0, 0)

3(d) 6-1.1 (1, 4)(4, 8)(8, 2) (0, 0, 0, 0)

3(e) 6-1.1 (1, 2)(1, 4)(2, 4) (0, 0, 0, 0)

7 3(a) 7-2.1 (1, 8)(2, 16)(4, 27) (0, 0, 4, 3)

3(b) 7-2.1 (1, 8)(2, 16)(4, 16) (0, 0, 4, 3)

3(c) 7-2.1 (1, 8)(2, 8)(4, 8) (0, 0, 4, 3)

3(d) 7-2.1 (1, 16)(16, 2)(2, 8) (0, 0, 4, 3)

3(e) 7-2.1 (1, 8)(1, 16)(8, 16) (0, 0, 4, 4)

8 3(a) 8-3.1 (1, 4)(2, 16)(7, 29) (0, 1, 12, 5)

3(b) 8-3.1 (1, 16)(2, 29)(4, 29) (0, 0, 12, 6)

3(c) 8-3.1 (1, 16)(2, 16)(4, 16) (0, 0, 12, 6)

3(d) 8-3.1 (1, 29)(29, 2)(2, 16) (0, 0, 12, 6)

3(e) 8-3.1 (1, 16)(1, 29)(16, 29) (0, 0, 12, 8)

9 3(a) 9-4.1 (1, 4)(2, 8)(7, 29) (0, 2, 24, 8)

3(b) 9-4.2 (1, 16)(2, 30)(4, 30) (0, 0, 28, 9)

3(c) 9-4.1 (1, 29)(2, 29)(4, 29) (0, 0, 24, 12)

3(d) 9-4.2 (1, 30)(30, 2)(2, 16) (0, 0, 28, 9)

3(e) 9-4.2 (1, 16)(1, 30)(16, 30) (0, 0, 28, 13)

10 3(a) 10-5.1 (1, 4)(2, 8)(7, 11) (0, 3, 40, 12)

3(b) 10-5.1 (1, 4)(2, 8)(7, 8) (0, 3, 40, 12)

3(c) 10-5.1 (1, 4)(2, 4)(4, 8) (0, 3, 40, 12)

3(d) 10-5.1 (1, 4)(4, 8)(8, 2) (0, 3, 40, 12)

3(e) 10-5.1 (1, 4)(1, 8)(4, 8) (0, 3, 40, 12)
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Table 7 (Continued)

m model parent design 2fi’s (N21, N22, N31, N32)

11 3(a) 11-6.1 (2, 25)(4, 19)(7, 8) (0, 6, 100, 0)

3(b) 11-6.1 (7, 8)(2, 25)(4, 25) (0, 6, 100, 0)

3(c) 11-6.1 (2, 25)(4, 25)(7, 25) (0, 6, 100, 0)

3(d) 11-6.1 (2, 21)(21, 11)(11, 4) (0, 6, 100, 0)

3(e) 11-6.1 (2, 4)(2, 25)(4, 25) (0, 7, 100, 0)

12 3(a) 12-7.1 (1, 19)(2, 21)(4, 16) (0, 9, 152, 0)

3(b) 12-7.1 (4, 11)(1, 16)(2, 16) (0, 9, 152, 0)

3(c) 12-7.1 (1, 16)(2, 16)(4, 16) (0, 9, 152, 0)

3(d) 12-7.1 (1, 21)(21, 2)(2, 16) (0, 9, 152, 0)

3(e) 12-7.1 (1, 14)(1, 16)(14, 16) (0, 9, 152, 0)

13 3(a) 13-8.1 (1, 11)(2, 13)(4, 8) (0, 12, 220, 0)

3(b) 13-8.1 (4, 8)(1, 11)(2, 11) (0, 12, 220, 0)

3(c) 13-8.1 (1, 8)(2, 8)(4, 8) (0, 12, 220, 0)

3(d) 13-8.1 (1, 13)(13, 2)(2, 8) (0, 12, 220, 0)

3(e) 13-8.1 (1, 8)(1, 16)(8, 16) (0, 12, 220, 0)

14 3(a) 14-9.1 (1, 4)(2, 8)(7, 11) (0, 15, 308, 0)

3(b) 14-9.1 (1, 4)(2, 8)(7, 8) (0, 15, 308, 0)

3(c) 14-9.1 (1, 4)(2, 4)(4, 8) (0, 15, 308, 0)

3(d) 14-9.1 (1, 4)(4, 8)(8, 2) (0, 15, 308, 0)

3(e) 14-9.1 (1, 4)(1, 8)(4, 8) (0, 15, 308, 0)

15 3(a) 15-10.1 (1, 4)(2, 8)(7, 11) (0, 18, 420, 0)

3(b) 15-10.1 (1, 2)(4, 8)(7, 8) (0, 18, 420, 0)

3(c) 15-10.1 (1, 2)(1, 4)(1, 7) (0, 18, 420, 0)

3(d) 15-10.1 (1, 4)(4, 8)(8, 2) (0, 18, 420, 0)

3(e) 15-10.1 (1, 2)(1, 4)(2, 4) (0, 18, 420, 0)
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Table 7 (Continued)

m model parent design 2fi’s (N21, N22, N31, N32)

16 3(a) 16-11.1 (1, 4)(2, 8)(7, 11) (0, 21, 560, 0)

3(b) 16-11.1 (1, 2)(4, 8)(7, 8) (0, 21, 560, 0)

3(c) 16-11.1 (1, 2)(1, 4)(1, 7) (0, 21, 560, 0)

3(d) 16-11.1 (1, 4)(4, 8)(8, 2) (0, 21, 560, 0)

3(e) 16-11.1 (1, 2)(1, 4)(2, 4) (0, 21, 560, 0)

17 3(a) 17-12.1 (2, 8)(3, 14)(4, 15) (24, 21, 560, 24)

3(b) 17-12.1 (4, 16)(2, 8)(3, 8) (24, 21, 560, 24)

3(c) 17-12.1 (2, 4)(3, 4)(4, 8) (24, 21, 560, 24)

3(d) 17-12.1 (2, 4)(4, 8(8, 3) (24, 21, 560, 24)

3(e) 17-12.1 (2, 4)(2, 8)(4, 8) (24, 21, 560, 24)

18 3(a) 18-13.1 (1, 6)(2, 8)(3, 14) (48, 22, 592, 48)

3(b) 18-13.1 (1, 6)(2, 8)(3, 8) (48, 22, 592, 48)

3(c) 18-13.1 (2, 8)(3, 8)(4, 8) (48, 21, 592, 48)

3(d) 18-13.1 (2, 14)(14, 3)(3, 8) (48, 21, 592, 48)

3(e) 18-13.1 (2, 8)(2, 16)(8, 16) (48, 21, 592, 48)

19 3(a) 19-14.1 (1, 6)(2, 16)(3, 22) (72, 22, 656, 72)

3(b) 19-14.1 (1, 6)(2, 16)(3, 16) (72, 22, 656, 72)

3(c) 19-14.1 (2, 16)(3, 16)(4, 16) (72, 21, 656, 72)

3(d) 19-14.1 (2, 22)(22, 3)(3, 16) (72, 21, 656, 72)

3(e) 19-14.1 (2, 15)(2, 16)(15, 16) (72, 21, 656, 73)

20 3(a) 20-15.1 (1, 6)(2, 29)(3, 14) (96, 22, 752, 97)

3(b) 20-15.1 (1, 6)(2, 28)(3, 28) (96, 22, 752, 97)

3(c) 20-15.1 (2, 29)(3, 29)(4, 29) (96, 21, 752, 98)

3(d) 20-15.1 (2, 28)(28, 3)(3, 14) (96, 21, 752, 98)

3(e) 20-15.1 (2, 5)(2, 27)(5, 27) (96, 22, 752, 98)
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Table 8: The parent designs in Tables 5, 6 and 7. Here each design contains the five
independent columns 1, 2, 4, 8 and 16 besides those additional columns.

m parent design additional columns

6 6-1.1 31

7 7-2.1 7 27

8 8-3.1 7 11 29

9 9-4.1 7 11 19 29

9-4.2 7 11 13 30

10 10-5.1 7 11 19 29 30

11 11-6.1 7 11 13 19 21 25

12 12-7.1 7 11 13 14 19 21 25

13 13-8.1 7 11 13 14 19 21 22 25

14 14-9.1 7 11 13 14 19 21 22 25 26

15 15-10.1 7 11 13 14 19 21 22 25 26 28

16 16-11.1 7 11 13 14 19 21 22 25 26 28 31

17 17-12.1 3 5 9 14 15 17 22 23 26 27 28 29

18 18-13.1 3 5 6 9 14 15 17 22 23 26 27 28 29

19 19-14.1 3 5 6 9 10 14 15 17 22 23 26 27 28 29

20 20-15.1 3 5 6 9 10 14 15 17 18 22 23 26 27 28 29

21 21-16.1 3 5 6 9 10 13 14 15 17 18 22 23 26 27 28 29

22 22-17.1 3 5 6 9 10 13 14 15 17 18 21 22 23 25 26 29 30

23 23-18.1 3 5 6 9 10 13 14 15 17 18 21 22 23 25 26 27 28 29

24 24-19.1 3 5 6 9 10 13 14 15 17 18 21 22 23 25 26 27 28 29 30

25 25-20.1 3 5 6 7 9 10 11 12 13 17 18 19 20 21 26 27 28 29 30 31

26 26-21.1 3 5 6 7 9 10 11 12 13 14 17 18 19 20 21 26 27 28 29 30 31

27 27-22.1 3 5 6 7 9 10 11 12 13 14 17 18 19 20 21 22 25 26 27 28 29 30

28 28-23.1 3 5 6 7 9 10 11 12 13 14 17 18 19 20 21 22 25 26 27 28 29 30 31

29 29-24.1 3 5 6 7 9 10 11 12 13 14 15 17 18 19 20 21 22 23 24 25 26 27 28 29

30 30-25.1 3 5 6 7 9 10 11 12 13 14 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30


