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summary

Higher order asymptotic theory is targeted on the development of an asymptotic
expansion for the distribution function of a statistic of interest. The asymptotic
inference procedures are commonly based on simple characteristics of the density
function at or near a data point of interest. In particular, exponential mod-
els are useful to provide accurate approximations to general statistical models.
Typically, to the third order the exponential approximation has three primary pa-
rameters, two corresponding to pure model type and one for the departure from
an exponential model (termed a non-exponentiality term). Andrews, Fraser and
Wong (2005) discovered that to the third order, the observed significance function
does not depend on the non-exponential term for univariate models. This finding
has remarkable statistical implications for inference concerning univariate models.
However, it is not clear whether this property holds for multivariate models. In
this paper we address this question, and explore the intrinsic discrepancy between
univariate and multivariate models.
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1 Introduction

In regular parametric models when the amount of information is large, first order asymp-

totic theory is widely used in statistical applications. For these models the Central Limit

Theorem provides access to a range of statistical procedures. In particular, for models with

c© Institute of Statistical Research and Training (ISRT), University of Dhaka, Dhaka 1000, Bangladesh.



2 GRACE & FRASER

independent random variables, the score function, being a sum of independent components,

is asymptotically normal. Local linearization then relates the maximum likelihood estimate

and likelihood ratio statistic to the score function. These three statistics provide important

and powerful methods, often referred to as first order asymptotic theory. In some situations,

however, first order asymptotic theory may not be adequate. Higher order asymptotics with

more refined distributional approximations are required (e.g., Reid 1988); also and perhaps

more importantly higher order asymptotics provides precise and often definite separation of

interest parameters from nuisance parameters. For instance, when the number of nuisance

parameters is large, first order theory may frequently fail to give reasonable and accurate

approximations (Pierce and Peters 1992, Barndorff-Nielsen and Cox 1994).

For practical use in statistical inference, the primary interest often lies in approximat-

ing the cumulative distribution of a statistic in order to compute a p-value or confidence

coefficients (e.g., Fraser 1990). Higher order asymptotic theory is targeted on the devel-

opment of an asymptotic expansion for the distribution function of a statistic of interest.

The asymptotic inference procedures are commonly based on simple characteristics of the

density function at or near a data point of interest. These procedures include the Edge-

worth expansion, the saddlepoint approximation, and the more recent approximations from

likelihood theory (e.g., Lugannani and Rice 1980). For an overview, see Daniels (1987),

Barndorff-Nielsen and Cox (1989), and Reid (1996).

For testing a scalar parameter, methods with third order accuracy are now available that

are based on a reduction to the simple case having a scalar parameter and scalar variable.

For such simple models on the real line, a canonical version that corresponds closely to

an exponential model has been developed by Cakmak et al. (1998). The exponential

approximation has three primary parameters, two corresponding to the pure model type and

one for the departure from that model. This departure parameter is the measure of non-

exponentiality. As the inference objective is to examine the observed significance function

p(θ) = F (y0; θ) = P (y ≤ y0; θ) at the data point y0, it is important to investigate how

these three model parameters may affect the observed significance function p(θ), especially

how the non-exponentiality term may impact p(θ). Using only model derivatives at a data

point and its corresponding maximum likelihood value, Andrews, Fraser and Wong (2005)

explored this important problem and found that p(θ) is free of the non-exponentiality term

to the third order, and it depends only on the two parameters which can be obtained from

the observed likelihood and the gradient of the likelihood at the data point.

The finding in Andrews, Fraser and Wong (2005) has remarkable statistical implications.

It provides a basis for understanding how nonnormality of the likelihood function affects

related p-values. This casts some light on the familiar characteristic that the third order

p(θ) is extremely accurate (Andrews, Fraser and Wong 2005). It also provides the basis for

removing a computational singularity that commonly exists in the standard likelihood based

higher order asymptotic methods, discussed in Daniels (1987), Robinson (1982) and Fraser

et al. (2003). The investigation in Andrews, Fraser and Wong (2005) is, however, only

addressed to univariate models to the third order inference. There are a couple of concerns
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remaining unclear. Does the property that p(θ) does not depend on the non-exponentiality

term remain true beyond the third order? Or more importantly, does this property hold for

multivariate models? The goal of this paper is to provide answers to these questions. Instead

of directly working on the p-value as in Andrews, Fraser and Wong (2005) for univariate

models, we follow a different route and use properties of moments of normal distributions.

This allows us to transparently display the intrinsic discrepancy between univariate and

multivariate models. As a by-product, the result in Andrews, Fraser and Wong (2005) is a

special case of the current development.

The paper is organized as follows. Section 2 presents a number of properties of moments

of normal distributions. In Section 3 we provide a brief overview of background results

concerning asymptotic expansions of a univariate model when both parameter and variable

are scalar. Such a simple model offers the basis for testing a scalar parameter of interest.

The discussion is based directly on the Taylor series expansion of the model so that the

exponential approximation is readily available. We also examine in this section the relation-

ship between the p-value at the data point and the measure of the departure of a general

model from the exponential family. In Section 4 we explore models with multi-dimensional

parameter and variable. Exponential approximations to the models are derived, with spe-

cial quantities involved to measure departure from the standard form of the exponential

family. The dependence of the p-value on these parameters is discussed. The uniqueness of

the transformations that are used for exponential approximations is discussed in Section 5.

General discussion on asymptotic expansions is presented in the final Section 6.

2 Moments of Normal Distributions

In this section we discuss some properties for moments of normal distributions. These results

are then applied for the development in the remaining sections.

Property 1. If Y ∼ N(θ, 1), then for any n ∈ N , there are constants ai such that

E(Y 2n) = θ2n + a2n−2θ
2n−2 + ... + a2θ

2 + a0,

and

E(Y 2n+1) = θ2n+1 + a2n−1θ
2n−1 + ... + a3θ

3 + a1θ.

Thus, the kth moment of Y is a polynomial in θ of degrees of k, with coefficient for the

highest order term being 1 and with successive terms having order reduced by 2.

Property 2. Let φ(t), Φ(t) denote respectively the probability density function and the

cumulative distribution function for the N(0, 1), then for any n ∈ N ,

∫ 0

−∞

ynφ(y − θ)dy = rnφ(−θ) + µnΦ(−θ), (2.1)

where µn = E(Y n) denotes the nth moment of Y with the N(θ, 1) distribution, and the r’s

and µ’s are polynomials that satisfy the recursive equations

rn+2 = (n + 1)rn + θrn+1 with r0 = 0, r1 = −1,

µn+2 = (n + 1)µn + θµn+1 with µ0 = 1, µ1 = θ.
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Proof. Integration by parts shows that
∫ a

−∞
xnφ(x)dx = p(a)φ(a) + q(a)Φ(a) where p(a)

and q(a) are polynomials in a; and the transformation y = x + θ gives

∫ 0

−∞

ynφ(y − θ)dy =

∫

−θ

−∞

xnφ(x)dx +

∫

−θ

−∞

nθxn−1φ(x)dx + ... +

∫

−θ

−∞

θnφ(x)dx.

These indicate that there are polynomials µn and rn in θ such that

∫ 0

−∞

ynφ(y − θ)dy = rnφ(−θ) + µnΦ(−θ).

It remains now to characterize the polynomials rn and µn. Integrating
∫ 0

−∞
ynφ(y−θ)dy

gives

∫ 0

−∞

ynφ(y − θ)dy =

∫ 0

−∞

1

n + 1
yn+2φ(y − θ)dy −

∫ 0

−∞

θ

n + 1
yn+1φ(y − θ)dy.

Then using the above form of
∫ 0

−∞
ynφ(y − θ)dy, we obtain

rnφ(−θ) + µnΦ(−θ) =
1

n + 1
[rn+2φ(−θ) + µn+2Φ(−θ)] − θ

n + 1
[rn+1φ(−θ) + µn+1Φ(−θ)],

and thus,

rn+2 = (n + 1)rn + θrn+1,

µn+2 = (n + 1)µn + θµn+1.

It is then easily seen that r0 = 0, µ0 = 1, and r1 = −1, µ1 = θ. Furthermore, it can be

shown that µn = E(Y n) for Y ∼ N(θ, 1). Indeed, let E(Y n) = mn. Using integration by

parts, we obtain

mn =

∫ +∞

−∞

ynφ(y − θ)dy =
1

n + 1
mn+2 −

θ

n + 1
mn+1,

i.e., mn+2 = (n + 1)mn + θmn+1. It follows that mn and µn have the same recursive

equations. Since m0 = µ0 and m1 = µ1, it follows that mn = µn for all n.

For convenience, we record some values for µn that will be used next and in Section 3.3:

µ2 = θ2 + 1, µ3 = θ3 + 3θ, µ4 = θ4 + 6θ2 + 3, µ5 = θ5 + 10θ3 + 15θ.

The following property discusses connections among the polynomials µn and rn in (2.1).

Property 3. (1). If as+t−2, ..., a3, a1 are constants that satisfy

θsµt − µs+t + as+t−2µs+t−2 + ... + a3µ3 + a1µ1 = 0,

where s + t is odd with s ≥ 2 and t ≥ 3, then

θsrt − rs+t + as+t−2rs+t−2 + ... + a3r3 + a1r1 = 0.

(2). If as+t−2, ..., a2, a0 are constants that satisfy

θsµt − µs+t + as+t−2µs+t−2 + ... + a2µ2 + a0µ0 = 0,

where s + t is even with s ≥ 2 and t ≥ 2, then

θsrt − rs+t + as+t−2rs+t−2 + ... + a2r2 + a0r0 = 0.
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Proof. First note that θ2µ3 − µ5 + a3µ3 + a1µ1 = 0 gives a3 = 7, a1 = −6. Now we

claim a2n+1 = 4n + 3, a2n−1 = −2n(2n + 1), a2n−3 = ... = a1 = 0, if for s = 2 and

t = 2n + 1(n ≥ 2),

θ2µ2n+1 − µ2n+3 + a2n+1µ2n+1 + a2n−1µ2n−1 + a2n−3µ2n−3 + ... + a1µ1 = 0.

Indeed, let I2 = θ2µ2n+1 − µ2n+3 + a2n+1µ2n+1 + a2n−1µ2n−1 + a2n−3µ2n−3 + ... + a1µ1.

Then repeatedly invoking the recursive equations in Property 2, we find that the first two

terms θ2µ2n+1 and µ2n+3 have the same highest order term θ2n+3, which then cancels; we

thus obtain

I2 = [a2n+1 − (2n + 2) − (2n + 1)]θµ2n + [(a2n+1 − (2n + 2))2n + a2n−1]µ2n−1

+a2n−3µ2n−3 + ... + a1µ1.

From Property 1 we see that µt is a polynomial in θ of degrees t with successive terms

having order reduced by 2. Thus, I2 is a polynomial in θ of degrees 2n + 1 with successive

terms having order dropping by 2. Consequently, we obtain that all coefficients in θ are 0

when I2 = 0. That is, a2n+1 − (2n + 2) − (2n + 1) = 0, (a2n+1 − (2n + 2))2n + a2n−1 = 0,

and a2n−3 = ... = a1 = 0, leading to

a2n+1 = 4n + 3, a2n−1 = −2n(2n + 1), a2n−3 = ... = a1 = 0.

Now for rt we have the same recursive equation as µt based on Property 2; thus for

J2 = θ2r2n+1 − r2n+3 + a2n+1r2n+1 + ... + a1r1 we can conduct similar calculations and

obtain

J2 = [a2n+1 − (4n + 3)]θr2n + [(a2n+1 − (2n + 2))2n + a2n−1]r2n−1

+a2n−3r2n−3 + ... + a1r1,

which gives 0 using the values of a2k+1 just obtained. That is, if I2 = 0 holds, then J2 = 0

holds as well. Analogously, the conclusions can be proved for the other cases with s > 2.

Note that the above result is true only for s + t ≥ 4. For instance, when s = 2, t = 1, we

have I2 = θ2µ1 − µ3 + 3µ1 = 0, but J2 = θ2r1 − r3 + 3r1 = −1 6= 0.

3 Univariate Model: Observed Significance Function

and Measure of Non-exponentiality

3.1 Exponential Model

For a real variable and real parameter consider a density function fn(y; θ) that depends on

a mathematical parameter n, often sample size. We assume that for each θ, y is Op(n
−1/2)

about a maximum density point and that l(θ; y) = log fn(y; θ) is O(n) and with either

argument fixed has a unique maximum. Let y0 be a data value of interest, and θ0 = θ̂(y0)

be the corresponding maximum likelihood parameter value.
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If aij = (∂i+j/∂θi∂yj)l(θ; y)|(θ0,y0), then the log density l(θ; y) has a Taylor series ex-

pansion in parameter and variable about the data,

l(θ; y) =
∑

i,j

aij

i!j!
(θ − θ0)

i(y − y0)
j .

To examine the model more easily, we simply record the coefficients of the expansion in a

matrix form; we then standardize the variable and the parameter using location and scale

properties with the transformations

φ = (−a20)
1/2(θ − θ0),

x = (−a20)
−1/2a11(y − y0).

For the particular case of a standard exponential model f(y, θ) = exp{yθ − c(θ)}h(y) we

obtain the following coefficient array



























a00 a01 a02 a03 a04 . . .

0 1 0 0 0 . . .

−1 0 0 0 0 . . .

a30 0 0 0 0 . . .

a40 0 0 0 0 . . .
...

...
...

...
...

...



























, (3.1)

where aij denotes the typical nonzero coefficient after the transformation. The third deriva-

tives are of order O(n−1/2), the fourth derivatives are of order O(n−1), and in general, the

rth (r ≥ 5) derivatives are of order O(n−r/2+1). When examining a coefficient array after

standardization we will again use y and θ for variable and parameter, these being then the

current variable and parameter.

Of special importance we see that all the coefficients in the matrix outside the first row

and the first column are zero except for the coefficient of the cross term yθ. As a20 =

−1, a11 = 1, we can, therefore, write

l(θ; y) = log φ(y − θ) + r(θ) + s(y);

thus, the log density can be expressed as the log density of the N(θ, 1) plus a series r(θ) in θ

and a series s(y) in y, where from the integration property of the density function, we have

that the coefficients in r(θ) determine those in s(y) and vice versa. In particular, to order

O(n−3/2), Cakmak et al. (1998) described the relationship between these coefficients by

examining terms up to the fourth derivative. Specifically if we write a30 = −α3/
√

n, a40 =

−α4/n, then the first row coefficients are given as

a00 = − log(2π)/2 + (3α4 − 5α2
3)/24n,

a01 = −α3/2
√

n,
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a02 = −1 + (α4 − 2α2
3)/2n,

a03 = α3/
√

n,

a04 = (α4 − 3α2
3)/n.

We may examine the coefficients of r(θ) and s(y) more closely by considering a higher

order expansion. For instance, with order O(n−2) we need the fifth derivative a50 when

expressing r(θ), and there is an O(n−3/2) term in the third derivative a30. It is known then,

from the Taylor series expansion, that the coefficients of s(y) have the form

a00 = − log(2π)/2 + a0/n,

a01 = −a1/
√

n + b1/n3/2,

a02 = −1 + a2/n,

a03 = a3/
√

n + b3/n3/2,

a04 = a4/n,

a05 = a5/n3/2

for constants ai(i = 0, 1, ..., 5), b1 and b3. Thus, the rth (r ≥ 3) derivative a0r is of order

O(n−r/2+1), and the first derivative a01 and the third derivative a03 now include O(n−3/2)

terms. If we write a30 = −α3/
√

n − β/n3/2 and a40 = −α4/n, a50 = −α5/n3/2, where

αi(i = 3, 4, 5) and β are constants, then the coefficients a0j are determined by the coefficients

ai0:

a0 = (3α4 − 5α2
3)/24,

a1 = −α3/2,

a2 = −(α4 − 2α2
3)/2,

a3 = α3,

a4 = α4 − 3α2
3,

a5 = α5 + 15α3
3 − 10α3α4,

b1 = −(8β − 2α5 + 29α3
3 − 22α3α4)/16,

b3 = (24β − 12α5 + 21α3
3 − 14α3α4)/24.

3.2 General Model

Cakmak et al. (1998) described a series of transformations to approximate general models

by the exponential families. Essentially they employed the following transformations:

φ = (−a20)
1/2a−1

11 [a11(θ − θ0) +
a21

2
(θ − θ0)

2 +
a31

6
(θ − θ0)

3],

x = (−a20)
−1/2[a11(y − y0) +

a12

2
(y − y0)

2 +
a13

6
(y − y0)

3], (3.2)
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which lead to the coefficient matrix with the missing terms being of order O(n−3/2),





















A00 A01 A02 A03 A04

0 1 0 0 −
−1 0 A22 − −
A30 0 − − −
A40 − − − −





















. (3.3)

Here the transformed coefficients Aij and the original coefficients aij are linked as follows:

A30 = (−a20)
−3/2a30 + 3(−a20)

−1/2a−1
11 a21,

A40 = (−a20)
−2a40+4(−a20)

−1a−1
11 a31−6(−a20)

−2a−1
11 a30a21−15(−a20)

−1a−2
11 a2

21,

A22 = a−3
11 (a11a22 − a21a12),

and A0j , j = 0, 1, 2, 3, 4, are determined by A30, A40, and A22.

More generally, under the following transformations we can re-express the coefficient

matrix as “exponential-like”, i.e., it has a form like (3.1) except for the right lower corner.

Let

φ = (−a20)
1/2a−1

11

∑

i

ai1

i!
(θ − θ0)

i,

x = (−a20)
−1/2

∑

j

a1j

j!
(y − y0)

j ,

then the coefficient matrix for the model l(θ; y) = log f(y; θ) becomes:



























a00 a01 a02 a03 a04 . . .

0 1 0 0 0 . . .

−1 0 a22 a23 a24 . . .

a30 0 a32 a33 a34 . . .

a40 0 a42 a43 a44 . . .
...

...
...

...
...

...



























. (3.4)

Then to avoid excessive notation we use the same aij to denote the typical coefficient after

the transformation and use y, θ again to denote correspondingly the revised variable and

parameter; the new expansion point accordingly is (y0, θ0) = (0, 0).

Note that aij = O(n−(i+j)/2+1) for i ≥ 2, j ≥ 2; thus to order O(n−3/2) the general

model differs from the exponential family by the term a22, which is the coefficient of the

quadratic-quadratic term y2θ2. In general, terms aij measure the departure of a general

model from the standard exponential model when i ≥ 2, j ≥ 2. If aij = 0 for all i ≥ 2, j ≥ 2

in (3.4), then ai0 and a0j in (3.4) should be the respective coefficients of r(θ) and s(y) in

(3.1), and their expressions are given in Section 3.1.
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3.3 The Observed Significance Function

As illustrated in Section 3.1, if ai′j′ = 0 for i′ ≥ 2, j′ ≥ 2, then the first row and the

first column in (3.4) correspond to s(y) and r(θ), respectively. Denoting the corresponding

density function for this exponential model as g(y; θ), we write

log g(y; θ) = log φ(y − θ) + (
1

2
log(2π) + r(θ)) + s(y). (3.5)

We now explore the relationship between the observed significance function and the terms

aij for i ≥ 2, j ≥ 2, which measure the departure of a general model from the standard

exponential model. To get insight into this relationship, we consider the case where only

one of the aij 6= 0 for i ≥ 2, j ≥ 2. The discussion on more general cases can proceed in the

same manner.

Theorem 1. If there is only one non-exponentiality term aij with i ≥ 2, j ≥ 2 in (3.4)

that is not zero, then to order O(n−(i+j)/2+1/2), the observed significance function F (0; θ) =
∫ 0

−∞
f(y; θ)dy is free of the non-exponentiality term aij. Furthermore,

F (0; θ) =

∫ 0

−∞

g(y; θ)dy.

This result has an important implication concerning the accuracy of higher order asymp-

totic inferences. It says that if there is only one non-exponentiality term aij with i ≥ 2, j ≥ 2

present in (3.4), then the observed significance function F (0; θ) for the initial model is,

to order O(n−(i+j)/2+1/2), completely determined by that from its approximate exponen-

tial model. In particular, the observed significance function F (0; θ) is free of a22 to order

O(n−3/2), which is obtained in Andrews, Fraser and Wong (2005).

Proof. In the same spirit of the proof of Property 3 in Section 1, we can show for any

i ≥ 2, j ≥ 2, that there exists a unique polynomial in y, say hij(y), such that

∫ +∞

−∞

φ(y − θ)(θiyj + hij(y))dy = 0. (3.6)

For an illustration we examine the case with i = 2 and j = 2. Since
∫ +∞

−∞
φ(y−θ) ·θ2y2dy =

θ2µ2 = θ4 + θ2, it suffices to find a polynomial function h22(y) such that (3.6) holds. By

Property 1 we assume h22(y) = b4y
4 + b3y

3 + b2y
2 + b1y + b0, and it remains to check the

existence and uniqueness of such constants bk(k = 4, 3, ..., 0). Indeed, by Property 2,

∫ +∞

−∞

φ(y − θ) · hij(y)dy

= b4µ4 + b3µ3 + b2µ2 + b1µ1 + b0

= b4(θ
4 + 6θ2 + 3) + b3(θ

3 + 3θ) + b2(θ
2 + 1) + b1θ + b0

= b4θ
4 + b3θ

3 + (6b4 + b2)θ
2 + (3b3 + b1)θ + (3b4 + b2 + b0).
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Note that this is a polynomial in θ having the number of unknown coefficients equal to the

highest degree of θ, thus equating it to −
∫ +∞

−∞
φ(y − θ) · θ2y2dy = −θ4 − θ2 would lead to

the unique solution b′ks. That is,

b4 = −1, b3, b2 = 5, b1 = 0, b0 = −2,

which shows the result.

Accordingly, for a model (3.4) with aij 6= 0 for some i ≥ 2 and j ≥ 2, there would

be a polynomial in y that is the adjustment to the first row s(y) based on the integration

property of the density. That is, the log density for the model with aij 6= 0 is

log f(y; θ) = log g(y; θ) +
aij

i!j!
hij(y) +

aij

i!j!
θiyj (3.7)

to order O(n−(i+j)/2+1/2), where hij(y) satisfies (3.6).

The following justifies that such a form is the log density function. Note that (1
2 log(2π)+

r(θ))+s(y) is of order O(n−1/2) and aij = O(n−(i+j)/2+1) for i ≥ 2, j ≥ 2. Using the Taylor

series expansion et = 1 + t + t2/2 + · · · , we obtain to order O(n−(i+j)/2+1/2) from equation

(3.6) that

∫ +∞

−∞

g(y; θ) · exp{ aij

i!j!
hij(y) +

aij

i!j!
θiyj}dy

=

∫ +∞

−∞

g(y; θ) · {1 +
aij

i!j!
(θiyj + hij(y))}dy (3.8)

= 1 +

∫ +∞

−∞

φ(y − θ) · aij

i!j!
(θiyj + hij(y))dy (3.9)

= 1.

We now examine the observed significance function F (0; θ) at the data point. In the

above calculation the integral is on the full real line, while for F (0; θ) the integral is on

the half line left the origin. We then can do similar calculations and obtain, to order

O(n−(i+j)/2+1/2),

F (0; θ) =

∫ 0

−∞

f(y; θ)dy

=

∫ 0

−∞

g(y; θ)dy +

∫ 0

−∞

φ(y − θ)
aij

i!j!
(θiyj + hij(y))dy

=

∫ 0

−∞

g(y; θ)dy,

where the second integral disappears by Property 3. Therefore, we conclude that F (0; θ) is

free of aij to order O(n−(i+j)/2+1/2).

We conclude this section with the comment that the result in Theorem is not true

to an order higher than O(n−(i+j)/2+1/2). The reason is that to an order higher than
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O(n−(i+j)/2+1/2), function f(y; θ) in (3.7) is not a density function any more. For example,

considering order O(n−(i+j)/2), we may repeat the calculation in the foregoing proof until

step (3.8), but not step (3.9). When raising an additional order O(n−1/2), there would be

a non-zero additional term
∫ +∞

−∞
[(1

2 log(2π) + r(θ)) + s(y)] · aij

i!j! (θ
iyj + hij(y))dy included

according to the form of (3.5) and that (1
2 log(2π) + r(θ)) + s(y) is of order O(n−1/2).

To be more specific, we examine a simple case that F (0; θ) is not free of a22 to order

O(n−2). For simplicity, suppose that the coefficients of r(θ) expressed in Section 3.1 take the

values β = 0, α4 = 0, α5 = 0, and we write a22 = c/n, then the first row in (3.4) corresponds

to s(y)+h(y), where h(y) is a polynomial in y. From the integration property of the density

function, we obtain that h(y) is of the form

h(y) = c5y
5/n3/2 + c3y

3/n3/2 + c1y/n3/2 + d4y
4/n + d2y

2/n + d0/n,

and the coefficients ci, di are determined by α3 and c as follows:

c5 = α3c/4, c3 = −13α3
3/16 − 41α3c/4, c1 = −77α3

3/16 + 113α3c/4,

d4 = −c/4, d2 = 5c/4, d0 = −c/2.

By Property 2 and direct calculation, we can see that F (0; θ) is of the form

F (0; θ) = Φ(−θ) + φ(−θ) · k(θ),

where k(θ) is a polynomial in θ. Simply examining the constant term in k(θ), we can see

that it involves −37α3c/4, and it follows that F (0; θ) is not free of a22 to order O(n−2).

4 Multivariate Models: Observed Marginal Significance

Functions and Non-exponentiality Terms

In this section we investigate if the same property in Section 3.3 holds for multivariate

models. It turns out that the observed marginal significance functions depend on the non-

exponentiality terms in the case of the multivariate models. This demonstrates intrinsic

difference between univariate and multivariate models when using the third order approx-

imations. The discussion starts with the p dimensional exponential approximations to the

multivariate models with p dimensional variable and parameter.

4.1 Location-Scale Standardization

Consider a statistical model f(y; θ) with a p dimensional variable and p dimensional param-

eter and suppose the model is asymptotic as some mathematical parameter n → ∞: that

for each θ, y is Op(n
−1/2) about the maximum density value; and that l(θ; y) = log f(y; θ)

with either argument fixed is O(n) and has a unique maximum. For some background, see

Cakmak, Fraser and Reid (1994).

Let y0 be a data point of interest and θ0 = θ̂(y0) be the corresponding maximum
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likelihood estimate. We consider the Taylor series expansion of l(θ; y) about (θ0, y0):

l(θ; y) = l(θ0; y0) +
∑

aα(yα − y0
α)

+
∑

aij(θi − θ0
i )(θj − θ0

j )/2! +
∑

aα
i (θi − θ0

i )(yα − y0
α)

+
∑

aαβ(yα − y0
α)(yβ − y0

β)/2! + ...,

where for example aα
ij = (∂/∂θi)(∂/∂θj)(∂/∂yα)l(θ; y)|(θ0,y0).

To avoid excessive notation, in each of the following steps, let θ, y, aij denote the re-

spective initial parameter, variable and coefficients, and let φ, x,Aij denote the respective

transformed parameter, variable and coefficients. At the final step we let a and y be used

again for the final model. The indices of the coefficients run from 1 to p and summation

over repeated indices will be used and implied (McCullagh 1987).

First recenter the model at (θ0, y0) by the transformations

φ = θ − θ0, x = y − y0,

and rescale the parameter using θi = cijφj to give an identity observed information array

at the expansion point. Next, rescale the variable so that the cross Hessian aα
i becomes an

identity array Iα
i : let yα = dβ

αxβ define a new variable x so that Iα
i = aβ

i dα
β has an identity

array. The coefficient array then becomes





















a aα aαβ aαβγ aαβγδ

0 Iα
i aαβ

i aαβγ
i −

−Iij aα
ij aαβ

ij − −
−aijk aα

ijk − − −
−aijkl − − − −





















, (4.1)

where elements with three indices are O(n−1/2), those with four are O(n−1), and the

lower right elements that are missing are O(n−3/2). In general, elements with r indices

are O(n−r/2+1).

4.2 Exponential Approximation to The Multivariate

Model

In this section we examine an exponential approximation to the multivariate model f(y; θ).

First note that for the location-scale standardization of the p dimensional exponential model,
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the coefficient array takes the form





















a aα aαβ aαβγ aαβγδ

0 Iα
i 0 0 −

−Iij 0 0 − −
−aijk 0 − − −
−aijkl − − − −





















,

where the elements in the first row are in fact determined by the elements in the first column

except for the first element, and vice versa. In fact the elements in the first row are available

from the formula in Section 4 of Fraser and Reid (1993).

Following steps similar to those in the one dimensional case, we introduce a series of

transformations to convert the location-scale standardized model (4.1) towards an exponen-

tial model. First we define a new parameter φ to obtain appropriate zeros in the second

column of the coefficient array (4.1):

φα = θα + aα
ijθiθj/2! + aα

ijkθiθjθk/3!.

This transformation changes many coefficients in the array as indicated by the scalar case

in Section 3.2. Using the same notation for the new coefficients to avoid notational growth

we then obtain the array





















a aα aαβ aαβγ aαβγδ

0 Iα
i aαβ

i aαβγ
i −

−Iij 0 aαβ
ij − −

−aijk 0 − − −
−aijkl − − − −





















.

Secondly, we define a new variable x to obtain appropriate zeros in the second row:

xi = yi + aαβ
i yαyβ/2! + aαβγ

i yαyβyγ/3!,

the resulting array then has the form





















a aα aαβ aαβγ aαβγδ

0 Iα
i 0 0 −

−Iij 0 aαβ
ij − −

−aijk 0 − − −
−aijkl − − − −





















.
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If the coefficients aαβ
ij = 0, then we have an exponential model to O(n−3/2). Accordingly,

the terms aαβ
ij measure the non-exponentiality of the model, and report the departure of

the model from the exponential case. In particular, for bivariate models, we list all the

non-exponentiality terms:

a11
11, a

12
11, a

22
11, a

11
12, a

12
12, a

22
12, a

11
22, a

12
22, a

22
22

to order O(n−3/2).

4.3 The Observed Marginal Significance Functions

To get insight into the dependence of the observed marginal significance functions on the

non-exponentiality terms, we focus the discussion on the bivariate case. Let p1(θ) = P (y1 ≤
0,−∞ < y2 < +∞; θ) and p2(θ) = P (−∞ < y1 < +∞, y2 ≤ 0; θ). Typically, we will

consider the case where only one non-exponentiality term aαβ
ij is not zero, with i, j, α, β ∈

{1, 2}.
Let g(y; θ) denote the exponential model obtained with all aα′β′

i′j′ = 0. When there is one

non-exponentiality term aαβ
ij 6= 0, we can show that there is an adjustment h(y1, y2) to the

first row elements of the coefficient array such that to order O(n−3/2),

l(θ1, θ2) = log g(y; θ) + h(y1, y2) + aαβ
ij θiθjyαyβ

is the log density for the model. Here note that aαβ
ij absorbs the factorial coefficient

1/i!j!α!β!.

Indeed, according to the Taylor series expansion et = 1+ t+ t2/2+ ... and that aαβ
ij is of

order O(n−1), it suffices to determine whether there exists an adjustment h(y1, y2) to order

O(n−1) such that

∫ +∞

−∞

dy1

∫ +∞

−∞

{1 + h(y1, y2) + aαβ
ij θiθjyαyβ} · g(y; θ)dy2 = 1 (4.2)

to order O(n−3/2).

In the same spirit of the proof of Theorem in Section 3.3, we can show that h(y1, y2) =

aαβ
ij hαβ

ij (y1, y2) is a unique polynomial of order O(n−1) that satisfies (4.2), where hαβ
ij (y1, y2)

satisfies
∫ +∞

−∞
dy1

∫ +∞

−∞
φ(y1 − θ1)φ(y2 − θ2)(θiθjyαyβ + hαβ

ij (y1, y2))dy2 = 0.

Now set h(y1, y2) = aαβ
ij hαβ

ij (y1, y2). Accordingly, we can examine p1(θ) by integrating the

density on the half plane and obtain

p1(θ) =

∫ 0

−∞

dy1

∫ +∞

−∞

exp{aαβ
ij (hαβ

ij (y1, y2) + θiθjyαyβ)}g(y; θ)dy2

=

∫ 0

−∞

dy1

∫ +∞

−∞

{1 + aαβ
ij (hαβ

ij (y1, y2) + θiθjyαyβ)}g(y; θ)dy2

=

∫ 0

−∞

dy1

∫ +∞

−∞

g(y; θ)dy2 + aαβ
ij

∫ 0

−∞

dy1

∫ +∞

−∞

(hαβ
ij (y1, y2) + θiθjyαyβ)g(y; θ)dy2.
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The first iterated integral depends only on the pure exponential model. To see if p1(θ) is

free of the non-exponentiality terms aαβ
ij , we need only to inspect whether or not the second

iterated integral is zero. Since the non-exponentiality terms aαβ
ij is of order O(n−1), we need

g(y; θ) only to order O(n−1/2) which is the N(θ, I), it then suffices to examine whether or

not

R =

∫ 0

−∞

dy1

∫ +∞

−∞

φ(y1 − θ1)φ(y2 − θ2)(θiθjyαyβ + hαβ
ij (y1, y2))dy2 = 0.

By straightforward calculations, we obtain that, to order O(n−3/2), p1(θ) is free of a11
12, a12

12,

a11
22, a12

22, a22
22; but p1(θ) depends on the other non-exponentiality terms a11

11, a
12
11, a

22
11, a

22
12.

To see this, we examine two cases for illustrations. For example, for the non-zero non-

exponentiality term a12
12, the adjustment function is h12

12(y1, y2) = −(y2
1 − 1)(y2

2 − 1), and

R =

∫ 0

−∞

dy1

∫ +∞

−∞

φ(y1 − θ1)φ(y2 − θ2){θ1θ2y1y2 − (y2
1 − 1)(y2

2 − 1)}dy2

=

∫ 0

−∞

[θ1θ
2
2y1 − θ2

2(y
2
1 − 1)]φ(y1 − θ1)dy1.

By Property 2,
∫ 0

−∞
φ(y1 − θ1)dy1 = Φ(−θ1),

∫ 0

−∞
y1φ(y1 − θ1)dy1 = −φ(−θ1) + θ1Φ(−θ1),

∫ 0

−∞
y2
1φ(y1 − θ1)dy1 = −θ1φ(−θ1) + (θ2

1 + 1)Φ(−θ1),

we then obtain R = 0, therefore, p1(θ) is free of a12
12 to order O(n−3/2). However, For the

non-zero non-exponentiality term a22
12, the adjustment function h22

12(y1, y2) = −y1y
3
2 +2y1y2,

and then

R =

∫ 0

−∞

dy1

∫ +∞

−∞

φ(y1 − θ1)φ(y2 − θ2)(θ1θ2y
2
2 − y1y

3
2 + 2y1y2)dy2

=

∫ 0

−∞

[θ1θ
3
2 + θ1θ2 − (θ3

2 + θ2)y1]φ(y1 − θ1)dy1

= (θ3
2 + θ2)φ(−θ1)

6= 0,

therefore, p1(θ) depends on a22
12.

For the observed marginal significance function p2(θ) we can conduct a similar discussion

and obtain that p2(θ) is not free of all non-exponentiality terms to order O(n−3/2).

5 Discussion on Transformations

In Section 4.2 we established the exponential approximation by a series of transformations of

the parameter and variable. In each stage we considered the transformations such that the
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model is converted to the one that has partial characteristics of an exponential model, and at

the final stage the terms (called the non-exponentiality terms) that cannot be transformed

to the form of those in an exponential model are used to measure the departure of the

model from an exponential family. An important questions then arises: are those non-

exponentiality terms unique?

In this section, we investigate this problem and find that the exponential type approx-

imations have a unique form for non-exponentiality terms if the transformations that are

used are polynomials in the variable and parameter. Notice that the procedure in Section

4.2 is exactly the same as that in Section 3.2. For simplicity we discuss only the form of the

transformations for the model with a scalar parameter and scalar variable.

Consider the model given in Section 3.1 and its Taylor series expansion around the point

(θ0, y0). Suppose that the coefficients of l(θ; y) are aij = (∂i+j/∂θi∂yj)l(θ; y)|(θ0,y0). We

intend to transform the parameter and variable such that the new coefficient matrix is that

of an exponential model as much as possible. Let the transformations be

θ − θ0 = A1φ + A2φ
2 + A3φ

3,

y − y0 = B1x + B2x
2 + B3x

3, (5.1)

and the transformed model has coefficients Aij = (∂i+j/∂φi∂xj)l(φ;x)|(0,0) with the expan-

sion point being (0,0); we then have the following:

Property 4. If transformations (5.1) produce to order O(n−3/2),

A11 = 1,

A12 = 0, A13 = 0,

A21 = 0, A31 = 0,

then

A22 = a−3
11 (a11a22 − a12a21).

Proof. First note that for the log density functions of the initial model and the transformed

model we have l(φ;x) = l(θ; y) + c, where c is free of θ or φ. By differentiation we can then

express the new coefficients Aij in terms of the initial coefficients aij .

By taking the second mixed derivative

∂2l(φ;x)

∂φ∂x
=

∂2l(θ; y)

∂θ∂y
· ∂y

∂x
· ∂θ

∂φ

=
∂2l(θ; y)

∂θ∂y
· (B1 + 2B2x + 3B3x

2) · (A1 + 2A2φ + 3A3φ
2),

we obtain A11 = a11A1B1.
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Taking the third mixed derivative

∂3l(φ;x)

∂φ2∂x
=

∂3l(θ; y)

∂θ2∂y
· ∂y

∂x
·
(

∂θ

∂φ

)2

+
∂2l(θ; y)

∂θ∂y
· ∂y

∂x
· ∂2θ

∂φ2

=
∂3l(θ; y)

∂θ2∂y
· (B1 + 2B2x + 3B3x

2) · (A1 + 2A2φ + 3A3φ
2)2

+
∂2l(θ; y)

∂θ∂y
· (B1 + 2B2x + 3B3x

2) · (2A2 + 6A3φ),

we then obtain A21 = a21B1A
2
1 + 2a11B1A2.

Now consider the fourth mixed derivative

∂4l(φ;x)

∂φ3∂x
=

∂4l(θ; y)

∂θ3∂y
· ∂y

∂x
·
(

∂θ

∂φ

)3

+ 3
∂3l(θ; y)

∂θ2∂y
· ∂y

∂x
· ∂θ

∂φ
· ∂2θ

∂φ2

+
∂2l(θ; y)

∂θ∂y
· ∂y

∂x
· ∂3θ

∂φ3

=
∂4l(θ; y)

∂θ3∂y
· (B1 + 2B2x + 3B3x

2) · (A1 + 2A2φ + 3A3φ
2)3

+3
∂3l(θ; y)

∂θ2∂y
· (B1 + 2B2x + 3B3x

2) · (A1 + 2A2φ + 3A3φ
2)

·(2A2 + 6A3φ) +
∂2l(θ; y)

∂θ∂y
· (B1 + 2B2x + 3B3x

2) · 6A3,

accordingly, we obtain A31 = a31B1A
3
1 + 6a21B1A1A2 + 6a11B1A3.

Similarly, we can express A12 and A13 in terms of the initial coefficients aij :

A12 = a12A1B
2
1 + 2a11A1B2,

A13 = a13A1B
3
1 + 6a12A1B1B2 + 6a11A1B3.

If the transformed model is “exponential-like”, that is, we have

A11 = 1, A12 = A13 = 0, A21 = A31 = 0,

then, by solving the equations above, we obtain

A2 = −1

2
a−1
11 a21A

2
1, A3 =

1

6
a−2
11 (3a2

21 − a11a31)A
3
1,

B1 = a−1
11 A−1

1 , B2 = −1

2
a−3
11 a12A

−2
1 , B3 =

1

6
a−5
11 (3a2

12 − a11a13)A
−3
1 ; (5.2)

that is, the coefficients in the transformations (5.1) are partly determined by the initial

coefficients aij .

Finally, we examine the expression of A22 in terms of a′

ijs when the transformed model

is forced to be “exponential-like”. Consider the fourth mixed derivative of the log density
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functions

∂4l(φ;x)

∂φ2∂x2
=

∂4l(θ; y)

∂θ2∂y2
·
(

∂y

∂x

)2

·
(

∂θ

∂φ

)2

+
∂3l(θ; y)

∂θ2∂y
· ∂2y

∂x2
·
(

∂θ

∂φ

)2

+
∂3l(θ; y)

∂θ∂y2
·
(

∂y

∂x

)2

· ∂2θ

∂φ2
+

∂2l(θ; y)

∂θ∂y
· ∂2y

∂x2
· ∂2θ

∂φ2

=
∂4l(θ; y)

∂θ2∂y2
· (B1 + 2B2x + 3B3x

2)2 · (A1 + 2A2φ + 3A3φ
2)2

+
∂3l(θ; y)

∂θ2∂y
· (2B2 + 6B3x) · (A1 + 2A2φ + 3A3φ

2)2

+
∂3l(θ; y)

∂θ∂y2
· (B1 + 2B2x + 3B3x

2)2 · (2A2 + 6A3φ)

+
∂2l(θ; y)

∂θ∂y
· (2B2 + 6B3x) · (2A2 + 6A3φ),

we obtain

A22 = a22B
2
1A2

1 + 2a21B2A
2
1 + 2a12A2B

2
1 + 4a11B2A2.

From equations (5.2), we then obtain A22 = a−3
11 (a11a22 − a12a21), which is the same as

that in (3.3).

The calculation shows to O(n−3/2), that we cannot force the model l(θ; y) to be an exact

exponential model, that is, there is one term A22 left to measure the departure of the model

from an exponential model.

It is easy to show that the transformations (5.1) are unique if we need the coefficients Aij

to be the same as those in (3.3) in Section 3.2. That is, if we need further that A20 = −1,

then A1 = (−a20)
−1/2, and Ai, Bi are identical to those listed in (3.3) in Section 3.2.

6 Discussion

In higher order asymptotic inferences, exponential models play a remarkable role due to

their ability of offering tractable but accurate approximations to general statistical models.

A further advantage of applying exponential approximations is due to the separatability

of model type parameters from the measure of departure (i.e., non-exponentiality terms)

from the exponential model. As a major objective of higher order asymptotic inference

concerns computing a p-value or an observed significance function at the data point, it is

fundamental to understand how the non-exponentiality terms would impact observed sig-

nificant functions. Andrews, Fraser and Wong (2005) investigated this important problem

for univariate models, and found that observed significant functions do not depend on the

non-exponentiality term to the third order. However, it is not clear whether this property

holds for multivariate models. In contrast to univariate case with the third order approx-

imation, there are more than one non-exponentiality term involved to facilitate departure

of a multivariate model from the exponential model, and this may significantly change the
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nature of observed marginal significance functions. In this paper, we explored the relation-

ship between observed marginal significant functions and the non-exponentiality terms, and

revealed the intrinsic difference between univariate and multivariate models. This finding is

of significant importance in understanding higher order asymptotic inference on multivariate

data. It sheds light on the complexity of handling multivariate models with higher order

inference techniques.
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