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summary

Srivastava (1974, 1980) and Chaubey and Dwivedi (1982) investigated some es-
timators of mean of a normal population utilizing an estimate of the coefficient
of variation. However, the normal model may not hold for positive or positively
skewed data, hence an alternative model may have to be employed. This paper
uses the inverse Gaussian model for such data and extends the results of Chaubey
and Dwivedi (1982) for the normal population to similar analysis for the inverse
Gaussian population. It is found that the new estimator may result in large gains
in efficiency over the sample mean for large values of the coefficient of variation.
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1 Introduction

Searles (1964) considered estimating a population mean when the coefficient of variation

(CV) is known. Note that the CV for a population with mean µ and standard deviation σ

is given by

CV =
√

σ2/µ2.

He showed that the sample mean X̄ = 1
n

∑n
i=1 Xi, based on a random sample X1, X2, ..., Xn,

can be improved in the sense of reduced mean square error (MSE) by considering the class
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of estimators Gc = {cX̄, c > 0}. It can be easily seen that the constant c which minimizes

the MSE(cX̄) is given by

c = 1 +
φ

n
, (1.1)

where

φ = (CV )2.

Thus the minimum mean square error estimator of µ in the class Gc is given by

µ̃ =
1

1 + φ
n

X̄. (1.2)

This improved estimator requires the exact value of the coefficient of variation or equiv-

alently the value of φ which may be unknown in practice. In such a situation, Srivastava

(1974) and Thompson (1968) proposed estimators similar to that given in (1.2), but φ

replaced by

φ̂ =
S2

X̄2
,

where S2 is the sample variance, considered as an estimator of the unknown variance σ2.

This leads to the estimator,

µ̂ =
X̄

1 + S2

nX̄2

(1.3)

which, however, loses the optimal property of the estimator in (1.1). Srivastava (1980)

studied the finite sample bias and MSE properties of µ̂, for the case of a normal population,

where as Chaubey and Dwivedi (1982) studied similar properties of a modified estimator

µ̃k =
X̄

1 + k φ̂
n

, (1.4)

where k is a non-negative constant to be suitably chosen. Note that the estimator given in

(1.3) is a special case of the above estimator with k = 1.

Ideally, k should be chosen so that MSE(µ̃k) is minimum. However, as we will see in the

next section, the expression for MSE(µ̃k) is not of simple form and, therefore the solution

for k which minimizes MSE(µ̃k) is not readily available. We may propose a numerical

solution, however, this too is not feasible because the expression for MSE(µ̃k) still involves

the unknown value of φ. To avoid this problem, Chaubey and Dwivedi (1982) consider

the value of k which may be motivated by considering kS2 as an estimator of σ2. They

investigated three choices of k, namely, (i) k = (n − 1)/(n + 1) which gives the minimum

mean square error estimator of σ2, (ii) k = 1, for the unbiased estimator of σ2 and (iii)

k = (n − 1)/(n − 3), for the mode estimator of σ2 (see Höglund (1974)) in order to assess

the gain in efficiency by using the modified estimator over the sample mean. Note that the

modified estimator for the choices (i) and (ii) is defined for n ≥ 2 where as that for the

choice (iii), we need a sample of size at least 4.
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The aim of the present article is to extend the work of Chaubey and Dwivedi (1982) for

the normal population to similar analysis for the inverse Gaussian population. The inverse

Gaussian distribution with parameters µ and λ, denoted by IG(µ, λ) is described by the

probability density function

f(x;µ, λ) =

(

λ

2πx3

)1/2

exp

(

−
λ(x− µ)2

2µ2x

)

, 0 < x < ∞. (1.5)

This distribution was extensively studied by Tweedie (1957a, b) but it is popularized

by the review article by Folks and Chhikara (1978). It is now widely used for modeling

positive and/or positively skewed data in such diverse areas of applied research as cardiology,

hydrology, demography, linguistics, employment service, labor disputes, finance, reliability

and life testing; see Chhikara and Folks (1989) and Seshadri (1999). The parameter µ

describes the mean and λ describes the dispersion as the variance of the distribution is

given by

σ2 =
µ3

λ
.

For a random sampleX1, X2, ..., Xn from IG(µ, λ) population, a minimal sufficient statis-

tic for (µ, λ) is given by (X̄,
∑n

i=1
1
Xi

). It is also interesting to note that

X̄ ∼ IG(µ, nλ) and λ

n
∑

i=1

(

1

Xi
−

1

X̄

)

∼ χ2
n−1 (1.6)

and moreover they are independent. As such, X̄ provides the minimum variance unbiased

estimator of µ and

U =
1

n− 1

n
∑

i=1

(

1

Xi
−

1

X̄

)

(1.7)

provides that for 1
λ . The square of the coefficient of variation φ, in this case, is given by

φ =
(µ3/λ)

µ2
=

µ

λ
.

Assuming that the parameters (µ, λ), are not known, the estimators of µ and λ, as given

above may be used to estimate the squared CV, φ which is given by

φ̂ = X̄U. (1.8)

Using the above estimator in (1.4), we propose to investigate the bias and MSE properties

of the estimator

µ̂k =
X̄

1 + k X̄U
n

. (1.9)

Chaubey and Dwivedi (1982) provided two types of analytical moment-results for the esti-

mator in (1.4) for the normal population, one in terms of a series expansion and the other
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in terms of an univariate integral. Similar results can be obtained for the IG(µ, λ) popula-

tions. The series expansion is of limited utility though, because it is applicable only for odd

sample sizes and may require a large number of terms for adequate computational accuracy.

Hence, we omit the details of this approach and refer the reader to Sen (2004). Alterna-

tively, we develop an expression in the form of a univariate integral, which is found to be

more appropriate for computational purpose as given Section 2. The final section presents

a comparison of the new estimator with the sample mean for various choices of the sample

size and φ with three choices of the constant k, such that kU provides some well known

estimator of 1/λ : (i) k = (n− 1)/n for the MLE, (ii) k = 1 for the unbiased estimator and

(iii) k = (n− 1)/(n− 3) for the mode estimator.

2 An Univariate Integral Representation for E(µ̂r
k)

The following theorem provides an integral representation for the the rth moment of µ̂k

given in (1.9).

Theorem 1. The rth raw moment of µ̂k is given by

E(µ̂r
k) =

µr

Γ(r)(2τ)r

∫ 1

0

gr(w)dw, (2.1)

where

gr(w) = wr−1(1− w)
ν
2−r−1e

n
φ
[1−(1+ wν

k(1−w) )
1
2 ]
(

1 + wν
k(1−w)

)− 1
2

,

τ = kφ
n(n−1) , and ν = n− 1.

Proof. Write µ̂k as

µ̂k =
µZ

1 + kφZV
n(n−1)

(2.2)

where

Z =
X̄

µ
∼ IG(1,

n

φ
) and V = (n− 1)λU ∼ χ2

n−1, V
ind
∼ Z.

Therefore,

µ̂k

µ
=

Z1

Z2
(2.3)

where

Z1 = Z,Z2 = 1 + τZV and τ =
kφ

n(n− 1)
.
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The moment generating function of (Z1, Z2) is, therefore, given by

ϕ(θ1, θ2) = E
[

eθ1Z1+θ2Z2
]

= E
[

eθ1Z+θ2+τθ2ZV
]

= eθ2E
[

eθ1Z+τθ2ZV
]

= eθ2EZ [e
θ1ZEV |Z(e

τθ2ZV )].

Since, the moment generating function of a χ2
ν random variable is Mχ2

ν
(t) = (1−2t)−

ν
2 , and

V ∼ χ2
ν , V

ind
∼ Z, by putting t = 2τθ2Z, the above equation becomes

ϕ(θ1, θ2) = eθ2E[eθ1Z(1− 2τθ2Z)−
ν
2 ] (2.4)

Now we use the following lemma from Chaubey and Dwivedi (1982).

Lemma 2.1. (Chaubey and Dwivedi, 1982) Let Z2 > 0 almost everywhere and

ϕ(θ1, θ2) = E[exp(θ1Z1 + θ2Z2)]

be the joint moment generating function of (Z1, Z2), then

E

[(

Z1

Z2

)r]

=
1

Γ(r)

∫ 0

−∞

(−θ2)
r−1 ∂

rϕ(θ1, θ2)

∂θr1
|θ1=0 dθ2.

Thus, we have

E

[(

µ̂k

µ

)r]

= E

(

Z1

Z2

)r

=
1

Γ(r)

∫ 0

−∞

(−θ2)
r−1 ∂

rϕ(θ1, θ2)

∂θr1
|θ1=0 dθ2. (2.5)

But,
∂rϕ(θ1, θ2)

∂θr1
|θ1=0= eθ2E[Zr(1− 2τθ2Z)−

ν
2 )].

Therefore (2.5) becomes

E

[(

µ̂k

µ

)r]

=
1

Γ(r)

∫ 0

−∞

(−θ2)
r−1eθ2EZ [Z

r(1− τθ2Z)−
ν
2 ]dθ2

=
1

Γ(r)

∫ ∞

0

θr−1
2 e−θ2EZ [Z

r(1 + 2τθ2Z)−
ν
2 ]dθ2

=
1

Γ(r)

∫ ∞

0

θr−1
2 e−θ2

∫ ∞

0

zr(1 + 2τθ2z)
− ν

2 f(z; 1,
n

φ
)dzdθ2.
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Now, using the transformation θ2 → y = 2τθ2z, dθ2 = dy
2τz gives

E

[(

µ̂k

µ

)r]

=
1

Γ(r)

∫ ∞

0

∫ ∞

0

e−
y

2τz

( y

2τz

)r−1

zr(1 + y)−
ν
2 f(z; 1,

n

φ
)

1

2τz
dydz

=
1

Γ(r)(2τ)r

∫ ∞

0

∫ ∞

0

e−
y

2τz yr−1(1 + y)−
ν
2 f(z; 1,

n

φ
)dydz

=
1

Γ(r)(2τ)r

∫ ∞

0

yr−1(1 + y)−
ν
2

[
∫ ∞

0

e−
y

2τz f(z; 1,
n

φ
)dz

]

dy (2.6)

Noting that the inner integral in the above equation is the Laplace transform of Z−1 where

Z ∼ IG(1, n/φ), we use the result from Seshadri (1998, formula on the bottom of pp. 51)

and get
∫ ∞

0

e−
y

2τz f(z; 1,
n

φ
)dz = e

n
φ
[1−(1+ yφ

τn
)
1
2 ](1 +

yφ

τn
)−

1
2 .

Putting the above result in (2.6) we get

E

[(

µ̂k

µ

)r]

=
1

Γ(r)(2τ)r

∫ ∞

0

yr−1(1 + y)−
ν
2 e

n
φ
[1−(1+ yφ

τn
)
1
2 ](1 +

yφ

τn
)−

1
2 dy.

Substituting y = w
1−w , dy = dw

(1−w)2 , into the integral in the above equation we get

E

[(

µ̂k

µ

)r]

=
1

Γ(r)(2τ)r

∫ 1

0

gr(w)dw, (2.7)

where gr(w) = wr−1(1 − w)
ν
2−r−1e

n
φ
[1−(1+ wν

k(1−w) )
1
2 ]
(

1 + wν
k(1−w)

)− 1
2

. This completes the

proof of Theorem 1.

3 Computations and Comparisons

We wish to evaluate the estimator proposed here in terms of its bias and mean square error.

The criteria for comparison used are absolute relative bias (ARB) and relative mean square

error (RMSE) as given below,

ARB(µ̂k) =
E(µ̂k)− µ

µ
=

E(µ̂k)

µ
− 1, (3.1)

RMSE(µ̂k) =
MSE(µ̂k)

µ2
=

E(µ̂2
k)

µ2
− 2

E(µ̂k)

µ
+ 1. (3.2)

In order to get a quick idea to judge the superiority of the modified estimator or the lack

thereof over the sample mean, we also calculate the relative efficiency (RE) of µ̂k as given

by

RE(µ̂k) =
MSE(X̄)

MSE(µ̂k)
=

φ

n RMSE(µ̂k)
. (3.3)
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Table 1: Absolute Relative Bias of µ̂k

n 20 40 60 80 100

φ k = n−1
n

00.01 0.000475 0.000247 0.000164 0.000123 0.000099

00.05 0.002375 0.001218 0.000819 0.000617 0.000495

00.10 0.004749 0.002437 0.001639 0.001234 0.000990

01.00 0.047167 0.024331 0.016375 0.012338 0.009897

05.00 0.216125 0.118380 0.080823 0.061228 0.049244

10.00 0.370855 0.222431 0.156437 0.120039 0.097181

k = 1.0

00.01 0.000500 0.000250 0.000167 0.000125 0.000010

00.05 0.002499 0.001250 0.000833 0.000625 0.000500

00.10 0.004997 0.002500 0.001666 0.001250 0.000100

01.00 0.049509 0.024938 0.016648 0.012492 0.009996

05.00 0.224472 0.121000 0.082070 0.061951 0.049715

10.00 0.381690 0.226641 0.158613 0.121353 0.098058

k = n−1
n−3

00.01 0.000559 0.000264 0.000173 0.000128 0.000102

00.05 0.002792 0.001317 0.000863 0.000641 0.000510

00.10 0.005581 0.002634 0.001725 0.001282 0.001021

01.00 0.054969 0.026248 0.017222 0.012812 0.010200

05.00 0.243308 0.126606 0.084682 0.063451 0.050685

10.00 0.405545 0.235568 0.163152 0.124071 0.099858
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Table 2: Relative MSE of µ̂k

n 20 40 60 80 100

φ k = n−1
n

00.01 0.000499 0.000250 0.000167 0.000125 0.000100

00.05 0.002482 0.001245 0.000831 0.000624 0.000499

00.10 0.004930 0.002482 0.001659 0.001245 0.000997

01.00 0.043543 0.023254 0.015871 0.012047 0.009708

05.00 0.142442 0.088980 0.065685 0.052102 0.043166

10.00 0.221893 0.139672 0.107486 0.088371 0.075206

k = 1.0

00.01 0.000499 0.000250 0.000167 0.000125 0.000100

00.05 0.002482 0.001245 0.000831 0.000624 0.000499

00.10 0.004928 0.002482 0.001658 0.001245 0.000997

01.00 0.043386 0.023229 0.015863 0.012044 0.009706

05.00 0.142524 0.088741 0.065569 0.052042 0.043132

10.00 0.225276 0.139727 0.107332 0.088248 0.075120

k = n−1
n−3

00.01 0.000499 0.000250 0.000167 0.000125 0.000100

00.05 0.002481 0.001245 0.000831 0.000624 0.000499

00.10 0.004924 0.002481 0.001658 0.001245 0.000997

01.00 0.04308 0.023177 0.015847 0.012036 0.009703

05.00 0.143666 0.088306 0.065342 0.051922 0.043063

10.00 0.234337 0.140065 0.107064 0.088011 0.074952
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Table 3: Relative Efficiency of µ̂k

n 20 40 60 80 100

φ k = n−1
n

00.01 1.001402 1.000725 1.000489 1.000369 1.000296

00.05 1.007030 1.003633 1.002448 1.001846 1.001481

00.10 1.014108 1.007279 1.004902 1.003695 1.002965

01.00 1.148291 1.075090 1.050119 1.037589 1.030066

05.00 1.755097 1.404807 1.268681 1.199567 1.158314

10.00 2.253337 1.789904 1.550584 1.414484 1.329690

k = 1.0

00.01 1.001448 1.000737 1.000494 1.000372 1.000298

00.05 1.007260 1.003693 1.002475 1.001861 1.001491

00.10 1.014567 1.007399 1.004956 1.003726 1.002985

01.00 1.152456 1.076263 1.050655 1.037894 1.030262

05.00 1.754094 1.408589 1.270919 1.200949 1.159237

10.00 2.219502 1.789205 1.552812 1.416460 1.331200

k = n−1
n−3

00.01 1.001546 1.000762 1.000506 1.000378 1.000302

00.05 1.007746 1.003817 1.002530 1.001892 1.001511

00.10 1.015533 1.007647 1.005067 1.003788 1.003024

01.00 1.160700 1.078663 1.051747 1.038513 1.030660

05.00 1.740152 1.415531 1.275343 1.203718 1.161093

10.00 2.133683 1.784889 1.556698 1.420272 1.334182
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The values of k considered here are those motivated by different estimators of λ, namely,

(i) k = (n−1)
n , (ii) k = 1 and (iii) k = (n−1)

(n−3) as described earlier. We have used R-package (R

Development Core Team, 2005) and computed the values of RB, RMSE and RE for values

of n ranging from 4 to 100 and for values φ = .01, .05, .10, 1.0, 5.0, 10 and 50. A selection of

these values is reported in Table 1 for ARB, in Table 2 for RMSE and in Table 3 for RE for

three choices of k listed above. For a convenient exposition we also present the RE curve

for the values of φ = 0.1, 0.5, 1, 5, 10 and 50.

The integral in (2.7) is evaluated using a modification of recursive Simpson’s rule which

may be described as follows. Suppose that we have to evaluate the integral of a function

g(x) over the interval (a, b). We may evaluate the required integral using the trapezoidal-rule

and Simpson’s rule respectively. Let these be given by a1 and a2 respectively, we report the

value a2 as the required value of the integral if the absolute difference |a1 − a2| is less than

a prescribed error. If the prescribed error is not reached, we may divide the interval (a, b)

into subintervals (a, d) and (d, b) where d = (a + b)/2 is the midpoint of the interval (a, b)

and apply the same procedure to evaluate the area of these subintervals. The R-codes for

this function is obtained from Venebles and Ripley (1994, pp. 107).

For computing the relative bias, we note that limw→1 g1(w) = 0, but g1(0) = 1 and the

algorithm described above proposes no problem. However, for computing the relative mean

square error, we note that limw→0 g2(w) = limw→1 g2(w) = 0, and for large values of n,

the function g2(w) decreases to zero very fast, so that g2(0.5) is close to zero. Thus direct

use of the above algorithm terminates quickly with the resulting value zero. To avoid this

problem we evaluate the integral of g2(w) over two intervals, (a,w0) and (w0, b), using the

above algorithm where w0 is the approximate value of the argument where the function

g(w) peaks. The approximate peak is obtained by taking the maximum of g(w) evaluated

over a grid of w−values. For the values reported here, an error bound of 10−10 is used and

that w0 = .0001 was found to be adequate.

Based on the graphs and tables, we draw the following conclusions which are similar to

those in Chaubey and Dwivedi (1982) for a Gaussian population. Note also that for smaller

values of φ, RE values are very close to 1, hence we have not included such small values

of φ in the graph. The bottom three curves corresponding to the values of φ = 0.1, 0.5

and 1.0 are almost indistinguishable. We see from Figures 1, 2 and 3 that larger values of

φ are associated with higher gains in efficiency, especially for smaller sample sizes; see the

curves for φ = 5, 10 and 50 and sample sizes less than 10 where RE values are larger than

2.0. We may suspect that these efficiencies may be accompanied by large biases. This is

apparently true; for example ARB values for k = 1, φ = 5 and sample sizes n = 4, 5, 7, 10

are respectively, 0.559127, 0.522103, 0.453208, 0.372111 and the corresponding RE values are

2.823905, 2.612404, 2.355433, 2.141829.

We may also make some other general observations based on these tables and figures.

(1) For the choice of k considered here, the ARB values increase as the CV increases for

fixed sample size and they decrease with increasing sample size for fixed CV.

(2) Relative mean square error decreases as n increases for fixed CV and it decreases with
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increasing CV for a fixed sample size.

(3) There is a positive gain in efficiency of µ̂k over X̄ for the values of k considered here

over the whole range of the CV and sample size. For small values of CV e.g. φ < 1),

there may not be any noticeable gain in efficiency by using the modified estimator

over the sample mean, specially for sample sizes such as n < 20. Substantial gains in

efficiency are achieved for small samples with large coefficient of variation. However,

such large gains may be associated with relatively large biases. Hence attention must

be paid on the amount of bias in specific situations.

(4) We see that the gain in relative efficiency is always positive. However, it may be

substantial for φ ≥ 0.1. Hence, we may wish to use µ̂k if a statistical test rejects the

hypothesis H0 : φ ≤ 0.11 vs. H1 : φ > 0.1 This type of problem comes under the area

of preliminary test estimator which will be pursued elsewhere.
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Figure 1: Relative Efficiency of µ̂k, k = n−1
n

Since the moments of the similar estimator have been studied for the normal case (Sri-

vastava (1980), Chaubey and Dwivedi (1982)) it might be instructive to compare µ̃k and µ̂k

with respect to bias and MSE properties. Note that while µ̃k may be used as an estimator

for the inverse Gaussian population, µ̂k may not be a valid estimator in the Gaussian case.

Furthermore, the moment properties of µ̃k for the inverse Gaussian are not established here.
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Figure 2: Relative Efficiency of µ̂k, k = 1

Hence it is not a easy to compare these estimators. Nonetheless we list in Tables 4 and 5

ARB and RE values, respectively, for these estimators for n and φ given in Chaubey and

Dwivedi (1982), for two cases, (i) k = 1 and (ii) k = (n − 1)/n for Gaussian and inverse

Gaussian populations. Here we used the figures only up to four decimals as to be compatible

with those given in Chaubey and Dwivedi (1982).

We note from Table 4 that the ARB values in both the cases are very similar and they

resemble more and more as the sample size becomes large. On the other hand, looking at

Table 5, we find that the RE values display different characters for Gaussian and inverse

Gaussian populations. Where as we find that there may be some loss in efficiency by using

the modified estimator in the Gaussian case (see Table 5 for small values of φ,) the RE

values for the inverse Gaussian case are always greater than 1. There is some what closeness

between the respective figures in these tables for very small values of φ, which is not very

surprising as in this case the inverse Gaussian distribution approximates well to the Gaussian

distribution. Another contrasting feature of the Gaussian and inverse Gaussian cases is that

the estimator of φ for the IG case is unbiased but that for the Gaussian case is not. This

may explain the differences in RE values for the two estimators in Table 5.
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Table 4: Absolute Relative Bias of µ̃k and µ̂k for Gaussian and Inverse Gaussian Populations

n 5 10 30 50 100

φ k = n−1
n

(i) (ii) (i) (ii) (i) (ii) (i) (ii) (i) (ii)

0.1 .0385 .0271 .0128 .0113 .0036 .0035 .0021 .0020 .0010 .0010

0.5 .1659 .1193 .0622 .0550 .0179 .0172 .0104 .0102 .0051 .0050

1.0 .2828 .1949 .1197 .1034 .0355 .0343 .0208 .0204 .0102 .0101

5.0 .6534 .3447 .4250 .2635 .1673 .1450 .1016 .0962 .0507 .0500

10.0 .7865 .3759 .6035 .3110 .2998 .2148 .1931 .1622 .0999 .0955

50.0 .9468 .4040 .8871 .3587 .7080 .3165 .5825 .2925 .3935 .2465

φ k = 1.0

(i) (ii) (i) (ii) (i) (ii) (i) (ii) (i) (ii)

0.1 .0198 .0165 .0100 .0091 0.0033 .0032 .0020 .0020 .0010 .0010

0.5 .0940 .0778 .0492 .0447 0.0166 .0161 .0100 .0098 .0050 .0049

1.0 .1748 .1345 .0963 .0855 0.0332 .0321 .0200 .0196 .0100 .0099

5.0 .5221 .2593 .3721 .2291 0.1578 .1375 .0979 .0929 .0497 .0490

10.0 .6855 .2868 .5526 .2733 0.2859 .2050 .1869 .1573 .0981 .0939

50.0 .9146 .3119 .8662 .3181 0.6957 .3042 .5738 .2855 .3890 .2433

(i): ARB for µ̂k for the inverse Gaussian population, (ii): ARB for µ̃k for the Gaussian population
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Table 5: Relative Efficiency of µ̃k and µ̂k for Gaussian and Inverse Gaussian Populations

n 5 10 30 50 100

φ k = n−1
n

(i) (ii) (i) (ii) (i) (ii) (i) (ii) (i) (ii)

0.1 1.0371 .8986 1.0313 .9622 1.0103 .9898 1.0061 .9943 1.0030 .9981

0.5 1.1492 .7299 1.1552 .8469 1.0521 .9487 1.0308 .9696 1.0152 .9856

1.0 1.2581 .7348 1.3004 .7790 1.1060 .9035 1.0624 .9409 1.0307 .9703

5.0 2.0596 1.2274 1.9638 .9787 1.5433 .7940 1.3323 .8039 1.1611 .8704

10.0 3.0703 1.5837 2.4370 1.2517 1.9466 .8905 1.6560 .8112 1.3342 .8094

50.0 11.1094 2.2255 6.3122 1.9603 3.2022 1.4819 2.6677 1.2703 2.2595 1.0121

φ k = 1.0

(i) (ii) (i) (ii) (i) (ii) (i) (ii) (i) (ii)

.1 1.0500 .9474 1.0280 .9719 1.0098 .9907 1.0059 .9946 1.0030 .9981

.5 1.2444 .8206 1.1436 .8786 1.0500 .9530 1.0300 .9712 1.0150 .9860

1.0 1.4632 .8079 1.2902 .8148 1.1019 .9108 1.0609 .9438 1.0303 .9710

5.0 2.6124 1.1786 2.1418 .9836 1.5374 .8031 1.3266 .8100 1.1592 .8731

10.0 3.7010 1.4249 2.7097 1.2222 1.9713 .8950 1.6539 .8159 1.3312 .8094

50.0 11.8139 1.8104 6.5932 1.7587 3.2948 1.4596 2.7222 1.2637 2.2764 1.0121

(i): RE for µ̂k for the inverse Gaussian, ii): RE for µ̃k for the Gaussian population
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