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summary

Srivastava and Shalabh (1997a, Journal of Econometrics) proposed a class of
Stein-like consistent estimators for estimating the slope coefficient in a single ex-
planatory variable ultrastructural model. This paper studies the sign reversal
problem of this class of estimators and proposes an alternative class of improved
estimators along the lines of the double-k class estimators of Ullah and Ullah
(1978, Econometrica) that overcomes this problem. Large sample asymptotic
properties of the proposed estimators are studied for the case where the distribu-
tions of the measurement errors are not necessarily normal.
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1 Introduction

Stein-rule estimators proposed by Stein (1956) are well known for their properties of reducing

the mean squared error of estimators of regression coefficients under some mild constraints

on the shrinkage parameter provided that the number of coefficients is not less than three,

see Saleh (2006) for an annotated bibliography on Stein-rule estimation. In the context of

measurement error models, the Stein-rule procedure annihilates the inconsistency property

of the least squares method and provides a class of consistent estimators (Srivastava and

Shalabh (1997a, b)). Such estimators, however, suffer from the limitation of sign change,

i.e., the sign of the Stein-rule estimate may be opposite to that of the corresponding least
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square estimate. This can be circumvented by using a positive-part Stein-rule procedure

which assigns the value zero to the parameter if sign change occurs. Apart from being an ad-

hoc procedure, the positive-part Stein-rule estimator has the disadvantage of having rather

intricate sampling properties, from which it is hard to draw any neat inference related to the

efficiency properties of estimators even in large samples when the variables are contaminated

with measurement errors. This paper proposes a simple way to avert the problem of sign

change in the estimates along the lines of the double-k class estimators proposed by Ullah

and Ullah (1978) for the linear regression model without measurement errors. We consider

the ultrastructural formulation of a measurement error model involving a single explanatory

variable and derive the large-sample asymptotic properties of the proposed estimator without

assuming a normal distribution for the measurement errors.

2 The ultrastructural model and estimators

Let us postulate the following linear relationship

Yi = α + βXi ; i = 1, 2, . . . , n (2.1)

where Yi and Xi denote the ith observation of the study and explanatory variables respec-

tively, α is the intercept term and β is the slope coefficient. It is assumed that both the

variables are subject to measurement errors so that instead of observing the true values Yi

and Xi, we observe yi and xi, respectively such that

yi = Yi + ui (2.2)

and

xi = Xi + vi , i = 1, 2, . . . , n (2.3)

where ui and vi are the measurement errors, which are assumed to be i.i.d. random variables

with zero mean and a common variance, i.e., ui ∼ i.i.d.(0, σ2

u) and vi ∼ i.i.d.(0, σ2

v). The

conventional disturbance term in the regression relationship is assumed to be subsumed in

ui without any loss of loss of generality. Further, the true values Xi’s are assumed to be

have means mi’s such that,

Xi = mi + wi i = 1, 2, . . . , n (2.4)

where wi ∼ i.i.d.(0, σ2

w). If Xi’s are fixed and wi = 0 for all i’s, then it becomes the functional

form of the measurement error models. On the other hand, if Xi’s are stochastic but mi’s

are identical, then the ultrastructural form reduces to the structural form (Dolby (1976)).

Finally, we assume that the error terms ui, viand wiare mutually independent but follow

distributions which are not necessarily normal.

Now, rewriting (2.1) as,

yi = α + βxi + (ui − βvi) , i = 1, 2, . . . , n. (2.5)
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The least squares estimator of β is simply

b =
sxy

sxx
, (2.6)

where

sxx =
1

n

n
∑

i=1

(xi − x̄)2,

sxy =
1

n

n
∑

i=1

(xi − x̄)(yi − ȳ),

x̄ =
1

n

n
∑

i=1

xi

and

ȳ =
1

n

n
∑

i=1

yi.

It is well documented that b is both a biased and an inconsistent estimator of β. under the

model (2.1)-(2.4), see Fuller (1987, Ch.1) and Cheng and Van Ness (1999, Ch.1). Suppose,

however, that σ2

v , the variance of the measurement errors associated with the explanatory

variable, is known a priori, then a consistent estimator of β may be formulated as

β̂ =
sxy

sxx − σ2
v

; sxx > σ2

v , (2.7)

which is commonly known as the adjusted or immaculate estimator. Note that β̂ is a con-

sistent estimator of β (Schneeweiss (1976), Fuller (1987, Ch. 1). In the case of measurement

error models with replicated observations, consistent estimators have been obtained and

analyzed in Shalabh (2003).

As an alternative to the immaculate estimator, Srivastava and Shalabh (1997a, b) sug-

gested a utilization of the Stein-rule procedure (Stein (1956)) with Lindley-like mean cor-

rection on Xi’s, leading to,

X̂i = x̄ +

[

1 −

(

1 −
g

n

) σ2

v

sxx

]

(xi − x̄), (2.8)

where g is a non-negative scalar. See also Shalabh (1998, 2000) for an alternative application

of the Stein-rule procedure in models involving several explanatory variables. Note that

E(X̂i −Xi) generally differs from zero. If one uses X̂i in place of Xi in (2.1), after replacing

Yi by (yi − ui) and applies least squares, then the following g-class consistent estimator of

β is obtained:

β̂g =

[

1 −

(

1 −
g

n

) σ2

v

sxx

]−1

b. (2.9)
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Srivastava and Shalabh (1997a) studied the large sample properties of the g-class esti-

mator and derived conditions for β̂g to dominate β̂ in mean squared error (MSE) criterion.

In particular, it is found that the reduction in MSE is maximized when g is taken as

g ≡ gd = r +
3(2 + θγ2v)

(1 − θ)
(2.10)

where

θ =
σ2

v

smm + σ2
w + σ2

v

, 0 ≤ θ < 1

smm =
1

n

n
∑

i=1

(mi − m̄)2,

m̄ =
1

n

n
∑

i=1

mi,

r =
σ2

u

(1 − θ)β2σ2
v

and γ2v denotes the Pearson’s measure of the excess kurtosis of the distribution of the

vi’s. Note that θ = 0 when σ2

v = 0, i.e., under classical regression when the explanatory

variable is observed without any measurement error. Thus θ can be regarded as a measure

of departure of ultrastructural model from classical regression model.

One problem of the g-class estimator β̂g, however, is that it may have a sign which is

opposite to that of b. It is straightforward to see that this will happen when sxx < (1− g
n )σ2

v .

One way to avert this undesirable property of β̂g is to apply the procedure of the double

k-class estimator (Ullah and Ullah (1978), Ohtani and Wan (2002)) on xi’s. This gives the

following alternative substitute for Xi in (2.1):

X̂∗

i = x̄ +

[

1 −

(

1 −
g

n

) σ2

v

sxx + h
nσ2

v

]

(xi − x̄), (2.11)

where h is a non-negative scalar in addition to g. Now, using X̂∗

i in conjunction with the

least squares procedure, we obtain the following family of gh-class consistent estimators:

β̂gh =

[

1 −

(

1 −
g

n

) σ2

v

sxx + h
nσ2

v

]

−1

b (2.12)

which is characterized by two non-negative scalars g and h. Clearly, the estimators b and

β̂gh will always have the same sign for positive values of h. Further, it provides a class of

estimators encompassing the estimators β̂ and β̂g as special cases.

3 Large sample properties of estimators

As no specific form of the distribution of errors has been assumed, exact results on the

finite sample properties of β̂gh cannot be determined. Therefore, we confine our attention
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to its large sample asymptotic properties. For this purpose, we assume that the errors have

distributions with moments of at least fourth order and

lim
n→∞

smm = lim
n→∞

[

1

n

n
∑

i=1

(mi − m̄)2

]

= σ2

m, (3.1)

which is finite, and excludes, for instance, the possibility of any trend, see Schneeweiss and

Witschal (1987) and Schneeweiss (1991).

Theorem 1. The relative bias of the estimator β̂gh of β to order O(n−1)is given by,

RB(β̂gh) = E

(

β̂gh − β

β

)

=
θ

n(1 − θ)

[(

3 − θ + θγ2v

1 − θ

)

− (g + θh)

]

. (3.2)

Proof. See the Appendix.

If we set h = 0 in (3.2), then we obtain the expression of the relative bias of β̂g given

in Srivastava and Shalabh (1997a). It is also interesting to observe from (3.2) that only the

kurtosis of the distribution of the measurement errors in the explanatory variable affects

the bias whereas the skewness of any of the distribution plays no role at least to the order

of our approximation. Furthermore, the relative bias is positive when

g + θh <
3 − θ + θγ2v

1 − θ
; 0 ≤ θ < 1. (3.3)

while the converse is true when (3.3) holds with a reversed inequality sign.

Now, for comparing the estimators with respect to the magnitude of bias to the given

order of approximation, let us consider the square of the relative bias. It is easy to see that

β̂gh has a smaller magnitude of bias than β̂ ≡ β̂oo when

g + θh < 2

(

3 − θ + θγ2v

1 − θ

)

; 0 ≤ θ < 1. (3.4)

Similarly, the estimator β̂gh has smaller magnitude of bias compared with β̂g ≡ β̂g0 when

2g + θh < 2

(

3 − θ + θγ2v

1 − θ

)

; 0 ≤ θ < 1. (3.5)

It follows that β̂gh is superior to both the estimators β̂ and β̂g with respect to the

criterion of magnitude of bias, to the order of our approximation, when g and h are chosen

to satisfy (3.5). As (2 + γ2v) is always positive and θ lies between 0 and 1, the condition

(3.5) is satisfied whenever

2g + h < 6, (3.6)

which provides a neat condition for the choice of the characterizing scalars g and h.
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The asymptotic distribution of β̂gh is normal with mean 0 and variance E(f2

xy) where

fxy is given in (4.4) in the Appendix. The expression for E(f2

xy) can be easily derived

using the results from Srivastava and Shalabh (1997c, Appendix). It may be noted that the

expression of E(f2

xy) is independent of the characterizing scalars g or h because fxy itself

is independent of g and h. The mean squared error of β̂gh to order O(n−1) is given by the

expression E(f2

xy). In order to study the effect of g and h, we propose to study the mean

squared error of β̂gh to order O(n−2) in the following Theorem.

Theorem 2. The differences in the relative mean squared error of β̂gh with β̂ and β̂g, to

order O(n−2), are given by,

∆(β̂, β̂gh) = E

(

β̂ − β

β

)2

− E

(

β̂gh − β

β

)2

=
θ2(g + θh)

n2(1 − θ)2

[

2(3 − θ + θγ2v)

1 − θ
− (g + θh)

]

(3.7)

and

∆(β̂g, β̂gh) = E

(

β̂g − β

β

)2

− E

(

β̂gh − β

β

)2

=
θ3h

n2(1 − θ)2

[

2(3 − θ + θγ2v)

1 − θ
− (2g + θh)

]

, (3.8)

respectively.

Proof. See the Appendix.

Once again, we observe that only the kurtosis of the distribution of the measurement

errors in the explanatory variable has a pronounced effect on the efficiency of estimators.

Also, it is easy to see from (3.7) that β̂gh is superior to β̂ in terms of relative mean squared

error under the condition (3.4) which ensures smaller magnitude of bias as well. Similarly,

we find from (3.8) that β̂gh has not only smaller magnitude of bias but also smaller mean

squared error in comparison with β̂g when (3.5) holds true. We thus conclude that the

estimator β̂gh is superior to both the estimators β̂ and β̂g with respect to the twin criteria

of mean squared error and the magnitude of bias at least to the order of our approximations

for all kinds of distributions so long as we choose g and h to satisfy (3.6).

Now, it is observed from (3.7) that the optimal values of g and h that maximize the gain

in efficiency of β̂gh over β̂ cannot be separately obtained. However, the optimal value of the

sum (g + θh) is given by,

g + θh =
3 − θ + θγ2v

1 − θ
(3.9)

or

h =
1

θ

[

3 − θ + θγ2v

1 − θ
− g

]

(3.10)
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while the choice of g is arbitrary.

Similarly, we see from (3.8) that the gain in efficiency of β̂gh over β̂g is maximized when

the sum (2g + θh) is given by

2g + θh =
2(3 − θ + θγ2v)

1 − θ
. (3.11)

or

h =
2

θ

[

3 − θ + θγ2v

1 − θ
− g

]

, (3.12)

while the choice of g is arbitrary. It may be noted that the choice of h in (3.12) is twice of

the choice of h in (3.10).

The above observations suggest that the largest amount of gain in efficiency of β̂gh over β̂

and β̂g is achieved when g and h are chosen in such a way that (3.9) and (3.11), respectively

hold true. It may also be remarked that the optimal values of (g +θh), as specified by (3.9),

and (2g + θh), as specified by (3.11), are larger for platykurtic distributions (γ2v > 0) in

comparison with the optimal value for leptokurtic distribution (γ2v < 0). For both cases,

however, the optimal values would be substantially different from the optimal value in the

case of mesokurtic distributions (γ2v = 0) of which the normal distribution is a special case.

4 Appendix

Proof of Theorem 1:

Using results from Srivastava and Shalabh (1997c, Appendix), we can write

sxx =
σ2

v

θ

(

1 +
fxx

n1/2

)

(4.1)

and

sxy = βsxx − βσ2

v

(

1 +
fxy

n1/2

)

, (4.2)

where fxx and fxy are of order Op(1) defined as,

fxx =
θ

n1/2σ2
v

[

n
∑

i=1

(vi + wi − v̄ − w̄)2 − n(σ2

v + σ2

w) + 2

n
∑

i=1

(mi − m̄)(vi − wi)

]

(4.3)

and

fxy =
θ

n1/2σ2
v

[

n
∑

i=1

(vi − v̄)2 − nσ2

v +

n
∑

i=1

(vi − v̄)(mi + wi)

−
1

β

n
∑

i=1

(ui − ū)(mi + wi + vi)

]

(4.4)
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respectively.

Further, we have,

E(fxy) = −
1

n1/2
(4.5)

and

E(fxxfxy) = 2 + θγ2v. (4.6)

Using (4.3) and (4.4) in (2.12), we can write,

(

β̂gh − β

β

)

=

(

θ

1 − θ

)[

−
fxy

n1/2
+

1

n

[

fxxfxy

(1 − θ)
− (g + θh)

}]

+ Op(n
−3/2), (4.7)

whence we find,

E

(

β̂gh − β

β

)

=

(

θ

n(1 − θ)

)[(

3 − θ

1 − θ

)

− (g + θh) +

(

θ

1 − θ

)

γ2v

]

(4.8)

to order O(n−1). This gives the result of Theorem 1.

Proof of Theorem 2:

To derive the result in Theorem 2, we observe that,

∆(β̂, β̂gh) = E

(

β̂ − β

β

)2

− E

(

β̂gh − β

β

)2

=
θ2(g + θh)

n(1 − θ)2
E

[

−
2fxy

n1/2
+

1

n

(

2fxxfxy

1 − θ
− (g + θh)

)]

+ O(n−5/2)

=
θ2(g + θh)

n2(1 − θ)2

[

2

(

3 − θ

1 − θ

)

− (g + θh) +

(

2θ

1 − θ

)

γ2v

]

+ O(n−5/2), (4.9)

which is the result of (3.7) in Theorem 2. Equation (3.8) can be derived in a similar manner.
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