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summary

The Power divergence family of statistics was introduced by Cressie and Read
in 1984. The likelihood ratio statistic and the Pearson’s chi-squared statistic are
examples of the many members of the power divergency family which are linked
through a family parameter λ. We present here the results of a comparative sim-
ulation study on the accuracy of the chi-squared approximation for two members
of the family (λ = 1 and λ = 2

3
) when they are used for goodness-of-fit testing in

sparse contingency tables.
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1 Introduction

Oftentimes when we analyze contingency tables, the sample size is not much larger than

the number of cells in the contingency table. This is either because the sample size itself

is small or the number of categories classifying the table is too large. The result is what

is called a sparse contingency table-one with most of the cells having zero frequencies. In

common statistical practice, we regard a table to be sparse if at least twenty percent of the

cells have expected frequencies less than 5 [5].

The analysis of sparse tables leads to two types of problems. The first class of problems is

associated with goodness-of-fit testing since the asymptotic approximations of the standard

chi-squared statistics tend to be poor for sparse tables [5].
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Another class of problems is related to the non-existence of the maximum likelihood

estimates. Parameter estimates sometimes take on values of plus or minus infinity. In such

cases algorithms like Newton-Raphson may fail to converge [5].

A common way around the two problems above is to collapse the categories until expected

frequencies are large enough. We obviously loose some information when we do this.

The latter problem is also handled by adding a small constant, say 0.5 to every cell of

the table prior to analysis [5]. Bayesian approaches that prevent the estimation problems

mentioned above have also been suggested [5].

In relation to the first problem, the use of exact tests has been recommended [1]. Cressie

and Read (1984) also introduced the idea of the Power-divergence family of Statistics which

links many goodness-of-fit statistics through a single family parameter λ. As a byproduct

of their work, a new Goodness-of-fit statistic (when λ = 2

3
) emerges that has valuable

properties. The most important property is that for the equiprobable hypothesis, ”the

critical value of this statistic is well approximated by the chi-squared critical value under

certain conditions” [7].

Cressie and Read (1988) also postulate that ”The accuracy of the chi-squared critical

value for the power-divergence statistic based on λ = 2

3
... appears to carry over to hypoth-

esis with unequal cell probabilities and estimated parameters provided min1≤i≤k nπi ≥ 1.

This study presents the results of a Monte-Carlo study on the accuracy of the chi-squared

approximation for the Cressie and Read Statistic when used as a goodness-of fit statistic

in sparse contingency tables. Specifically we are testing the hypothesis of independence

under various levels of sparseness. We also compare the Cressie and Read Statistic to the

traditional Pearson’s Chi-squared statistic.

2 The Power–Divergence Family of Statistics

The power-divergence family of statistics is related through a parameter λ ∈ R. Each

member PDS(λ) is a sum over all cells of ”deviations” between expected and observed

counts. The deviation of a single cell aλ is the scaled distance between the ratio of observed

counts to expected counts raised to the power λ and the unit 1.

aλ =
2.observed

λ(λ + 1)

[

(

observed

expected

)λ

− 1

]

Thus using the usual notation for observed and expected cell frequencies, the formula for

the power-divergence statistic is

PDS(λ) =
2

λ(λ + 1)

k
∑

i=1

yi

[

(

yi

nθ̂i

)λ

− 1

]

, −∞ < λ < ∞
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It can be shown [4] that

PDS(1) =

k
∑

i=1

(

yi − nθ̂i

)2

nθ̂i

,

which is Pearson’s chi-squared statistic. Here yi is the observed frequency for the ith cell, k

is the number of cells and n =
∑

yi is the sample size.

3 Asymptotic Distributional Results

3.1 Introduction

In this section we explain how to calculate an α% critical value for the power-divergency

family of statistics. First we consider the simple hypothesis where there are no parameters

to be estimated, then we also give results for the case where there are some parameters to

be estimated.

3.2 Simple Hypothesis

We first consider the simple null hypothesis over k cells:

H0 : Θ = Θ0,

where ΘT
0 = (θ01, . . . , θ0k) is completely specified and each θ0i > 0. It can be shown [3]

that in this case Pr(PDS(λ) ≥ χ2
k−1

(α)) → α, as n → ∞ for each λ ∈ (−∞,∞) and each

α ∈ (0, 1). This result generally holds when expected frequencies are large [3].

3.3 General Hypothesis and Parameter Estimation

The hypothesis are

H0 : Θ ∈ Θ0

Versus

H1 : Θ /∈ Θ0

where Θ0 is a set of possible values of Θ. We must estimate one value Θ̂ ∈ Θ0 that is most

consistent with observed proportions y/n, and test H0 by calculating PDS(λ) for some

fixed −∞ < λ < ∞.

The desired result is given in [3] as Pr(PDS(λ) ≥ χ2
k−s−1

(α)) → α, as n → ∞ for each

λ ∈ (−∞,∞). Here s is the number of parameters to be estimated. Again this result is

generally known to be true when expected frequencies are large[3].

For an r×r contingency table, where we are fitting the independence model, the number

of parameters to be estimated will be 2(r − 1) and the total number of cells will be r2. It

follows that
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k − s − 1 = r2
− 2(r − 1) − 1

= (r − 1)2

4 Simulation of Square Contingency Tables

We consider only square r×r contingency tables and following the scheme of Koehler(1986)

we consider three cases:

1. Case 1 All marginal probabilities are equal; that is

pi. = p.i =
1

r
, i = 1, 2, . . . , r.

2. Case 2

pi. = p.i =
1

r



0.1 + 0.9
r

∑

j=1

j−1



 , i = 1, 2, . . . , r.

3. Case 3

pi. = p.i =







1.85
r

, i=1,2,. . . ,0.5r;

0.15
r

, i=0.5r+1,. . . ,r .

The first case produces tables with equal expected frequencies, while cases two and three

give tables with a mixture of large and small expected frequencies. Case 3 gives the most

sparse tables. It must be noted that the case 3 tables used in this study are different

from those used by Koehler (1986). This deviation was necessitated by the need to reduce

computer runtime which was in some cases stretching to several days for Koehler type case

three tables.

The probability for each cell of the two-dimensional contingency table was then calculated

assuming independence between the rows and columns. The probabilities (p1, p2, . . . , pr×r)

were then summed up to give cumulative probability boundaries (0, q1, q2, . . . , 1) ≡ (0, p1 +

p2, . . . , 1) with each pair of adjacent values bordering a cell of a two-dimensional contingency

table.

To get a two-dimensional table with a sample of n observed frequencies, n uniform

random numbers were generated using R commands on the unit interval [0,1]. A uniform

number falling in the interval [qi, qi+1] would result in the number of observations for the

corresponding cell in the contingency table increasing by one. Thus the number of observa-

tions n(i, j) for each cell was made to be proportional to the corresponding probability for

each cell under the model of independence.

Again, following the scheme of Koehler (1986) we chose sample sizes as multiples of the

number of categories in each table. Thus for 6 × 6 tables, sample sizes of 18, 72 and 180



A Comparative Study of the Accuracy . . . 77

were used. For 10 × 10 tables, sample sizes used were 50, 200 and 500. The 20 × 20 table

was only considered with a sample size of 200. Detailed R-algorithms for generating tables

are given in [2]

For each sample size, 1000 tables were generated for which the rows and columns were

independent. Tables for which some of the marginal totals were equal to zero were discarded

and in place of them, new tables were generated. This explains why it was taking long to

generate and analyze Koehler type case three tables which are very sparse. Members of the

Power-divergence family were then used to test for the (correct) hypothesis of independence.

Any rejection of the null hypothesis would thus be a type 1 error.

5 Results and Discussion

The tables, as pointed earlier give the number of type 1 errors committed out of a 1000 tests

of hypothesis performed at each level of significance. If the chi-squared approximation is

correct, we would thus expect about 200 rejections at 20% level of significance, 100 rejections

at 10%, 50 rejections at 5% and 10 rejections at 1% level of significance. Fewer rejections

indicate that the statistic used takes on smaller values than chi-squared while a large number

of rejections point towards a stochastically larger statistic. The last 4 rows of the result

tables give the approximate distribution of expected frequencies.

5.1 Case 1 Results

In this case the tables were generated in such a way that all expected frequencies would

be equal. The results on the number of type I errors out of a thousand tests of hypothesis

are given in table 1. The figures in brackets indicate the percentage absolute deviation of

PDS( 2

3
) from PDS(1) over PDS(1).

The table shows that the chi-squared approximation for both the Pearson’s chi-squared

Statistic and the statistic PDS( 2

3
) is quite accurate in all cases where expected frequencies

are at least one (6×6 table with sample size 72, 6×6 table with n = 180, 10×10 table with

sample sizes of 200 and 500). The result for PDS( 2

3
) is consistent with the aforementioned

postulation of Cressie and Read (1988).

For tables with expected frequencies between 0.25 and 1 (r = 6, n = 18 and r = 10, n =

50), the statistic PDS( 2

3
) is stochastically smaller than a chi-squared random variable with

(r − 1)2 degrees of freedom. A comparison of the performance of the statistic PDS( 2

3
) and

that of the Pearson’s chi-squared statistic in the same tables reveals that the Pearson is

less sensitive to small expected frequencies as compared to the earlier statistic. This is also

reflected in the percentage deviations. The result for the Pearson is in agreement with the

findings of Koehler (1986, p489) who concludes that ”the chi-squared approximation for the

Pearson statistic is quite accurate for case 1,. . . ).



78 BERE & CHIMEDZA

Table 1: Case 1 results-The number of type I errors out of a thousand tests of the indepen-
dence model.

Level of r=6 r=6 r=6 r=10 r=10 r=10 r=20

Significance n=18 n=72 n=180 n=50 n=200 n=500 n=200

χ2 approx 0.2 179 205 194 195 217 198 207

for PDS(1) 0.1 72 100 99 92 112 83 91

With 0.05 33 56 49 38 55 40 41

(r − 1)2 d.f 0.01 4 14 7 5 9 15 9

χ2 approx 0.2 77(57) 212(3) 206(6) 42(78) 225(4) 201(2) 9(96)

for PDS( 2

3
) 0.1 16(78) 107(7) 104(5) 12(87) 115(3) 86(4) 1(98)

with 0.05 5(85) 55(2) 50(2) 4(89) 54(2) 42(5) 0(100)

(r − 1)2 d.f 0.01 0(100) 13(8) 9(29) 0(100) 8(11) 15(0) 0(100)

number [0,0.25) 0 0 0 0 0 0 0

of expected [0.25,1) 36 0 0 100 0 0 100

frequencies in [1,5) 0 36 0 0 100 0 0

each interval ≥ 5 0 0 36 0 0 100 0
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Table 2: The number of type I errors out of a thousand tests of the independence model.

Level of r=6 r=6 r=6 r=10 r=10 r=10

Significance n=18 n=72 n=180 n=50 n=200 n=500

χ2 approx 0.2 262 181 190 248 209 212

for PDS(1) 0.1 138 81 90 160 117 108

With 0.05 70 48 55 104 77 61

(r − 1)2 d.f 0.01 12 16 21 42 21 16

χ2 approx 0.2 77 139 189 25 111 181

for PDS( 2

3
) 0.1 12 49 83 2 43 86

with 0.05 5 24 44 0 22 44

(r − 1)2 d.f 0.01 0 7 13 0 1 6

number [0,0.25) 15 3 0 45 10 1

of expected [0.25,1) 16 12 6 43 35 18

frequencies in [1,5) 5 17 20 12 45 51

each interval ≥ 5 0 4 10 0 10 30

5.2 Case 2 Results

In this case, the tables are more sparse than those for the previous case as reflected by the

distribution of expected frequencies. Also, case 2 tables have a mixture of large and small

expected frequencies. The results are given in table 2.

The chi-squared approximation is not very good for both statistics in this case. There is

however a slight improvement for both statistics in cases where the majority of expected

frequencies are at least one (r = 6, n = 180 and r = 10, n = 500). In these cases, the

chi-squared approximation for PDS( 2

3
) looks more accurate in the lower tail than that for

the Pearson statistic.

5.3 Case 3 Results

In this case the tables also have a mixture of small and large expected frequencies and there

are more sparse than those for the previous case.
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Table 3: The number of type I errors out of a thousand tests of the independence model.

Level of r=6 r=6 r=6 r=10 r=10 r=10 r=20

Significance n=18 n=72 n=180 n=50 n=200 n=500 n=200

χ2 approx 0.2 320 230 231 285 276 253 302

for PDS(1) 0.1 159 182 142 228 208 168 254

With 0.05 74 49 104 169 162 129 217

(r − 1)2 d.f 0.01 27 108 56 94 107 63 173

χ2 approx 0.2 66 131 144 23 81 121 20

for PDS( 2

3
) 0.1 19 72 69 3 38 57 0

with 0.05 4 41 34 2 22 26 0

(r − 1)2 d.f 0.01 0 21 14 0 5 10 0

number [0,0.25) 16 12 9 58 25 25 250

of expected [0.25,1) 36 0 0 100 0 0 100

frequencies in [1,5) 0 36 0 0 100 0 0

each interval ≥ 5 0 0 36 0 0 100 0
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In this case, the chi-squared approximation for both PDS(1) and PDS( 2

3
) is very poor.

Whereas the Pearson’s chi-squared resulted too many rejections, the statistic PDS( 2

3
) gives

fewer rejections than expected.

6 Conclusions

When expected frequencies are equal and at least one, the chi-square approximation for

both the Pearson’s chi-squared and PDS( 2

3
) is fairly accurate.

When expected frequencies are equal and between 0.25 and 1, the statistic PDS( 2

3
) is

stochastically smaller than a χ2(r−1) random variable. The Pearson’s chi-squared statistic

fairly well approximates a χ2(r − 1) random variable in this case.

It is evident from this study that for sparse contingency tables, the chi-squared approxi-

mation for the statistic PDS( 2

3
) is not a better alternative to that of the Pearson Statistic.
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