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1 Introduction

It can be especially important in the analysis of survival or reliability data to obtain brief

summaries of the data which convey the key conclusions. In these situations the hazard

function can be extremely useful since it displays risk patterns as a function of time. In

the comparison of two sampled populations many papers display the results with plots of

the survival function (or Kaplan-Meier curve, cf. Kaplan and Meier, 1958). If, as occurs

in many cases, the graphs of these functions cross, then the results become difficult to

interpret. As suggested by Efron (cf. Efron, 1980), many of these papers could benefit from

the presentation of the hazard functions, especially if they are simple functions.

The simplest hazard function is the constant function, corresponding to an exponential

survival distribution. However, in many real life situations the assumption of monotonicity

of the hazard rates is warranted; e.g., in some clinical trials it has been observed that the

hazard decreases with time, while in the study of other clinical trials or of the reliability

of physical components the hazard is often known to be increasing. Proschan (1963) also

provides an explanation of why it is sometimes appropriate to use decreasing hazard rates for

physical components. Much statistical research has been directed to the study of inference

problems under order or monotonicity constraints. For examples of earlier work done in this

area, we cite Ayer et al. (1955), Brunk (1955), Barlow et al. (1972) and Barlow and Brunk

(1972). An excellent account of all these results may be found in the book of Robertson

et al. (1988). Most of the work in this area has been directed toward the development

of maximum likelihood and least squares estimators. Here we prefer to adopt a Bayesian

approach and to estimate a monotone hazard function.

A difficulty with the analysis of industrial life testing or medical research data is that

the observation of the occurrence of a failure time may be made impossible by the previous

occurrence of a censoring event such as the termination of the study or withdrawal from

the study; such data is said to be right censored. For frequentist estimation of a monotone

hazard rate with randomly right censored data, we cite the original work of Grenander

(1956) and that of Prakasa Rao (1970) for uncensored data and for censored data that of

Padgett and Wei (1980), Huang and Wellner (1995) and MacGibbon et al. (2002) which is

based on least concave majorants (greatest convex minorants).

Early Bayesian research in survival analysis mainly concentrated on the estimation of the

survival function. Susarla and Van Ryzin (1978) used Dirichlet priors (cf. Ferguson, 1973)

to estimate the survival function with censored data. Ferguson and Phadia (1979) extended

this work to include prior distributions that are neutral to the right, previously studied

by Doksum (1974). Kalbfleisch (1978) used a gamma process prior for survival function

estimation. Leonard, Hsu and Tsui (1989), following the work of Hasselblad (1969) and

Laird (1978) on nonparametric maximum likelihood estimation of finite mixtures, modelled

the density function as a finite mixture of exponentials and used an empirical Bayes approach

to obtain smooth estimates of the density and survival function. Dey and Kuo (1991) and

Kuo and Yiannoustsos (1993) developed empirical Bayes approaches to Type II censored

data. Kuo and Smith (1992) found Bayes estimators of the survival function with censored
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data using the Gibbs sampler.

Arjas and Liu (1995) used a hierarchical Bayes approach to a nonparametric multiplica-

tive hazard model in order to assess the losses caused by an industrial intervention. Berger

and Sun (1996) studied Bayesian inference for a class of poly-Weibull distributions.

Some of the earlier Bayesian research did consider estimating the hazard function. Bur-

ridge (1981) presented an empirical Bayes model of the cumulative hazard function as a

gamma process. Dykstra and Laud (1981) also modeled the hazard rate. They defined an

appropriate prior stochastic process called an extended gamma process whose sample paths

are hazard rates, and obtained the posterior distribution of the hazard rates for both exact

and censored data.

Broffit (1984) considered the problem of estimating mortality rates over consecutive age

intervals. As a model he considered the exponential family of density functions

{f(x|θ) : 0 ≤ θ < ∞} where

f(x|θ) = a(x)θb(x)e−θc(x) (1.1)

which, when a(x), b(x), c(x) are appropriately selected, may represent either a continuous

or discrete distribution. He assumed random samples from k members of the above family

with corresponding parameter values θ1, . . . , θk satisfying

θ1 < θ2 < . . . < θk .

Broffit (1984) specified a prior distribution such that the probability of the set

{(θ1, . . . , θk) : θ1 < θ2 < . . . < θk} is 1, thus guaranteeing that the resulting Bayes es-

timator satisfies the order restriction. He called the technique Bayesian isotonic graduation.

Bayesian nonparametric hazard function estimation methodology in Dykstra and Laud

(1981) was generalized in different ways by Ammann (1985), by Thompson and Tha-

vaneswaran (1992) and by Arjas and Gasbarra (1994) who modelled the hazard rate non-

parametrically as a jump process having a martingale sturcture with respect to the prior

distribution and used Monte-Carlo Markov Chain (MCMC) techniques to implement their

method on simulated examples. Hjort (1990) used beta process priors to estimate the cu-

mulative hazard rate process. Further generalizations by Lo and Weng (1989), Ho and Lo

(2001) and James (2003, 2005) culminated in the characterization given by Ho (2006) of the

posterior distribution of the mixture hazard model of a monotone hazard rate via a finite

mixture of S-paths. Using a hierarchical model structure, Ho (2006) modelled the hazard

rate nonparametrically as a jump process having a martingale sturcture with respect to the

prior distribution and described an algorithm that generates sample paths from the poste-

rior by a dynamic Gibbs sampler. He also provided an intricate MCMC path sampler for

sampling directly such S-paths. He illustrated the method in a simulation study of a one

change-point hazard model with light to moderate censoring (approximately 20%) and a

sample size of 100 with 1000 replications.

Our emphasis in this paper is rather different. Here we propose to study hierarchi-

cal Bayes estimators of monotone hazard rates and pay particular attention to providing

computationally simple numerical algorithms for such estimators which are easily capable of
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handling the multi-change-point hazard model. We also provide an exact form for the Bayes

estimator which is useful for numerical computations when the sample size is small or mod-

erate. We use Monte-Carlo importance sampling and the Laplace approximation method

originally proposed by Tierney and Kadane (1986) and Tierney et al. (1989). Simulation

studies for the Laplace approximation method and the importance sampling method are also

presented. The methods are illustrated on a complete data set from a previously published

case study of component reliability edited by Gentleman and Whitmore (1982), previously

analyzed by several authors. We also illustrate the method on the Primary Biliary Cirrhosis

(PBC) data which is a randomly right censored data set. It has been described in detail in

Fleming and Harrington (1991) and analyzed there using frequentist methods.

2 A Hierarchical Bayesian Model for Monotone Hazard
Rates

A general form for an increasing hazard rate function h(t) is modelled as follows. We assume

that the density function is defined on the interval [a, b] ⊆ R+. For simplicity we assume

that b < ∞. Let A1, . . . , Ak be a strictly decreasing finite sequence of subsets of [a, b] of

the form Ai = [ai, b], with a1 = a < a2 < . . . < ak, and let θ1, θ2, . . ., θk be positive real

numbers.

The hazard function h(x) is then modelled as

h(x) =

k∑

l=1

θlIAl
(x), x ∈ [a, b], (2.1)

where IAj
(x) is the indicator function of the set Aj . The associated density function is

clearly,

f(x|θ1, . . . , θk) =

[
k∑

l=1

θlIAl
(x)

]
exp

(
−

k∑

l=1

θlµ(Al ∩ [0, x])
)
, x ∈ [a, b],

where µ(B) = Lebesgue measure of B.

It is clear that the problem of nonparametric estimation of h is thus reduced to the

estimation of θ1, . . ., θk, a finite dimensional problem. Note that θl denotes the increase in

the hazard rate in the lth subset Al ∩ AC
l+1 where AC denotes the complement of A.

The prior model for h now proceeds as follows using the hierarchical Bayesian approach.

The first stage prior π1 on θ1, . . ., θk is assumed to be a product of independent Gamma

(αi, ci) distributions. In other words,

π1(θ1, . . . , θk|α1, . . . , αk, c1, . . . , ck) =
k∏

i=1

π1(θi|αi, ci)

∝
k∏

i=1

{
θci−1

i exp(−αiθi)
}

.
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Note also that Eπ(θi) = ci/αi and V arπ(θi) = ci/α2
i represent the prior mean and variance

of the increase in the hazard rate in Ai ∩AC
i+1. A second stage prior on ci and αi completes

the prior specifications. In our applications we have chosen ci ≡ 1 and αi ≡ α. Therefore

for convenience we use this formulation in our presentation below. Thus

π1(θ1, . . . , θk|α) = αk exp(−α

k∑

i=1

θi).

At the second stage the hyperparameter α is assigned a prior π2(α). We have used the uni-

form and exponential distributions in our applications. As is usually the case in hierarchical

Bayesian analysis, this second stage prior is not very influential as far as inferences on θi

are concerned. In fact, we also conduct a sensitivity study on α to measure its influence.

3 Bayesian Estimation of a Monotone Hazard Rate for
Complete and Censored Data

Let us suppose that we have a random sample of survival times Tl (l = 1...n) of size n,

from a population with density function f. Without censoring, we observe T1, ..., Tn. Under

the random right censorship model (cf. Klein and Moeschberger (1997)), however, each Tl

(l = 1...n) is associated with a random variable, Cl, called a censoring time. The Ti and

Cj are assumed independent (i, j = 1..n). Let us also assume that the Cl are i.i.d. with

distribution function G(t) and density g(t). Under this model we observe Xl = min(Tl, Cl)

and δl, an indicator variable, equal to 1 if Tl ≤ Cl and 0 if not.

Let nl denote the number of observations of the Xl (l = 1...n) , which fall in the set

Al ∩ AC
l+1 (i.e. those in Al but not in Al+1), l = 1, . . . k respectively. Further, let dl

denote the number of these nl observations where δl = 1, that is, Tl ≤ Cl. Then note that

n =
∑k

l=1 nl. Let d =
∑k

l=1 dl be the number of uncensored observations. It should be

noted that nl = dl, l = 1, . . . k and that n = d in the uncensored case. (Let n0 = d0 = 0 for

notational convenience.) Also, let x(1) ≤ x(2) ≤ . . . ≤ x(n) denote the order statistics of the
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Xi. The likelihood function can now be expressed in the following form:

f(x̃|θ̃) =
n∏

l=1

f(xl|θ̃)

=





n∏

ℓ=1
δℓ=1

{
h(xℓ|θ̃)

}




{
exp

(
−

n∑

ℓ=1

∫ xℓ

−∞

h(u)du

)}{
n∏

l=1

[
g(xl)

1−δl (1 − G(xl))
δl

]}

=





n∏

ℓ=1
δℓ=1

[
k∑

i=1

θiIAi
(xl)

]


{
exp

(
−

n∑

ℓ=1

k∑

i=1

θiµ(Ai ∩ [0, xl])

)}
×

{
n∏

l=1

[
g(xl)

1−δl (1 − G(xl))
δl

]}
.

It should be noted that the first product only involves the censored observations while the

exponent of the exponential function involves all observations. and the third product does

not depend on the parameters to be estimated. Now f(x̃|θ̃) can be written as:

f(x̃|θ̃) = {θd1

1 (θ1 + θ2)
d2 . . . (θ1 + . . . + θk)dk

× exp
(
−

k∑

i

θi{

n∑

j=n1+...+ni−1+1

x(j) − (n −

i−1∑

l=1

nl)ai}
)
}

×

{
n∏

l=1

[
g(xl)

1−δl (1 − G(xl))
δl

]}
.

Since π1(θ̃|α) = αk exp(−α
∑k

i=1 θi), we obtain

π1(θ̃|x̃, α) ∝ f(x̃|θ̃)π1(θ̃|α)

∝ θd1

1 (θ1 + θ2)
d2 . . . (θ1 + . . . + θk)dk .αk

× exp


−

k∑

i

θi



α +

n∑

j=n1+...+ni−1+1

x(j) − (n −

i−1∑

l=1

nl)ai








×

{
n∏

l=1

[
g(xl)

1−δl (1 − G(xl))
δl

]}
. (3.1)

Computation of E(θl|x̃, α) and Var(θl|x̃, α) for 1 ≤ l ≤ k are required in order to study the

sensitivity of the inferences on θ̃ with respect to the prior specifications on α. Clearly, for

1 ≤ l ≤ k, and q > 0,

E(θq
l |x̃, α) =

∫
θq

l π1(θ̃|x̃, α) dθ̃

=

∫
θq

l f(x̃|θ̃)π1(θ̃|α) dθ̃
∫

f(x̃|θ̃)π1(θ̃|α) dθ̃
. (3.2)
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We first assume α known and later introduce a second stage prior on α.

We provide below exact expressions for these posterior expectations with censoring and

three numerical approximations which are computationally reliable. Note that the binomial

expansion yields,

θ
d1
1

(θ1 + θ2)
d2 . . . (θ1 + . . . + θk)

dk = θ
d1
1

8

>

>

<

>

>

:

k
Y

h=2

2

6

6

4

X

jh
1

+...+jh
h−1

≤dh

“ dh

jh
1

, . . . , jh
h−1

”

θ
jh
1

1
. . . θ

jh
h−1

h−1
θ

dh−jh
1
−...−jh

h−1

h

3

7

7

5

9

>

>

=

>

>

;

=
X

j2
1
≤d2

. . .
X

jk
1
+...+jk

k−1
≤dk

“d2

j2
1

”

. . .
“ dk

jk
1

, . . . , jk
k−1

”

θ
m1
1

. . . θ
mk
k

,

where

mi =





d1 +
∑k

h=2 jh
1 , if i = 1

di −
∑i−1

h=1 ji
h +

∑k
h=i jh

i , if 2 ≤ i ≤ k − 1

dk −
∑k−1

h=1 ji
h, if i = k .

Let zi be defined by

zi = α +

n∑

j=n1+...+ni−1+1

x(j) − (n −

i−1∑

l=1

nl)ai. (3.3)

Then

Z

θ
q

l f(ex|eθ)π1(eθ|α)deθ = α
k

Z

X

j2
1
≤d2

. . .
X

jk
1
+...+jk

k−1
≤dk

“d2

j2
1

”

. . .
“ dk

jk
1

, . . . , jk
k−1

”

θ
m1
1

. . . θ
ml+q

l
. . . θ

mk
k

e
−

Pk
i θizideθ

= α
k

X

j2
1
≤d2

. . .
X

jk
1
+...+jk

k−1
≤dk

“d2

j2
1

”

. . .
“ dk

jk
1

, . . . , jk
k−1

”

Z

θ
m1
1

. . . θ
ml+q

l
. . . θ

mk
k

e
−

Pk
i θizideθ

= α
k

X

j2
1
≤d2

. . .
X

jk
1
+...+jk

k−1
≤dk

“d2

j2
1

”

. . .
“ dk

jk
1

, . . . , jk
k−1

”

×
Γ(m1 + 1)

z
m1+1

1

. . .
Γ(ml + q + 1)

z
ml+q+1

l

. . .
Γ(mk + 1)

z
mk+1

k

×

(

n
Y

l=1

h

g(xl)
1−δl (1 − G(xl))

δl

i

)

. (3.4)

Therefore an exact expression for E(θq
l |x̃, α) is

E(θq

l
|ex, α) =

P

j2
1
≤d2

. . .
P

jk
1
+...+jk

k−1
≤dk

`d2

j2
1

´

. . .
` dk

jk
1

,...,jk
k−1

´ Γ(m1+1)

z
m1+1

1

. . .
Γ(ml+q+1)

z
ml+q+1

l

. . .
Γ(mk+1)

z
mk+1

k
P

j2
1
≤d2

. . .
P

jk
1
+...+jk

k−1
≤dk

`d2

j2
1

´

. . .
` dk

jk
1

,...,jk
k−1

´ Γ(m1+1)

z
m1+1

1

. . .
Γ(ml+1)

z
ml+1

l

. . .
Γ(mk+1)

z
mk+1

k

. (3.5)

For small or moderate values of ni the expression given above for E(θq
l |x̃, α) is useful

for computations. However, for large ni, it is obvious that this expression will require too
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many computations rendering it quite impractical. We give two alternative methods which

can be reliably used for computations.

The first method proposed is the Monte-Carlo importance sampling technique. To use

this technique, note first of all that,

π1(θ̃|x̃, α) ∝ αkθd1

1 (θ1 + θ2)
d2 . . . (θ1 + . . . + θk)dk exp

(
−

k∑

i=1

θizi

)

= αkθd1

1 θd2

2 . . . θdk

k exp

(
−

k∑

i=1

ziθi

)
k∏

i=1

(
1 +

θ1

θi
+ . . .

θi−1

θi

)di

= αk

[
k∏

i=1

θdi

i exp(−ziθi)

]
k∏

i=1

(
1 +

θ1

θi
+ . . .

θi−1

θi

)di

= p(θ1, . . . , θk)w(θ1, . . . , θk) (3.6)

where the function p(θ1, . . . , θk) is proportional to the joint density of independent

Gamma(di + 1, zi) random variables and

w(θ1, . . . , θk) = αk
k∏

i=1

(
1 +

θ1

θi
+ . . .

θi−1

θi

)di

.

We have omitted the terms that do not depend on θ or α. Note that although αk is not

necessary here, it will be used later when a second stage prior on α will be employed.

Therefore to compute

E(θq
l |x̃, α) =

∫
θq

l π1(θ̃|x̃, α) dθ̃

=

∫
θq

l w(θ̃)p(θ̃) dθ̃
∫

w(θ̃)p(θ̃) dθ̃
,

we can use p(θ̃) as the importance function in Monte-Carlo sampling. Then we obtain,

E(θq
l |x̃, α) =

1
M

∑M
j=1 θq

l,jw(θ̃l,j)

1
M

∑M
j=1 w(θ̃l,j)

, (3.7)

where θ̃j , j = 1, . . . M are generated from the density p(θ̃).

The second technique that can be used is the Laplace approximation method of Tierney

and Kadane (1986) and Tierney et al. (1989). For large di, this technique is especially

useful. Rewriting (3.6) in the form

π1(θ̃|x̃, α) ∝ exp(−

k∑

i=1

ziθi +

k∑

i=1

di log(θ1 + . . . , θi) + k log(α))

∝ exp(L(θ̃)),
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where L(θ̃) = −
∑k

i=1 ziθi +
∑k

i=1 di log(θ1 + . . . , θi) + k log(α). We also obtain

E(θq
l |x̃, α) =

∫
θq

l exp(L(θ̃)) dθ̃
∫

exp(L(θ̃)) dθ̃

=

∫
exp(L∗(θ̃)) dθ̃
∫

exp(L(θ̃)) dθ̃
, (3.8)

where L∗(θ̃) = L(θ̃) + q log θl.

Let θ̂ and θ̂∗, respectively, denote the maxima of L(θ) and L∗(θ). Then the Laplace

approximation yields,

E(θq
l |x̃, α) ≈ exp(L∗(θ̂∗) − L(θ̂))

(
|H(θ̂)|

|H∗(θ̂∗)|

)1/2

,

where H(θ) and H∗(θ) are the Hessian matrices of L(θ) and L∗(θ), respectively. The partial

derivatives of L and L∗ of order 1 and 2 required for this approximation are very easy to

obtain. Specifically,





∂
∂θi

L(θ̃) = −zi +
∑k

j=i
dj

θ1+...+θj

∂
∂θi

L∗(θ̃) =





∂
∂θi

L(θ̃) if i 6= l

∂
∂θi

L(θ̃) + q
θl

if i = l .

Setting ∂
∂θL(θ) to 0 yields a set of equations for which the solution, θ̂, is easily obtained.

To obtain θ̂∗, it is straight forward to solve ∂
∂θL

∗(θ) = 0, iteratively, starting at θ = θ̂. To

compute the Hessian matrices, note that





∂2

∂θi∂θj
L(θ̃) =





−
∑k

s=i
ds

(θ1+...+θs)2 , if j ≤ i

−
∑k

s=j
ds

(θ1+...+θs)2 , if j > i

∂2

∂θi∂θj
L∗(θ̃) =





∂2

∂θi∂θj
L(θ̃) if i 6= l or j 6= l

∂2

∂θ2
l

L(θ̃) + q
θ2

l

if i = j = l .

Now let us assume that we have a second stage prior π2(α) on α. The final estimates

E(θq
l ) now with a second stage prior on α for each of the methods described can be obtained

using analogous methods. The Laplace approximation is very easy to extend to this case

since

E(θq
l |x̃) =

∫
θq

l π1(θ̃|x̃, α)π2(α) dθ̃ dα
∫

π1(θ̃|x̃, α)π2(α) dθ̃ dα
(3.9)

where π2(α) has an uniform or an exponential density. The expression of L(α, θ̃) and L∗(α, θ̃)

with the uniform density for π2 are the same as those shown above for L(θ̃) and L∗(θ̃).
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However for an exponential distribution with parameter a as the prior for π2, the expressions

of L(α, θ̃) and L∗(α, θ̃) (= L(α, θ̃) + q log θl) become:

L(α, θ̃) = −(a +
k∑

i=1

θi)α + k log(α) −
k∑

i=1

biθi +
k∑

i=1

di log(θ1 + . . . + θi)

where

bi =
n∑

j=n1+...+ni−1+1

x(j) − (n −
i−1∑

j=1

nj)ai .

The first and second order partial derivatives of L and L∗ are thus obtained as:

∂

∂α
L(α, θ̃) = −(a +

k∑

i=1

θi) +
k

α

∂

∂θi
L(α, θ̃) = −α − bi +

k∑

j=i

dj

θ1 + . . . + θj
(3.10)

and
∂

∂θi
L∗(α, θ̃) =





∂
∂θi

L(θ̃) for i 6= l

∂
∂θi

L(θ̃) + q
θl

for i = l .

Solving ∂
∂αL(α, θ̃) = 0 and ∂

∂θk
L(α, θ̃) = 0 implies that the solution for α̂ = k/(a+

∑k
i=1 θi)

can be obtained by solving the following quadratic equation for
∑k

i=1 θi :

−
k

a +
∑k

s=1 θs

− bk +
dk∑k
s=1 θs

= 0 , (3.11)

and let us denote one of the positive solutions of (3.11) by
̂

(∑k
s=1 θs

)
.

Now setting ∂
∂θi

L(α, θ̃) to 0, for i = 1, · · · , k − 1, yields a set of equations for which the

solutions θ̂i (i = 1, · · · , k − 1) is easily obtained. In fact, iterative solutions to (3.10) yields

an estimator
̂

(∑m
s=1 θs

)
of
(∑m

s=1 θs

)
for m = k − 1, · · · , 1. For example, if we let i = k

and i = k − 1 in equation (3.10) and solve simultaneously, we obtain:

̂( k−1∑

s=1

θs

)
=

dk−1

bk−1 − bk
. (3.12)

In an analogous manner the estimates
̂

(∑m
s=1 θs

)
can be obtained for m = k−2, · · · , 1. We

then define θ̂m =
̂

(∑m
s=1 θs

)
−

̂
(∑m−1

s=1 θs

)
.

We note that the estimator of θk can be obtained by the solution in (3.11) and the

estimator of
(∑k−1

s=1 θs

)
.
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To obtain θ̂∗, it is straight forward to solve ∂
∂θL

∗(α, θ̃) = 0, iteratively, starting at θ = θ̂.

To compute the Hessian matrices, note that




∂2

∂θi∂θj
L(α, θ̃) =





−
∑k

s=i
ds

(θ1+...+θs)2 for j ≤ i

−
∑k

s=j
ds

(θ1+...+θs)2 for j > i

∂2

∂θi∂θj
L∗(α, θ̃) =





∂2

∂θi∂θj
L(α, θ̃) for i 6= l or j 6= l

∂2

∂θ2
l

L(α, θ̃) − q
θ2

l

for i = j = l

∂2

∂θi∂αL(α, θ̃) = −1 for i = 1 . . . k

∂2

∂2αL(α, θ̃) = − k
α2 .

With a second stage prior on α, the Monte-Carlo importance sampling method needs

the following modifications.

Note that in (3.3)

zi = α +
n∑

j=n1+...+ni−1+1

x(j) − (n −
i−1∑

j=1

nj)ai = α + bi,

so that

π1(θ̃|x̃, α) ∝ θd1

1 . . . (θ1 + . . . + θk)dk exp(−

k∑

i=1

biθi)α
k exp(−α

k∑

i=1

θi).

Therefore,

π(θ̃|x̃) =

∫
π1(θ̃|x̃, α)π2(α) dα

∝ θd1

1 . . . (θ1 + . . . + θk)dk exp(−
k∑

i=1

biθi)

∫
αk exp(−α

k∑

i=1

θi) exp(−aα) dα

= θd1

1 . . . (θ1 + . . . + θk)dk exp(−

k∑

i=1

biθi)

[
a +

k∑

i=1

θi

]−(k+1)

=

[
k∏

i=1

θdi

i exp(−biθi)

]
k∏

i=2

(
1 +

θ1

θi
+ . . . +

θi−1

θi

)di

[
a +

k∑

i=1

θi

]−(k+1)

= p(θ̃)g(θ̃),

and hence p(θ̃) =
∏k

i=1 θdi

i exp(−biθi) can be used as the new importance function.

Once θ̂l = E(θl|x̃) are computed, it is easy to obtain

E(h(t)|x̃) = E

[
k∑

i=1

θiIAi
(t)|x̃

]

=
k∑

i=1

θ̂iIAi
(t).
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To obtain Var(h(t)|x̃) we need E(θiθj |x̃) also as can be seen below.

Var(h(t)|x̃) = Var

[
k∑

i=1

θiIAi
(t)|x̃

]

=

k∑

i=1

Var(θ1 + . . . + θi|x̃)IAi∩AC
i+1

(t)

=

k∑

i=1

{ k∑

j=1

Var(θj |x̃) + 2

k∑

j=1

j−1∑

l=1

Cov(θj , θl|x̃)
}
IAi∩AC

i+1
(t).

However, it is easy to compute E(θiθj |x̃), i 6= j, following the computational techniques

described earlier.

Quite often the estimation of the survival function, S(y), is of interest too. The common

estimate is the Kaplan-Meier estimate. We are able to provide a hierarchical Bayes estimate

instead. Note that

S(y) = exp(−

∫ y

0

h(t)dt)

= exp

(
−

k∑

i=1

θiµ(Ai ∩ [0, y])

)

= exp

(
−

k∑

i=1

siθi

)
,

where si = µ(Ai ∩ [0, y]). Therefore,

E [S(y)|x̃] = E

[
exp

(
−

k∑

i=1

siθi

)
|x̃

]
,

which is the moment generating function of θ̃|x̃ evaluated at −s̃, where s̃ = (s1, . . . , sk)′. The

Monte-Carlo sampling technique and the Laplace approximation technique are especially

suited for computing this. To obtain

Var [S(y)|x̃] = E
[
S2(y)|x̃

]
− E2 [S(y)|x̃] ,

note that

E
[
S2(y)|x̃

]
= E

[
exp

(
−2

k∑

i=1

siθi

)
|x̃

]
,

which is the moment generating function of θ̃|x̃ evaluated at −2s̃. It is also possible to

to approximate E [S(y)|x̃] and Var [S(y)|x̃] by expanding S(y) = exp
(
−
∑k

i=1 siθi

)
in a

Taylor series (with finitely many terms) and replacing the θj terms by their corresponding

posterior estimates.
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4 Data, Examples and Simulations

Here we illustrate the methodology proposed above on a complete and a censored data set

as well as by using extensive simulation studies for both cases.

For the Monte-Carlo importance sampling, we have employed a product of independent

gamma densities as shown in equation (3.6) as the importance function. Since this involves

standard distributions, we found it convenient and easy to handle these computations using

standard routines to generate the required gamma variates.

The programming was done on a Pentium 233 MGHZ using Absoft Pro Fortran Version

4.4. The number J of simulations performed in the Monte Carlo was chosen so that the

difference between the sums in equation (3.1) for M = J − 1 and M = J was less than

δ = 10−7, thus guaranteeing convergence.

For the Laplace approximation methods, the following subroutines from the NAG (Nu-

merical Algorithm Group) mark 16 library were used: G05FFF to generate the gamma

variates; D02AHF for the integration; F03ABF for calculating the determinants of the

Hessian matrices, C05PBF for the solution of the system of nonlinear equations.

4.1 Analysis of the Aluminum Cell Data from Whitmore and Gen-
tleman (1982)

In the uncensored case, we have chosen to illustrate the methods described here on an

aluminium cell data set containing both ordinary cells as well as experimental ones. This

data set was originally proposed as a case study by Gentleman and Whitmore (1982) and can

be briefly described as follows. An ordinary aluminum plant can have several hundreds of

cells in operation at the same time. When the strike started in 1967, the electric power was

cut. This, according to the company, caused losses in production and associated damages

to the cells. Gentleman and Whitmore (1982) explained the data as follows:

“A 1967 strike at a Quebec aluminium smelter resulted in the uncontrolled shut-

down of aluminium-reduction cells in the smelter’s potrooms. In a subsequent

legal action against the union which was before the courts for more than a decade,

the company claimed that the shutdown had reduced the operating lives of the

hundreds of cells in service at the time. ”

Kalbfleisch and Struthers (1982), Thomas (1982) and later Arjas and Liu (1995) studied

the question of whether or not reduction in the length of life of the cells is significantly

linked to the strike and consequent monetary loss. Thomas (1982) used a Cox proportional

hazard model and Kalbfleisch and Struthers (1982) used nonparametric life table methods

and a nonparametric point process approach to estimate the actual operating time lost due

to the strike. Arjas and Liu (1995) used a hierarchical Bayes model for the loss suffered

by company. Both the first two analyses mentioned above indicated that the data could be

appropriately modelled by an increasing hazard rate. Thomas (1982), in addition, found a

difference between the cells of ordinary type (labelled type A1-A20 in the original data set)
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and those of experimental type (originally labelled B to K). The data consists of 499 cells, of

which 395 cells were of the standard design. The other 104 were said to be of experimental

design. Here A denotes cells of ordinary type and B of experimental type.

The problem under consideration in the case study was whether the strike had an influ-

ence on the duration of the cells. In addition, there are physical reasons for hypothesizing

that a cell suffering the strike intervention at an earlier age had a higher risk of failure than

those cells that were older at the time of the strike. These ideas are captured and explored

here by subdividing groups A and B into I (the control group that did not overlap with the

strike) and II (the “intervention” group of cells that lived through the strike). Category II

cells were further divided into subgroups of type (y) young and (o) old, where (y) represents

those cells where the strike started during thier first year of life and (o) those that were at

least one year old when the strike occurred.

We decided to use the exponential prior with parameter α. The following five age

intervals, A1 = [0, b), A2 = [2, b), A3 = [3, b), A4 = [4, b) and A5 = [5, b) were used in

equation (2.1). This b was chosen equal to 12, an approximation to the number of years to

the time that the legal decision was rendered in this case based on this data.

Our first priority was to do a sensitivity analysis analogous to the one presented in Angers

and Delampady (1992) for curve fitting and smoothing. It is very important to establish

how sensitive the hazard rate estimates are to changes in the prior.

Several different values of α (both larger and smaller than α = 1) in the exponential

prior distribution have been tested. Assuming an increasing failure rate for each of these

subgroups, as indicated by Kalbfleisch and Struthers (1982) to be appropriate, the hierarchi-

cal Bayes estimators of the hazard rates were calculated using the Monte-Carlo importance

sampling method.

Figure 1 illustrates some of the results of the sensitivity analysis. It shows graphs of the

estimated hazard rate for values of α = 0.25, 0.5 and 1 in the exponential prior. Similar

results were obtained for values of α > 1. It should be noted that the estimator does

not change except in the last interval [a5, b] and the change is insignificant. As will be

remarked later in the simulation study, the estimator of the hazard for the last interval can

be quite variable (even more so than in this sensitivity analysis). Note that the values of

the hazard function for the remaining intervals are quite stable as the prior varies, leading

us to conclude that the results are insensitive to the choice of exponential prior parameter.

We subsequently chose α = 1 in the analysis of this data.

We consider each of the hypotheses mentioned above; in Figure 2 the cells of experimental

type and ordinary type are contrasted; in Figures 3 and 4 the cells that were functioning

during the strike were contrasted with those that were not; and in Figures 5 and 6 the cells

that were subject to the intervention in the first year of life were contrasted with those who

were subject to a later intervention.

As previously indicated by Efron (1980), the graphs of the hazard functions allow us to

easily compare the various subgroups. The results can be described as follows. In Figure 2

the hazard rates of the ordinary and experimental cells are more or less comparable. On the
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other hand, in Figure 3, except for the cells of longest duration, the hazard rate is higher

for the ordinary cells that were functioning during the strike than those that were not. This

same phenomenon is even more pronounced for the cells of experimental type in Figure 3.

Figure 4 indicates that the hazard rate is higher if the cell was younger at the time the

strike occurred (that is, the cell was less than a year old at the time of the strike ). Figure 5

illustrates the same phenomenon for cells of experimental type. The hierarchical Bayesian

method of estimation allows us to illustrate fairly clearly that differences in the hazard rate

exist between the various subgroups studied in Figures 3 to 6. We were able to conclude

that the strike tended to shorten the lifetimes of the cells that were in operation during the

intervention. Furthermore this effect is seen to be more detrimental to cells when the strike

started during the first year of life.

We also felt it would be important to compare the results obtained by Monte-Carlo

sampling and the Laplace approximation methods for moderate sample sizes. We repeated

some of the previous analyses to do this comparison and found that the results were rather

similar for the two methods; however, there are some slight differences between the results

that indicated to us that a detailed simulation study would be useful.

4.2 Simulation Studies

In the simulation studies, to compare the Laplace approximation and the Monte-Carlo with

importance sampling methods, the a priori measures were taken to be the uniform distri-

bution on(0, α) or the exponential distribution with parameter α = 4. First 100 simulations

of 100 observations were done and the probability of coverage of the 95% Bayesian credible

intervals and the mean square error were used to compare the two methods. It should be

noted that with the Laplace approximation, some simulations are rejected because of the

fixed level of tolerance in the programme to avoid dividing by zero.

In the first simulation study, the following parameters were used to generate the θi:

a1 = 0.0000, a2 = 1.5000, a3 = 3.0000 and b = 10.0000. The parameter of α = 4 was chosen

for the exponential and the uniform distribution. As the results for the exponential and the

uniform prior distribution were very similar with a slightly higher proportion of rejections

with the uniform one, we present only the results for the exponential in Table 1.

In another simulation study, the following different parameters were used to generate

the data: a1 = 1.0000, a2 = 2.0000, a3 = 3.5000 et b = 10.0000. The parameters of the

exponential and uniform distributions used to generate the θi remained the same. The

results of this second study, although not presented here, were similar to the first one

with the bias in the estimators of the importance sampling method larger and a slightly

higher rejection rate for the Laplace method. We noted that, even if the variances of the

estimators by the Monte-Carlo sampling method were smaller, the bias was larger and thus,

in the simulations of these parameters, this resulted in the mean square error being smaller

for the Laplace method.

The bias of the estimators obtained by the Monte-Carlo sampling method and the num-

ber of simulations rejected by the Laplace approximation method were both of some concern.
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In order to see if the same phenomena persisted for larger sample sizes, we used 200, 500

and 1000 observations, instead of 100, and repeated the first simulation study. Although

the results are not presented here, the bias of the estimators obtained by the Monte-Carlo

sampling method remained and the Bayesian credible interval of level 95% for θ3 did not

necessarily contain the true values of θ3, but the number of simulations rejected by the

Laplace approximation method was reduced to 0.2% for n=1000. Even with 200 obser-

vations, the Laplace approximation method was superior. Therefore, we conclude that the

Laplace approximation method is preferable to the Monte-Carlo sampling method here even

for sample sizes as small as 100.

Because of our interest in right censored data, we decided to redo the first simulation

study while censoring the data at the rates of 20% and 50%. We kept the same parameters

and a priori measures used in the first simulation study. We used sample sizes n=200, n=500

and n=1000 and assumed the censoring time was exponentially distributed with parameter

µ (where µ was chosen so the censoring would be approximately equal to 20% or 50%).

Note that we haven’t included results for n=100 for the censored case because, although

we obtained results with the Monte-Carlo importance sampling technique, the Laplace

method did not work. For n=200 with censored data, Tables 2 and 3 indicate that the

Laplace method gave poor results since it rejected 18.5% and 45% of the simulations for

censoring equal to 20% and 50% respectively. Therefore, for n=200 with censored data, we

suggest using the Monte-Carlo importance sampling technique.

For n=500 with censored data, Tables 4 and 5 indicate that the Monte-Carlo importance

sampling technique gave good results, but the Laplace approximation method was clearly

superior with a rejection rate of 5.4% and 5% and the ratios of its MSE to that of the

Monte-Carlo sampling technique were .0852 and .4000 when censoring rates were 20% and

50% respectively.

Tables 6 and 7 indicate that the estimator obtained by the Laplace method displays

better behavior compared to the one obtained by the Monte-Carlo importance sampling

technique for n = 1000 and censoring approximatively equal to 20% and 50%. Moreover,

rejection rates for the Laplace method are 1.1% and 4% respectively. They also indicate

that the Monte-Carlo importance sampling method does not succeed in recovering the true

values of θ2 and θ3 with 95% Bayesian credible intervals. We therefore recommend the use

of the Laplace approximation method over the Monte-Carlo importance sampling one for

n ≥ 500.

4.3 A Censored Data Example: the PBC data, Fleming and Har-
rington (1991)

Primary Biliary Cirrhosis (PBC) is a very serious liver disease. In the case study presented in

Fleming and Harrington (1991), 312 patients were randomized to a clinical trial in primary

biliary cirrhosis (PBC) of the liver to compare the drug D-penicillamine with placebo at

the Mayo clinic between 1974 and 1984. The observations are incomplete because they are

censored if a liver transplantation occurs or if the study ends before the death of the patient.
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This right censored data set has been previously analyzed by Fleming and Harrington (1991)

and others. The description of the complete set of variables can be found in Fleming and

Harrington (1991) and more details of this trial are available in Dickson et al. (1989) and

Markus et al. (1989). It does, however, seem reasonable to model the hazard rate as an

increasing function for such a clinical diagnosis. Here we ignore the covariates and use only

the survival times in order to illustrate our technique of estimating a monotone hazard rate

when the data is randomly right censored.

For the purposes of this study the observations were first divided into 4 groups, each

containing approximately the same number of events. Then the fourth group was subdivided

into two subgroups, with the subgroup in the tail having slightly more events. The survival

time in days was changed to months (by dividing the original data by 30). This resulted in

the following intervals [0 , b) , [32 , b) , [48 , b) , [70 , b) , [95 , b), where b was set equal to 200.

The results of this analysis using the the Monte-Carlo importance sampling technique are

illustrated in Figure 7. Both the estimators of the hazard function in each interval and the

95% Bayes credible intervals are shown in the figure. It should be noted that all the credible

intervals overlap at the end points of the intervals with the exception of the intervals [0 , 32)

and [32 , 48). This supports the hypothesis that there is a sharp increase in the hazard rate

occurring around 32 months.

5 Conclusion

This article is devoted to the study of the hierarchical Bayesian model for the estimation

of a monotone hazard rate. Bayesian nonparametric hazard function estimation method-

ology was first introducted in Dykstra and Laud (1981) and generalized by many authors:

Ammann (1985), Thompson and Thavaneswaran (1992), Arjas and Gasbarra (1994), Hjort

(1990), Lo and Weng (1989), Ho and Lo (2001), James (2003, 2005) and culminated in

the work of Ho (2006), who modelled the hazard rate nonparametrically and described an

algorithm that generates sample paths from the posterior by a dynamic Gibbs sampler.

Here, we prefer to take a different approach, extending the method of Broffitt (1984)

to include random right censorship. We consider two computationally simple numerical

methods to calculate hierarchical Bayesian estimators to estimate a monotone failure rate:

Monte-Carlo importance sampling and Laplace approximation. Although our method is

more restrictive in some ways since more parameters have to be specified as known, we feel

this choice is justified by the ease of the calculations even when estimating hazard functions

with many jumps. Most of the previous authors illustrated their techniques on hazard rates

with one change point.

The simulation studies showed that for complete data the Laplace method performed

well even for sample sizes as small as 100. The Laplace method outperformed the Monte-

Carlo importance sampling method since its mean square error was much smaller and the

Bayesian credible intervals for the parameters associated with the last interval when using

the importance sampling method often failed to cover the true value of the parameter. For
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censored data and smaller sample sizes (n ≤ 200) the Laplace approximation method had

difficulties. However, for larger sample sizes and censored data, the Laplace approximation

method did very well and outperformed the Monte-Carlo importance sampling one.

The easily computable estimation methods presented here are valuable in elucidating in-

teresting properties of the hazard functions in the two data analyses performed. To conclude,

both methods are of interest for the computation of nonparametric hierarchical Bayesian

estimators for a monotone hazard rate with complete data and randomly right censored

data. For complete data for (n ≥ 100) and in the censored case for n ≥ 500 we recommend

the Laplace method over the Monte-Carlo importance sampling method.
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Figure 1: Sensitivity analysis: hazard rates for cells of ordinary type A with 3 different
priors.
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Figure 2: Hazard rates for cells of ordinary type A versus experimental type B.
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Figure 3: Hazard rates for cells of ordinary type that were (A2) and were not (A1) subject
to the intervention of the strike.
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Figure 4: Hazard rates for cells of ordinary type subject to the intervention of the strike at
the young (A2y) versus an older age (A2o)
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Figure 5: Hazard rates for cells of experimental type that were (B2) and were not (B1)
subject to the intervention.
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Figure 6: Hazard rates for cells of experimental type subject to the intervention of the strike
at a young (B2y) versus an older age (B2o).
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Figure 7: Hazard rates for the PBC data with 95% Bayes credible intervals .
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Table 1: Monte-Carlo sampling {Laplace approximation } method with n = 100 and a
priori exponential (α) distribution

θ θ̂ V ar(θ̂) 95% confidence interval

0.4201 0.3667 {0.4280} 0.0020{0.0056} [ 0.2786 , 0.4549 ] {[0.2809 , 0.5751]}

0.5123 0.5998 {0.5099} 0.0109{0.0229} [ 0.3944 , 0.8051 ] {[0.2131 , 0.8068]}

0.2323 0.6191 {0.3300} 0.0458{0.0790} [ 0.1995 , 1.0386 ] {[-0.2211 , 0.8811]}

MSE = 0.2138 {0.0553 with rejection rate: 26% }

Table 2: Monte-Carlo sampling {Laplace approximation } method with n = 200 and cen-
soring rate=20%.

θ θ̂ V ar(θ̂) 95% confidence interval

0.4201 0.3956 { 0.4402} 0.0012 { 0.0022} [ 0.3268 , 0.4644 ] {[ 0.3463 , 0.5340]}

0.5123 0.5875 { 0.4380} 0.0087 { 0.0168} [ 0.4040 , 0.7709 ] {[ 0.1835 , 0.6925]}

0.2323 0.5486 { 0.4127} 0.0561 { 0.1290} [ 0.0843 , 1.0129 ] {[-0.2914 , 1.1169]}

MSE = 0.1915 {0.1352 with rejection rate: 18.5%}

Table 3: Monte-Carlo sampling {Laplace approximation } method with n = 200 and cen-
soring rate=50%.

θ θ̂ V ar(θ̂) 95% confidence interval

0.4201 0.4163 { 0.4331} 0.0020 { 0.0026} [ 0.3278 , 0.5049 ]{ [ 0.3318 , 0.5344 ]}

0.5123 0.5544 { 0.3380} 0.0197 { 0.0231} [ 0.2791 , 0.8297 ]{ [ 0.0400 , 0.6361 ]}

0.2323 0.4918 { 0.4160} 0.1885 { 0.2727} [-0.3592 , 1.3429 ]{ [-0.6075 , 1.4396 ]}

MSE = 0.1818 { 0.0963 with rejection rate: 45%}
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Table 4: Monte-Carlo sampling {Laplace approximation } method with n = 500 and cen-
soring rate=20%.

θ θ̂ V ar(θ̂) 95% confidence interval

0.4201 0.3697 { 0.4229} 0.0003 { 0.0008} [ 0.3358 , 0.4037 ] { [ 0.3652 , 0.4807 ]}

0.5123 0.6297 { 0.4939} 0.0023 { 0.0072} [ 0.5339 , 0.7254 ] { [ 0.3271 , 0.6607 ]}

0.2323 0.6896 { 0.2678} 0.0164 { 0.0386} [ 0.4382 , 0.9410 ] { [-0.1173 , 0.6529 ]}

MSE = 0.2569 { 0.0219 with rejection rate 5.4% }

Table 5: Monte-Carlo sampling {Laplace approximation } method with n = 500 and cen-
soring rate=50%.

θ θ̂ V ar(θ̂) 95% confidence interval

0.4201 0.3981 { 0.4236} 0.0006 { 0.0010} [ 0.3491 , 0.4471 ] { [ 0.3604 , 0.4868 ]}

0.5123 0.6012 { 0.4709} 0.0056 { 0.0121} [ 0.4536 , 0.7487 ] { [ 0.2548 , 0.6870 ]}

0.2323 0.5622 { 0.3570} 0.0613 { 0.1178} [ 0.0766 , 1.0477 ] { [-0.3157 , 1.0299 ]}

MSE = 0.1830 { 0.0732 with rejection rate: 5%}

Table 6: Monte-Carlo sampling {Laplace approximation } method with n = 1000 and
censoring rate=20%.

θ θ̂ V ar(θ̂) 95% confidence interval

0.4201 0.3552 { 0.4207} 0.0001 { 0.0004} [ 0.3342 , 0.3762 ]{[ 0.3800 , 0.4614 ]}

0.5123 0.6635 { 0.5044} 0.0009 { 0.0036} [ 0.6023 , 0.7248 ]{[ 0.3859 , 0.6228 ]}

0.2323 0.7978 { 0.2193} 0.0072 { 0.0183} [ 0.6308 , 0.9648 ]{[ -0.0464 , 0.4850 ]}

MSE = 0.3729{ 0.0195 with rejection rate: 1.1%}
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Table 7: Monte-Carlo sampling {Laplace approximation } method with n = 1000 and
censoring rate=50%.

θ θ̂ V ar(θ̂) 95% confidence interval

0.4201 0.3883 {0.4224 } 0.0002 { 0.0005} [ 0.3594 , 0.4173 ] {[ 0.3777 , 0.4671]}

0.5123 0.6529 {0.4965 } 0.0019 { 0.0063} [ 0.5670 , 0.7389 ] {[ 0.3402 , 0.6528]}

0.2323 0.6546 {0.3081 } 0.0262 { 0.0573} [ 0.3367 , 0.9724 ] {[-0.1613 , 0.7776]}

MSE = 0.2524 {0.0536 with rejection rate: 4%}
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