
Journal of Statistical Research ISSN 0256 - 422 X

2007, Vol. 41, No. 2, pp. 21-33

Bangladesh

CONDITIONAL INTERVAL ESTIMATION FOR THE RATIO

OF SHAPE PARAMETERS IN POWER LAW PROCESS

K. MURALIDHARAN

Department of Statistics, Faculty of Science

M.S. University of Baroda, Vadodara, 390 002 India.

Email: lmv murali@yahoo.com

KUANG–CHAO CHANG

Department of Statistics and Information Science

Fu–Jen Catholic University, Taipei, Taiwan, ROC.

Email: stat1016@mails.fju.edu.tw

PAUL CHIOU

Department of Mathematics

Lamar University Beaumont, Texas 77710–0047, USA.

Email: chiou@math.lamar.edu

summary

Power law process (PLP) or Weibull process is used to model reliability growth
and is usually characterized by the intensity function λ (x) . We investigate the
conditional confidence interval (CCI) for the ratio of two PLP shape parame-
ters following the rejection of the hypothesis H0 : λ1 (x) = λ2 (x) . This interval
has been found to be possibly shorter than the unconditional confidence interval
(UCI). The conditional coverage probability (CCP) of the confidence interval is
obtained by computing the coverage probability under the conditional probabil-
ity density function. The CCP of the UCI is not uniformly greater than or less
than the nominal level. The UCI is appropriate only when one does not perform
any preliminary test (pre-test). However, if a pre-test is performed before the
construction of a confidence interval, then the appropriate interval is the CCI as
the pre-test affects subsequent inference procedures. The method is illustrated
on a data set.
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1 Introduction

Let T1 < T2 < · · · < Tn be the first n occurrence times of a random point process with

T0 = 0. Let Nt be the number of events occurred between 0 and t. This process {Nt; t ≥ 0}

was first introduced by Duane (1964) and is defined by the intensity function

λ(t) =

(

β

θ

)(

t

θ

)β−1

(1.1)

Such a model is referred to as the power law process (PLP). The process parameters θ and β

are respectively called the scale and shape parameter of the process. The process described

in (1.1) is also called non-homogeneous Poisson process (NHPP) with mean value function

m(t) =
(

t
θ

)β
. The expected rate of occurrence is d

dtm(t), which is nothing but (1.1). For

β = 1 the process reduces to a homogeneous Poisson Process (HPP). Otherwise, a PLP

provides a model for a system whose reliability changes as it ages. If β > 1, it models

a deteriorating system and when β < 1, it provides a model for reliability growth. This

process is sometimes called Weibull process as the intensity is the power of time.

Most of the inferences on PLP are done on two counts. They are inferences based on time

truncated data and failure truncated data sets. Crow (1974, 1982), Bain and Engelhardt

(1980), Ascher and Fiengold (1984), Bain et al. (1985), Rigdon and Basu (1989, 2000) have

discussed various inferences of this model under time truncated data. Lee and Lee (1978),

Bain and Engelhardt (1991), Baker (1996), Black and Rigdon (1996), Jani et al. (1997),

Muralidharan (1999), and Gaudoin et al. (2006) have provided tests of hypothesis and other

inferences based on failure truncated data. Gaudoin (1998) has given goodness-of-fit tests for

the PLP based on conditional probability integral transformations. Recently, Muralidharan

(2002 a, b) has studied reliability inferences of Weibull process and modulated power law

process under different realizations.

Soland (1969), Calabria and Pulcini (1990), Lingham and Sivaganean (1997, 1999) have

studied the Bayesian analysis of the Weibull process with unknown scale and shape param-

eter. For the problems related to predictive inferences we refer to Bar-Lev et al. (1992) and

Muralidharan et al. (2006).

For repairable systems when an NHPP is assumed to be the model, the intensity function

solely describes the probability features of the process. Hence, comparing such a repairable

system with a standard one requires comparing their corresponding intensity functions.

Hence a test for H0 : λ1(x) = λ2(x) becomes important to assess the trend in the process.

If the intensity functions of the two processes are proportional, then it would mean that the

observed system is aging in the same manner as the standard one (see also Bhatacharjee et

al. 2004). If the ratio of the two intensity function shows an increasing trend, then it means

that failures (consequently repairs) are becoming more frequent for the process as compared

with the standard system. Hence in the sense of frequency of failures, the new system is

deteriorating relative to the standard system. Hence to distinguish between the above two,

test for H0 is warranted. Since the failure processes are orderly and Ti’ s are positive, the
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above test can be equivalently stated as testing H0 : β1 = β2 against H0 : β1 6= β2 or any

suitable one sided alternative.

There are instances in life testing experiments where estimation following a preliminary

test of hypothesis on a parameter of interest has been employed suitably to obtain confi-

dence limits. Such inferences are done using conditional inferences. It has also been shown

that such confidence intervals are found to be possibly shorter in length compared to the

length of the unconditional confidence intervals. For an early references see Bancroft (1944),

Bancroft and Han (1977), Kiefer (1977), Robinson (1979), Lehmann (1986 p. 558), Han et

al. (1988) etc. Conditional confidence intervals for the mean of a normal distribution fol-

lowing rejection of a preliminary hypothesis have been examined by Meeks and D’Agostino

(1983). Conditional confidence intervals for the exponential location parameter, correlation

coefficient of the bi-variate normal distribution and ratio of extreme-value shape parameter

have been examined by Chiou and Han (1995), Chiou (2000) and by Chiou and Chang

(2004) respectively.

The objective of this study is to provide the conditional confidence interval for the

ratio of two PLP shape parameters following the rejection of the hypothesis H0 : β1 =

β2. In Section 2 some important results and properties of the process are discussed. The

conditional confidence interval is provided in Section 3. Some simulation study and examples

are discussed in the subsequent Sections.

2 Some Useful Results

Let t1, t2, . . . , tn denote the first n successive times of occurrences from (1.1). Then the joint

probability density function of t1, t2, . . . , tn as

f (t1, t2, . . . , tn) =

(

β

θ

)n
(

n
∏

i=1

ti
θ

)β−1

e−( tn
θ )

β

, (2.1)

0 < t1 < t2 < · · · < tn < ∞, β > 0, θ > 0. Further, f(t1,t2,...,tn)
f(u1,u2,...,un) = k(t, u), for

every (θ, β) ∈ Ω, iff tn = un and
n−1
∑

i=1

log(ti) =
n−1
∑

i=1

log(ui), which establishes the fact that
(

tn,
n−1
∑

i=1

log(ti)

)

is jointly sufficient statistic for (θ, β). For known β, Tn is the complete

sufficient statistic for θ. Also

f(ti) =

∫

t1

∫

t2

∫

t3

· · ·

∫

ti−1

∫

ti+1

· · ·

∫

tn

f (t1, t2, . . . , tn)

dt1dt2 . . . dti−1dti+1 . . . dtn =
β

θiβΓ(i)
tiβ−1
i e−( ti

θ )
β

, 0 < ti < ∞

and

f(tn) =
β

θnβΓ(n)
tnβ−1
n e−( tn

θ )
β

, tn > 0.
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So that the conditional distribution of (t1, t2, . . . , tn−1) given tn is

f (t1, t2, . . . , tn−1|tn) = Γ(n)

(

β

tn

)n−1 n
∏

i=1

(

ti
tn

)β−1

, 0 < t1 < t2 < · · · < tn (2.2)

The density (2.2) is free from the nuisance parameter θ. The following results also hold for

this process.

Result 1.

If ui = (ti/tn)
β
, then u1, u2, . . . , un−1 are order statistics from U(0, 1) and un = 1.

Result 2.

The maximum likelihood estimates (MLE) of θ and β are θ̂ = tn/n1/β̂ and β̂ = n/
n−1
∑

i=1

ln
(

tn

ti

)

respectively.

Result 3.

If S =
n−1
∑

i=1

ln (tn/ti), then 2βS has chi-square distribution with 2(n− 1) degrees of freedom.

Result 4.

To test H0 : β = β0 against H0 : β 6= β0 a uniformly most powerful unbiased test

(UMPU) is to reject H0 if V (x) /∈ (c1, c2), where V (x) =
n−1
∑

i=1

log
(

ti

tn

)

and for large n,

c1 = 1
β0

χ2
(2(n−1),α/2) and c2 = 1

β0
χ2

(2(n−1),1−α/2).

The result 4 is available in Muralidharan (1999) and is derived based on the condi-

tional distribution given in (2.2). This conditional test also coincides with that of Bain and

Engelhardt (1980). The conditional confidence interval is constructed in the next section.

3 Conditional Confidence Interval

Exploiting the idea of conditional inference, we now obtain the conditional confidence inter-

val (CCI) for φ = β1

β2
upon rejection of the test H0 : β1 = β2 against H0 : β1 6= β2. Let fα/2

and f1−α/2 denote the 100(α/2) and 100(1 − α/2) percentage points of the F distribution

with [2(n1 − 1), 2(n2 − 1)] degrees of freedom, then an α level critical region of the test

H0 : β1 = β2 against H0 : β1 6= β2 is defined by

Ψ(x) =







1, if T < fα/2 or T > f1−α/2

0, otherwise,
(3.1)
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where T = (n2−1)S1

(n1−1)S2
and α is such that PrH0

[T < fα/2 or T > f1−α/2] = α. Since β1

β2
T has

an F distribution with [2(n1 −1), 2(n2 −1)] degrees of freedom, the usual 100(1−p1 −p2)%

unconditional confidence interval (UCI) for φ is
fp1

T ≤ φ ≤
f1−p2

T , where p1 and p2 are the

lower and upper tail probabilities. For constructing UCI we need not have a preliminary

test. The power of the test say β(φ) is obtained a

β(φ) = PrH1

[

T < fα/2 or T > f1−α/2

]

= PrH1

[

T

(

β1

β2

)

< fα/2

(

β1

β2

)

or T

(

β1

β2

)

> f1−α/2

(

β1

β2

)]

= 1 + F
(

φfα/2

)

− F
(

φf1−α/2

)

. (3.2)

The conditional confidence interval is constructed based on the conditional distribution of T

given the power of the test. If f(t) denote the unconditional pdf of T , then the conditional

pdf of T is obtained as

fc(t) =







f(t)
β(φ) , if t < fα/2 or t > f1−α/2

0, otherwise.
(3.3)

Note that fc(t) is defined only when β(φ) > 0 and for α > 0, fc(t) is always defined. For φ

other than unity (say 0 or ∞) and α very large (say α → 1) the conditional density converges

to the unconditional pdf. In Figure 1, we present the graph of Fc(t) for various values of φ.

It is observed that for φ < 1, Fc(t) is increasing and for φ > 1, Fc(t) is decreasing. We will

use this fact to compute the conditional confidence interval in the following theorem.

Figure 1: The graph of Fc(t)
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Theorem 1. Let βi (φ) = 1 + F
(

φc
i fα/2

)

− F
(

φc
i f1−α/2

)

, i = L,U .

1. If p1 < 1
βL(φ)F

(

φc
L fα/2

)

and 1 − p2 ≤ 1
βU (φ)F

(

φc
U fα/2

)

, then the solutions of the

equations

p1 =
1

βL(φ)
F (T φc

L) (3.4)

and

1 − p2 =
1

βU (φ)
F (T φc

U ) (3.5)

constitutes a 100(1 − p1 − p2)% confidence interval for φ

2. If p1 < 1
βL(φ)F

(

φc
L fα/2

)

and 1 − p2 > 1
βU (φ)F

(

φc
U fα/2

)

, then the solutions of the

equations (3.4) and equation

1 − p2 =
1

βU (φ)

(

F (T φc
U ) + F

(

φc
U fα/2

)

− F
(

φc
U f1−α/2

) )

(3.6)

constitutes a 100(1 − p1 − p2)% confidence interval for φ.

3. If p1 ≥ 1
βL(φ)F

(

φc
L fα/2

)

and 1 − p2 > 1
βU (φ)F

(

φc
U fα/2

)

, then the solutions of the

equations (3.6) and equation

p1 =
1

βL(φ)

(

F (T φc
L) + F

(

φc
L fα/2

)

− F
(

φc
L f1−α/2

))

(3.7)

constitutes a 100(1 − p1 − p2)% confidence interval for φ.

The theorem is a direct consequence of results (3.2) and (3.3). For given values of T ,

α, p1, p2, the limits φc
L and φc

U can be obtained by solving the equations in the above theorem.

The ratio of the length of the CCI to that of UCI is given by R = (φc
U − φc

L) /
(

f1−p2

T −
fp1

T

)

.

Table 1 provides the value of the ratio of length of a 90% CCI to the length of a 90% UCI

for n1 = 10, n2 = 10, α = 0.10 and for given values of T . Note that the ratio does not exist

when fα/2 ≤ T ≤ f1−α/2. When T approaches fα/2(= 0.4510) from the left, the length

of the CCI can be much smaller than the length of the UCI. As T increases to infinity or

decreases to zero, the ratio exceeds one and eventually converges to one from above. This

can be illustrated in the following way:

Consider n1 = n2 = 10, α = 0.01 and p1 = p2 = 0.05. Then fα/2 = 0.4510 and

f1−α/2 = 2.2172. If the observed value of T is 0.40, then the hypothesis is rejected as

T < fα/2. The UCI for φ is [1.12375, 5.5429] while the CCI is [0.7231, 3.4760] obtained by

solving the nonlinear equations in Theorem 1. Although the CCI is shorter than UCI, it

contains the value of φ = 1. It usually happens if the value of T happens to be close to fα/2.

The length of the ratio of CCI to that of UCI is 0.622948 which is smaller than unity. If T is

0.25 then the UCI and CCI are respectively obtained as [1.8041, 8.8688] and [1.6354, 9.1245].

The length of the ratio of CCI to that of UCI is 1.060073 which exceeds one. Here CCI

is slightly larger than the UCI and does not contain the value of φ. A similar behavior is
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Table 1: ◮ Ratio of length of CCI to UCI

T R T R T R T R

0.01 1.801 0.25 0.998 2.5 0.223 5 0.976

0.05 1.785 0.3 0.983 3 0.478 10 1.004

0.1 1.583 0.35 0.727 3.5 0.735 20 1.063

0.15 1.405 0.4 0.357 4 0.856 30 1.078

0.2 1.02 0.45 0.035 4.5 0.923 40 1.089

observed when the value of T is larger. This establishes the fact that as φ goes to zero or

infinity, the CCI goes to UCI.

To study the actual coverage probability that is provided at the nominal 100(1 − p)%

level we compute the coverage probability of the UCI under the conditional pdf of T . We

also obtain the power curve in Figure 2. From the graph of β(φ) it is seen that the power

increases as φ tends to 0 or ∞.

Figure 2: Power of the test for various values of (n1, n2) and φ

Theorem 2. 1. If φ fα/2 ≤ fp/2 and φ f1−α/2 ≥ f1−p/2, then the CCP for φ is zero.

2. If φ fα/2 ≤ fp/2 and fp/2 < φ f1−α/2 < f1−p/2, then the CCP for φ is

1

β(φ)

[(

1 −
p

2

)

− F
(

φ f1−α/2

)

]

.
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3. If fp/2 < φ fα/2 < f1−p/2 and fp/2 < φ f1−α/2 < f1−p/2, then the CCP for φ is

1

β(φ)

[

(1 − p) + F
(

φ fα/2

)

− F
(

φ f1−α/2

)]

.

4. If fp/2 < φ fα/2 < f1−p/2 and φ f1−α/2 ≥ f1−p/2, then the CCP for φ is

1

β(φ)

[

F
(

φ fα/2

)

−
p

2

]

.

5. If φ fα/2 > f1−p/2 or φ f1−α/2 < fp/2, then the CCP for φ is

1

β(φ)
(1 − p) .

Table 2 presents the nominal 100(1 − p)% coverage probability of the UCI for n1 =

20, n2 = 15, p = 0.10 and for various values of φ and α. The CCP of the UCI has a

maximum value of 0.945695 when α = 0.1 that is about 5% higher than the nominal level

0.90, however, it can be as low as 0 at φ = 1 that is far less than the nominal level. On the

other hand, if a larger value of α is used, say 0.5, then it has a maximum value of higher

than 0.967856 and a minimum value of 0.776567 at φ = 1 which is not much different from

the UCI due to the fact that CCI→UCI as α → 1. Evidently, φ is unknown in practice, and

a decision to use the UCI after rejection of H0 is inappropriate as the pre-test affects any

subsequent inference procedure.

4 Numerical Example

We now present two examples. The first example is based on Kumar and Klefsjo (1992)

data on hydraulic systems of LHD machines. The authors have considered the failure data

of six different machines: two each of old (LHD 1 and LHD 3), medium (LHD 9 and LHD

11) and new (LHD 17 and LHD 20). They have used PLP models for checking the presence

of trends in the time between failures of the hydraulic system.

According to them the null hypothesis of equality of two shape parameters is accepted

in every case when two different systems are compared. Although their conclusion is same

everywhere, they have obtained the value of test statistic using T = β̂1

β̂2

instead of T as

defined above. Since the hypothesis is accepted in every case the CCI can not be constructed.

The estimates and UCI for φ when two the shape parameters are tested are presented in

Table 3.

The second example is the failure data from 1978 to 1998 in steel pipelines split in to

three sets according to the different types of corrosion which caused them namely, natural,

galvanic and by stray currents. We reproduce the data from Ruggeri (2006) as follows:
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Table 2: ◮ Conditional Coverage Probability of UCI

φ α = 0.05 α = 0.10 α = 0.20 α = 0.40 α = 0.50

0.1 0.907047 0.902673 0.900822 0.900182 0.900034

0.2 0.941472 0.945695 0.933196 0.910766 0.900235

0.3 0.915146 0.930677 0.940227 0.945244 0.923768

0.4 0.859235 0.898994 0.922124 0.932916 0.916576

0.5 0.750834 0.839796 0.886637 0.904265 0.902365

0.6 0.546975 0.731783 0.819266 0.84684 0.895644

0.7 0.184487 0.542631 0.698736 0.78368 0.854278

0.8 0.1213 0.256254 0.513283 0.751567 0.756785

0.9 0.0000 0.1567 0.427775 0.733468 0.789456

1.0 0.0000 0.0000 0.429422 0.732691 0.776567

1.1 0.0000 0.291832 0.481541 0.745145 0.798998

1.2 0.129789 0.481888 0.550707 0.76404 0.865432

1.3 0.35792 0.611659 0.730987 0.784143 0.898654

1.4 0.510417 0.698333 0.790877 0.802716 0.823675

1.5 0.614178 0.757227 0.83099 0.818777 0.843545

1.6 0.686888 0.798463 0.858518 0.877425 0.887875

1.7 0.739403 0.828268 0.877973 0.895353 0.904535

1.8 0.778397 0.850451 0.892135 0.908179 0.900235

1.9 0.808061 0.867393 0.90273 0.917513 0.903467

2.0 0.831107 0.880622 0.910851 0.924422 0.923676

2.1 0.849336 0.891148 0.917209 0.929619 0.954355

2.2 0.86398 0.899661 0.92228 0.933588 0.945345

2.3 0.8759 0.90664 0.926387 0.936662 0.946758

2.4 0.88571 0.912431 0.929758 0.939072 0.953456

2.5 0.893857 0.917283 0.932559 0.940984 0.957643

2.6 0.900675 0.921383 0.934908 0.942518 0.945678

2.7 0.906411 0.924873 0.936896 0.943759 0.943567

2.8 0.911257 0.927858 0.938591 0.944772 0.946786

2.9 0.91536 0.930424 0.940044 0.945606 0.956787

3 0.918836 0.932634 0.941298 0.946298 0.967856
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Table 3: ◮ UCI for hydraulic systems of LHD machines

Machine Estimate LHD Comparison Statistic T UCI

β θ

LHD 1 1.628 363.9 (1 vs 3) 0.9204 (0.6660, 1.7384)

LHD 3 1.493 408

LHD 9 1.654 646.6 (9 vs 11) 0.7967 (0.7969, 1.9679)

LHD 11 1.316 231.7

LHD 17 1.528 383.2 (17 vs 20) 0.7943 (0.7779, 2.0553)

LHD 20 1.22 253.2

Galvanic : 2.1233, 3.5205, 4.3945, 8.9041

Natural : 2.8438, 4.1534, 7.2383, 9.5232, 9.8082, 9.819, 9.8219, 12.4931, 13.8904,

14.4136, 15.7890, 16.1013

Stray Currents : 0.0027, 0.1041, 0.3507, 1.1753, 3.9726, 5.0320, 5.2932, 5.7616, 7.0219,

11.7425, 11.7616, 15.3918, 16.164

The author has concluded NHPP models for galvanic and natural corrosion data and HPP for

the third case under Bayesian set up. The parameter estimates of (θ, β) for galvanic, natural

and stray currents are (3.0752, 1.3039), (4.1588, 1.8356) and (0.0878, 0.4918) respectively. It

is interesting to compare the shape parameters of galvanic and natural type of corrosion with

that of stray currents type. It is shown that the hypothesis H0 : βgal = βstr is accepted as

the T value is 0.46421 which is in between fα/2(= 0.2603) and fα1−α/2
(= 2.5082). The UCI

for φ
(

=
βgal

βstr

)

is [0.560776, 5.40313]. When the hypothesis is tested for natural corrosion

against stray currents, the T value obtained is 0.26979 which is less than fα/2(= 0.4930)

and hence the hypothesis H0 : βnat = βstr is rejected for α = 0.10. In this case, the UCI

interval for φ
(

= βnat

βstr

)

is [1.8274, 7.4281], the corresponding CCI is [1.5847, 6.7960] and the

length ratio is 0.9307.
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