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summary

Over the years, a number of approximations to the cdf of the Normal distribution
have been proposed. How does one make a choice among them? This paper
compares their performance with a view to identifying the best among them.
Our analysis reveals that a uniformly best approximation formula does not exist.
Locally best are identified. Finally we combine the locally best approximations to
obtain a combined formula with a very high accuracy. A subroutine is presented.
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1 Introduction and Motivation

The normal distribution is perhaps the most widely used of all statistical distributions. Area

under the normal probability curve, also known as the normal cdf, is a measure that almost

all of us have dealt with at some point or other. The normal cdf does not have a closed form

solution and requires numerical techniques to evaluate the associated integral. Therefore,

unlike many other probability distributions, one cannot quickly compute the normal cdf

without consulting the normal probability table or using software. This inconvenience in

readily evaluating the normal cdf together with its widespread use has led to a few attempts

at constructing approximations. These approximations vary in accuracy and complexity.

There appears to be three broad approaches to such an exercise, the most popular

being construction of approximation formulas. The second approach involves the use of

c© Institute of Statistical Research and Training (ISRT), University of Dhaka, Dhaka 1000, Bangladesh.



60 CHOUDHURY et al.

distributions that closely resemble the normal distribution under specific conditions. The

third approach involves construction of bounds for the normal cdf. In all these approaches,

the approximations or bounds have been for the standard normal variety.

Simple bounds such as the ones found in probability textbooks such as Feller (1968)

are very popular. This approach is perhaps a century old and belongs to the pre–scientific

calculator age. Later on different authors have provided sharper bounds and other approx-

imations. Examples include approximation formula by Tocher (1963), Zelen and Severo

(1964), Page (1977), Hammakar (1978), Abernathy (1988), Lin (1989, 1990), Bagby (1995),

and Byrc (2001). Szarek (1999) proposed bounds to this function. Johnson and Kotz (1994)

have listed a few distributions that are close to the standard normal probability distribu-

tion function under certain specific conditions. Of these probability distributions we have

selected the standard Logistic for our review as it is the closest.

With such a long menu, how does one make a choice? Simply put, which approximation

formula works best? To the best of our knowledge, such an exercise has not been carried

out. The usefulness however is obvious.

The purpose of this article therefore is to review available literature on normal cdf ap-

proximations, identify regions where one of them outperforms others and finally combine

them, if possible, to obtain an approximation that is uniformly better than all of the above.

An additional aim is significant. Academician and practitioners are often required to write

programs in different languages (FORTRAN, C etc) which require the cdf of normal dis-

tribution. Presently, libraries of such programming languages do not offer any in built

subroutine or function to compute the normal cdf. Consequently, an algorithm for a highly

accurate approximation formula will also be presented.

2 Overview of Approximations

Various approximation formula to the standard normal cdf culled from literature are enu-

merated below.

1. Tocher (1963):

Φ(x) ≈ e2kx/(1 + e2kx), where k =
√

2/π.

2. Zelen and Severo (1964):

Φ(x) ≈ 1 − (0.4361836t− 0.1201676t2 + 0.9372980t3)
(

√

1/2π
)

e−x2/2,

where t = (1 + 0.33267x)−1.

3. A popular bound found in many probability texts (for example, Feller 1968).

For x > 0

(x−1 − x−3)
(

√

2/π
)−1

e−x2/2 < 1 − Φ(x) < x−1
(

√

2/π
)−1

e−x2/2.
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4. Page (1977):

Φ(x) ≈ 0.5 {1 + tanh(y)}

where y =
(

√

2/π
)

x(1 + 0.044715x2).

5. Hammakar (1978):

1 − Φ(x) ≈ 0.5

{

1 −
(

1 − e−y2
)0.5

}

, y = 0.806x(1− 0.018x).

6. Abernathy (1988):

Φ(x) ≈ 0.5 +
1√
2π

∞
∑

n=0

(−1)nx2n+1

2nn!(2n + 1)
, x > 0.

7. Lin (1989):

1 − Φ(x) ≈ 0.5
(

e−0.717x−0.416x2
)

, x > 0.

8. Lin (1990):

1 − Φ(x) ≈ 1

1 + ey
where y = 4.2π

(

x

9 − x

)

, x > 0.

9. Bagby (1995):

Φ(x) ≈ 0.5 + 0.5

(

1 − 1

30

{

7e−x2/2 + 16e−x2(2−
√

2) + (7 +
πx2

4
)e−x2

})0.5

, x > 0.

10. Szarek bounds (1999): For x > −1,

2

x + (x2 + 4)
0.5 ≤ ex2/2

∫ ∞

x

e−t2/2dt ≤ 4

3x + (x2 + 8)
0.5

11. Byrc (2001A):

Φ(x) ≈ 1 − (4 − π)x +
√

2π(π − 2)

(4 − π)x2
√

2π + 2πx + 2
√

2π(π − 2)
e−x2/2.

12. Byrc (2001B):

Φ(x) ≈ 1 − x2 + 5.575192695x + 12.77436324

x3
√

2π + 14.38718147x2 + 31.53531977x + 25.548726
e−x2/2.

13. Standard Logistic cdf:

Φ(x) ≈ F (x) =
(

1 + e−πx/
√

3
)−1
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Table 1: Maximum Absolute Errors for Different Approximation Methods

Range of the Standard Normal Variable

Approximation Method 0 - 1.0 1.0 - 3.0 3.0 - 4.0

Tocher (1963) 9.919× 10−3 1.767× 10−2 6.912× 10−3

Zelen and Severo (1964) 1.120× 10−5 1.095× 10−5 4.990× 10−6

Page (1977) 1.530× 10−4 1.791× 10−4 1.373× 10−4

Hammakar (1978) 6.229× 10−4 3.852× 10−4 2.800× 10−6

Lin (1989) 6.585× 10−3 2.374× 10−3 2.690× 10−5

Lin (1990) 6.688× 10−3 2.538× 10−3 1.220× 10−5

Bagby (1995) 3.040× 10−5 2.960× 10−5 2.710× 10−6

Byrc (2001B) 1.185× 10−5 1.873× 10−5 2.051× 10−6

Std Logistic 2.266× 10−2 1.846× 10−2 2.963× 10−3

We need to compare the accuracy of these approximations. We have chosen the NORMDIST

function of SAS software as the gold standard for computing the cdf of the standard nor-

mal distribution and consequently for comparing the accuracy of different approximation

formulas. The choice of NORMDIST function has largely been dictated by the fact that

SAS uses a highly accurate Monte Carlo technique for computing area under the N(0,1)

curve thereby determining the area with very high precision. For determining the accuracy

of various approximation formulas, we have determined absolute errors of each of these ap-

proximations for x = 0(0.0005)4. Above 4, one can take the cdf as 1. Consistent with the

symmetric property of the distribution, we have restricted our comparison to x > 0. The

absolute errors have been computed for each of the approximations with reference to the

NORMDIST function. Some summary statistics are placed in Table 1.

Summary statistics have not been computed for Feller (1968) bounds and Szarek (1999)

as they perform poorly – the bounds are quite wide. Besides, practitioners will perhaps

be more comfortable with a point approximation of the area under normal curve rather

than a bound, notwithstanding the effort. Summary statistics have not been calculated for

Abernathy (1988) too as the absolute errors are not small as the proposer has shown (refer

to Table 1 of his paper). Further as shown by Byrc (2001), his second formula is more

accurate than his first and hence summary statistics for Byrc (2001A) has not been shown.

In Table 1 the choice of upper boundary of the first interval (0,1] has been dictated

by the fact that 1 is the inflexion point of N(0,1) distribution. Upper boundary of the

second interval (1,3] has been so chosen as it is well known that 99.73% of the area under

standard normal curve lies between ±3 and for most practical applications is considered as

the effective domain of the variable of interest.
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Table 2: Mean Absolute Error for Different Approximation Methods in the range (0,4]

Approximation Method Mean Absolute Error

Tocher (1963) 8.592× 10−3

Zelen and Severo (1964) 5.980× 10−6

Page (1977) 9.470× 10−5

Hammakar (1978) 1.682× 10−4

Lin (1989) 1.342× 10−3

Lin (1990) 1.365× 10−3

Bagby (1995) 1.160× 10−5

Byrc (2001B) 6.921× 10−6

Std Logistic 7.311× 10−3

3 A Uniformly Best Approximation Formula

It is clear from Table 1, Table 2 and Fig.1 that a uniformly best approximation formula does

not exist. It can however be observed that different approximations work best in different

segments of the range (0,4]. We have been able to identify the locally best approximating

formulas for different segments. These are:

1. Byrc (2001B) works best for (0, 0.7315] in the sense that its absolute error is uniformly

lower than that of all other formulas in this range.

2. In the interval (0.7315, 1.726], Zelen and Severo (1964) works best. However, there

are three small sub–intervals viz [0.791, 0.822], [1.437, 1.442] and [1.548, 1.5525] where

Bagby (1995), Lin (1990) and Lin (1989) have lower absolute errors respectively. Nev-

ertheless from the practicality point of view, we suggest that Zelen and Severo (1964)

be used even in these small sub–intervals. Even if one were to use Zelen and Severo

(1964), the approximations would be worse off by at most 1.44719× 10−6, 7.08× 10−6

and 3.48× 10−6 respectively which are small enough to be ignored.

3. Bagby (1995) works best in the range (1.726, 1.8135].

4. In (1.8135, 2.2075], Zelen and Severo (1964) again works best except for one small

sub–interval [1.8715, 1.9] where Page (1977) has a lower absolute error. Again from

the practicality point of view, we suggest that Zelen and Severo (1964) be used in this

small sub–interval. The approximation would be worse off at most by 6.22823× 10−6

5. In (2.2075, 2.7245], Byrc (2001B) is best. Here too, there are three small sub intervals

viz [2.3605,2.448], [2.448,2.518] and [2.5965,2.661] where Hammakar (1978), Lin (1990)
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Figure 1: Plot of Absolute Errors of Different Approximations

and Lin (1989) have lower absolute errors respectively. Again from practical necessity,

we suggest the use of Byrc (2001B) all through as the errors would be worse off by at

most 7.63225× 10−5, 6.7193× 10−6 and 4.9911× 10−6 respectively; all too small to be

of any consequence.

6. Bagby (1995) is again best in the range (2.7245, 3.056].

7. Lastly, Byrc (2001B) is best in the range (3.056, 4] except for one sub–interval [3.64,

3.72] where Hammakar (1978) has lower absolute error. We however, suggest use of

Byrc (2001B) all along (3.056, 4] as the error would at most worsen by 2.19914×10−7.

We recommend that different approximation formulas be used in different ranges as

detailed above. An improved approximation formula for the standard normal cdf can now

be constructed using this recommendation. This combined approximation is as follows:
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Table 3: Summary Statistics on Combined Approximation Formula ( 3.1)

Range of the Standard Normal Variable 0.0 - 1.0 1.0 - 3.0 3.0 - 4.0

Maximum Absolute Error 6.77732× 10−6 1.07936× 10−5 1.76549× 10−6

Mean Absolute Error in the range (0,4] 3.74037× 10−6

h(x) =



























































1 − x2+5.575192695x+12.77436324

x3
√

2π+14.38718147x2+31.53531977x+25.548726
e−x2/2. if x ∈ (0, 0.7315]

or (2.2075, 2.7245]

or (3.056, 4]

1 − (0.4361836t − 0.1201676t2 + 0.9372980t3)
“

p

1/2π
”

e−x2/2, if x ∈ (0.7315, 1.726]

where t = (1 + 0.33267x)−1 or (1.8135, 2.2075]

0.5 + 0.5
“

1 − 1
30

n

7e−x2/2 + 16e−x2(2−
√

2) + (7 + πx2

4
)e−x2

o”0.5

if x ∈ (1.726, 1.8135]

or (2.7245, 3.056]

(3.1)

Compared to existing approximations, this combined approximation formula provides

better accuracy as Table 3 shows. An algorithm for a subroutine determining the combined

approximation formula is placed in the appendix.

4 Conclusion

In effect, a fresh formula for approximating the area under the standard normal curve has

been proposed. As is apparent from Table 3 and Figure 2, this combined formula performs

better than other others currently available in the literature. While we do not claim to have

rendered the normal probability table redundant, our combined approximation is a very

close competitor. The algorithm should be of use too.
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Figure 2: Plot of Absolute Errors of Three Locally Best Approximations and the Combined
Approximation Formula
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Appendix

Subroutine NormalCDF(x : Float as input, z : Float as output)

Variables: y, t : Float

z = y = t = 0

Begin Case

Case: 0 < mod(x) < 0.7315 or 2.2075 < mod(x) < 2.7245 or 3.056 < mod(x)

y = (exp(-sqr(x)/2))*(sqr(x) + 5.575192695*x + 12.77436324)/

(power(x,3)*sqrt(2*3.141592654) + 14.38718147*sqr(x)

+ 31.53531977*x + 25.548726)

Case: 0.7315 < nod(x) <= 1.726 or 1.8135 < mod(x) <= 2.2075

t = 1/(1 + 0.33267*x)

y = 1 - sqrt(3.141592654/2)*(exp(-sqr(x)/2))*(0.4361836*t

- 0.1201676*sqr(t) + 0.9372980*power(t,3))

Case: 1.726 < mod(x) <= 1.8135 or 2.7245 < mod(x) <= 3.056

y = 0.5 + 0.5*sqrt((1 - (1/30)*(7*(exp(-sqr(x)/2))

+ 16*(exp((sqrt(2)-2)*sqr(x))+(7 + 3.141592654/4*sqr(x))*exp(-sqr(x)))))

End case

If x < 0

Then z = 1 - y

Else if x = 0

Then z = 0.5

Else z = y

Return (z)

End of Subroutine NormalCDF


