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summary

Maity and Sherman (2006) considered the situation in two-sample testing for the
difference in means when one variance is assumed to be known while the other
variance is treated as unknown. This problem arises in many real life situations,
for example, when one is interested in comparing a standard treatment with a
new treatment in medical studies. The variance for the standard treatment is
assumed to be known from historical data, and the variance for the new treat-
ment is unknown. Following the argument in Satterthwaite (1941, 1946), Maity
and Sherman (2006) obtained the confidence interval for the difference in means
based on an approximate t-distribution. In this paper, a likelihood-based third
order asymptotic method is introduced to obtain the confidence intervals for the
difference in means. Simulations are used to show that the proposed method has
better coverage property than Maity and Sherman’s t-method, especially when
the sample sizes are small.
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1 Introduction

Let X1, . . . , Xm ∼ Normal(µ1, σ
2
1) and Y1, . . . , Yn ∼ Normal(µ2, σ

2
2) where the notation

∼ means independent and identically distributed as. Moreover, the two populations are

assumed to be independent. The problem of obtaining statistical inference for the difference

in means, ψ = µ1 − µ2, is a mainstay in statistical practice and is introduced in most

introductory courses. When the two variances are known, this leads directly to a test

statistic
X̄ − Ȳ − ψ√
σ2

1/m+ σ2
2/n

with a standard normal distribution, where

X̄ =

∑m
i=1Xi

m
and Ȳ =

∑n
j=1 Yj

n
.

When the two variances are unknown but equal, the two-sample test uses a pooled estimate

of variance and the resulting test statistic

X̄ − Ȳ − ψ√
S2
p

(
1
m + 1

n

)

has an exact t-distribution with (m+ n− 2) degrees of freedom, where

S2
p =

(m− 1)S2
1 + (n− 1)S2

2

m+ n− 2
, S2

1 =

∑m
i=1(Xi − X̄)2

m− 1
, S2

2 =

∑n
j=1(Yj − Ȳ )2

n− 1
.

In the case where the two variances are unknown and unequal, we have the Behrens-Fisher

problem. This problem has received considerable attention in statistical literatures because

the resulting test statistic does not have an exact t-distribution. Many authors have stud-

ied this problem and various solutions have been proposed. See Scheffé (1970) for more

background on this problem.

Maity and Sherman (2006) considered the case when one of the variances is assumed

to be known and the other is treated as unknown. This problem is rarely discussed in

statistical literature, however it arises naturally in both biostatistics and engineering studies.

For example, in clinical trials, comparing a standard treatment to a new one, the variance

for the standard treatment may be considered to be known from historical data, while the

variance for the new treatment may not be the same as the old one. Similarly, in engineering

statistics, it happens when the production process changes.

In Section 2, we briefly review the method given in Maity and Sherman (2006). In

Section 3, a general likelihood-based third order method is proposed. In Section 4, the

proposed method is applied to the problem discussed in Maity and Sherman (2006) and in

Section 5, we compare results obtained by Maity and Sherman (2006) and our proposed

method in a real-life example and in simulation studies.
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2 Result from Maity and Sherman

Consider the Behrens-Fisher problem. It is well known that the test statistic:

T1 =
X̄ − Ȳ − ψ√

S2
1

m +
S2

2

n

does not have an exact t-distribution because
(
σ2

1

m
+
σ2

2

n

)−1(
S2

1

m
+
S2

2

n

)

does not have an appropriate χ2 distribution. It is shown in Satterthwaite (1941,1946) that

γ1

(
σ2

1

m
+
σ2

2

n

)−1(
S2

1

m
+
S2

2

n

)
(2.1)

is approximately distributed as χ2 distribution with γ1 degrees of freedom. The value of γ1

is approximated by matching the variances of (2.1) and the χ2
γ1 distribution. Hence

γ̂1 =

(
S2

1

m
+
S2

2

n

)2
((

S2
1/m

)2

m− 1
+

(
S2

2/n
)2

n− 1

)−1

.

Thus T1 is approximately distributed as t-distribution with γ̂1 degrees of freedom.

Maity and Sherman (2006) considered the case when one variance, σ2
1 , is known and the

other variance, σ2
2 , is unknown. The test statistics is:

T2 =
X̄ − Ȳ − ψ√

σ2
1

m +
S2

2

n

. (2.2)

However, T2 does not have an exact t-distribution because

(
σ2

1

m
+
σ2

2

n

)−1(
σ2

1

m
+
S2

2

n

)

does not have the appropriate χ2 distribution. Following the argument in Satterthwaite

(1941, 1946), Maity and Sherman (2006) approximated the distribution of T2 by a t-

distribution with γ̂2 degrees of freedom where

γ̂2 =

(
σ2

1

m
+
S2

2

n

)2
((

S2
2/n

)2

n− 1

)−1

.

Hence, an approximate 100(1− α)% confidence interval for ψ is:

(X̄ − Ȳ ) ± tα/2,γ̂2

√
σ2

1

m
+
S2

2

n
(2.3)

where tα/2,γ̂2 is the (1−α/2)100th percentile of the t-distribution with γ̂2 degrees of freedom.
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3 Proposed Third Order Likelihood-Based Method

Consider a sample y = (y1, . . . , yn) from a statistical model with log-likelihood function

`(θ) = `(θ; y), where θ is a vector of parameters with length p. Let ψ = ψ(θ) be the scalar

parameter of interest.

From the standard likelihood theories, we denote θ̂ as the overall maximum likelihood

estimator of θ, which is obtained by solving ∂`(θ)
∂θ |θ̂ = 0, and jθθ′ (θ̂) = − ∂2`(θ)

∂θ∂θ′

∣∣∣
θ̂
, which is the

observed information matrix evaluated at θ̂. Moreover, let θ̂ψ be the constrained maximum

likelihood estimator of θ for a given ψ(θ) = ψ, which can be obtained by maximizing `(θ)

subject to the constraint ψ(θ) = ψ. Lagrange multiplier technique can be applied to solve

the constrained maximization problem. In other words, all we need is to maximize

H(θ, λ) = `(θ) + λ[ψ(θ) − ψ].

Then θ̂ψ and λ̃ must satisfy

∂H(θ, λ)

∂θ

∣∣∣∣
(θ̂ψ,λ̃)

= 0 and
∂H(θ, λ)

∂λ

∣∣∣∣
(θ̂ψ,λ̃)

= 0.

We define the tilted log-likelihood function is ˜̀(θ) = `(θ) + λ̃[ψ(θ) − ψ]. Note that ˜̀(θ̂ψ) =

`(θ̂ψ). And j̃θθ′ (θ̂ψ) = − ∂2 ˜̀(θ)

∂θ∂θ′

∣∣∣
θ̂ψ

is the observed information matrix evaluated at θ̂ψ based

on ˜̀(θ).

With the regularity conditions stated in Cox and Hinkley (1974), the signed log-likelihood

ratio statistics,

r ≡ r(ψ) = sgn(ψ̂ − ψ)
{

2
[
`(θ̂) − `(θ̂ψ)

]}1/2

= sgn(ψ̂ − ψ)
{

2
[
`(θ̂) − ˜̀(θ̂ψ)

]}1/2

(3.1)

is asymptotically distributed as the standard normal distribution. Hence a 100(1 − α)%

confidence interval for ψ based on r(ψ) is

{ψ : |r(ψ)| ≤ zα/2}

where zα/2 is the (1−α/2)100th percentile of the standard normal distribution. Note that,

this method has accuracy O(n−1/2).

In recent years, various adjustments to r(ψ) have been proposed to improve the accuracy

of the signed log-likelihood ratio method. In this paper we consider the modified signed log-

likelihood ratio statistic, r∗, introduced by Barndorff-Nielsen (1986,1991), and it has the

form

r∗ ≡ r∗(ψ) = r(ψ) +
1

r(ψ)
log

{
Q(ψ)

r(ψ)

}
(3.2)
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where r(ψ) is the signed log-likelihood ratio statistic as defined in (3.1), and Q(ψ) is a

standardized maximum likelihood departure in an appropriate parameter scaling. It is

shown in Barndorff-Nielsen (1986,1991) that r∗(ψ) is asymptotically distribution as the

standard normal distribution with accuracy O(n−3/2). Hence a 100(1 − α)% confidence

interval for ψ based on r∗(ψ) is

{ψ : |r∗(ψ)| ≤ zα/2}.

Fraser and Reid (1995) showed that the appropriate parameterization for Q(ψ) is the

canonical parameterization of the exponential family model. Let ϕ(θ) be the canonical

parameter of the exponential family model. Then

χ(θ) = ψθ(θ̂ψ)ϕ−1
θ (θ̂ψ)ϕ(θ)

is the parameter of interest recalibrated in the ϕ(θ) scale and ϕθ(θ) = ∂ϕ(θ)/∂θ. Fur-

thermore, by the chain rule in differentiation, the determinant of the observed information

matrix obtained from `(θ) evaluated at θ̂ and the determinant of the observed information

obtained from the tilted likelihood evaluated at θ̂ψ in the ϕ(θ) scale are:

|j(θθ′)(θ̂)| = |jθθ′(θ̂)||ϕθ(θ̂)|−2

|j̃(θθ′)(θ̂ψ)| = |j̃θθ′(θ̂ψ)||ϕθ(θ̂ψ)|−2

respectively. Hence an estimate of the asymptotic variance of χ(θ̂) is

v̂ar(χ(θ̂)) =
ψθ(θ̂ψ)j̃−1

θθ′(θ̂ψ)ψ′
θ(θ̂ψ)|j̃(θθ′)(θ̂ψ)|

|j(θθ′)(θ̂)|
.

Thus Q(ψ) expressed in ϕ(θ) scale is

Q(ψ) = sgn(ψ̂ − ψ)
|χ(θ̂) − χ(θ̂ψ)|√

v̂ar(χ(θ̂))
. (3.3)

Fraser and Reid (1995) provided a general methodology to obtain Q(ψ) when ϕ(θ) is

not available explicitly. This methodology is summarized in Appendix A.

Note that to obtain confidence interval for ψ from r(ψ) or r∗(ψ), numerical methods are

required.

4 The Two-Sample Test with One Variance Unknown

Problem

Let (x1, . . . , xm) and (y1, . . . , yn) be the observed data for the model discussed by Maity

and Sherman (2006). The log-likelihood function can be written as

`(θ) = − 1

2σ2
1

m∑

i=1

(xi − µ1)
2 − n

2
log σ2

2 − 1

2σ2
2

n∑

j=1

(yj − µ2)
2. (4.1)
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The overall maximum likelihood estimator of θ, θ̂, and the observed information matrix

evaluated at θ̂ are

θ̂ = (µ̂1, µ̂2, σ̂
2
2)

′ =


x̄, ȳ, 1

n

n∑

j=1

(yj − ȳ)2




′

and

jθθ′ (θ̂) =




m
σ2
1

0 0

0 n
σ̂2
2

0

0 0 n
2σ̂4

2


 .

To obtain the constrained maximum likelihood estimator for a given ψ, θ̂ψ, we need

to maximize `(θ) subject to ψ(θ) = ψ. By applying the Lagrange multiplier technique,

(θ̂ψ, λ̃) = (µ̃1, µ̃2, σ̃
2
2 , λ̃) can be obtained by solving

1

σ2
1

m∑

i=1

(xi − µ̃1) + λ̃ = 0

1

σ̃2
2

n∑

j=1

(yj − µ̃2) − λ̃ = 0

− n

2σ̃2
2

+
1

2σ̃4
2

n∑

j=1

(yj − µ̃2)
2 = 0

µ̃1 − µ̃2 − ψ = 0

simultaneously. Note that the explicit form of the solution for θ̂ψ is not available, but it can

be obtained numerically. Hence the tilted log-likelihood function can be obtained and the

observed information matrix evaluated at θ̂ψ from ˜̀(θ) is

j̃θθ′ (θ̂ψ) =




m
σ2
1

0 0

0 n
σ̃2
2

n
σ̃4
2
(ȳ − µ̃2)

0 n
σ̃4
2
(ȳ − µ̃2)

n
2σ̃4

2


 .

Thus with r(ψ) as defined in (3.1), the 100(1−α)% confidence interval for ψ can be obtained

based on r(ψ).

From the log-likelihood function in (4.1), the canonical parameter, ϕ(θ) =
(
µ1,

1
σ2
2
, µ2

σ2
2

)′
,

is explicitly available. Hence

ϕθ(θ) =




1 0 0

0 0 − 1
σ4
2

0 1
σ2
2

−µ2

σ4
2


 .
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Since ψ(θ) = µ1 − µ2, we have ψθ(θ) = (1 − 1 0). Therefore the recalibrated parameter

of interest and its variance in the ϕ(θ) scale are

χ(θ) = (x̄− µ̃1) +
σ̃2

2

σ̂2
2

(µ̃2 − ȳ)

v̂ar(χ(θ̂)) =
σ̃6

2

σ̂6
2

(
σ2

1

m
+
σ̃2

2

n
− σ2

1

m

2(ȳ − µ̃2)
2

σ̃2
2

)
.

Then Q(ψ), as defined in (3.3), can be written as

Q(ψ) = sgn(x̄− ȳ − ψ)

∣∣∣∣(x̄− µ̃1) +
σ̃2

2

σ̂2
2

(µ̃2 − ȳ)

∣∣∣∣
σ̂3

2

σ̃3
2

(
σ2

1

m
+
σ̃2

2

n
− σ2

1

m

2(ȳ − µ̃2)
2

σ̃2
2

)− 1
2

.

Thus with r∗(ψ), as defined in (3.2), the 100(1 − α)% confidence interval for ψ can be

obtained based on r∗(ψ).

5 Examples

Polymer is manufactured in a batch chemical process. Viscosity measurements are normally

made on each batch, and long experience with the process has indicated that the variability

of the process is fairly stable with σ1 = 20. A sample of fifteen batch viscosity measurements

are given as follows:

724, 718, 776, 760, 745, 759, 795, 756, 742, 740, 761, 749, 739, 747, 742.

A process change is made which involves switching the type of catalyst involved in the

process. Following the process change, a sample of eight batch viscosity measurements are

taken:

735, 775, 729, 755, 783, 760, 738, 780.

Maity and Sherman (2006) analysed this data set and reported the 90% confidence in-

terval for ψ, the difference in mean batch viscosity resulting from the process change, to

be (−22.6638, 9.3138). Applying the method discussed in Section 4, the 90% confidence

interval for ψ obtained based on the signed log-likelihood ratio statistic r(ψ) and the modi-

fied signed log-likelihood ratio statistic r∗(ψ) are (−21.6239, 8.2739) and (−22.7046, 9.3546)

respectively.

It is important to note that Maity and Sherman’s t-method of obtaining the confidence

interval for the difference of means has a closed form and is easy to calculate. The proposed

method requires numerical methods for obtaining the confidence interval for the difference of

means. However the implementation of the numerical method is relatively easy. To illustrate

the simplicity of implementing the proposed method into standard statistical softwares, a

R source code which produced the 90% confidence intervals for the above example is given

in Appendix B.
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Since both r(ψ) and r∗(ψ) are asymptotically distributed as the standard normal dis-

tribution, we can obtain the probability to the left of the data point for various ψ values,

Φ(r(ψ)) and Φ(r∗(ψ)) respectively where Φ(·) is the cumulative distribution function of

the standard normal distribution. Figure 1 plots the left tail probability for ψ based on

Maity and Sherman’s t-method, signed log-likelihood ratio method and modified signed

log-likelihood ratio method. The results from Maity and Sherman’s t-method, and the pro-

posed method are almost indistinguishable, however results from the signed log-likelihood

ratio statistic method are different from the other two methods.

−30 −20 −10 0 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ψ

 

Maity and Sherman’s t−test
Signed log−likelihood ratio statistic
Modified signed log−likelihood ratio statistic

Figure 1: Tail probability curves

In order for us to have a better understanding on the difference of accuracy among the

three methods, simulation studies were conducted. Table 1 gives the sample sizes and the

parameter configurations that we will consider in our studies. For each design, we have

generated 10,000 samples from two independent normal distributions. For each sample, we

calculated the 95% confidence interval for ψ = µ1 − µ2 with equal tail probabilities from

the three methods examined in this paper. Table 2 records the proportion of intervals that

contains the true ψ (coverage probability), the proportion of true ψ that falls outside the

lower bound of the confidence interval (lower error probability) and the proportion of true ψ

that falls outside the upper bound of the confidence interval (upper error probability). The
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theoretic values for the coverage probability, and the lower and upper errors probabilities

are 0.95, 0.025, and 0.025 respectively.

From Table 2, it is evidence that the signed log-likelihood ratio method gives the worst

coverage probability. Both the Maity and Sherman’s t-method and the proposed method

give good results when the sample sizes are moderately large. However, when the sample

sizes are small, the proposed method out-performed the other methods.

Table 1: Sample sizes and parameter configurations for the simulation study

Design m n µ1 σ2

1 µ2 σ2

2 Design m n µ1 σ2

1 µ2 σ2

2

1 1 2 2 4 4 16 25 8 2 2 4 4 16

2 1 2 2 16 4 4 26 8 2 2 16 4 4

3 1 2 4 4 2 16 27 8 2 4 4 2 16

4 1 2 4 16 2 4 28 8 2 4 16 2 4

5 1 8 2 4 4 16 29 8 8 2 4 4 16

6 1 8 2 16 4 4 30 8 8 2 16 4 4

7 1 8 4 4 2 16 31 8 8 4 4 2 16

8 1 8 4 16 2 4 32 8 8 4 16 2 4

9 1 15 2 4 4 16 33 8 15 2 4 4 16

10 1 15 2 16 4 4 34 8 15 2 16 4 4

11 1 15 4 4 2 16 35 8 15 4 4 2 16

12 1 15 4 16 2 4 36 8 15 4 16 2 4

13 2 2 2 4 4 16 37 15 2 2 4 4 16

14 2 2 2 16 4 4 38 15 2 2 16 4 4

15 2 2 4 4 2 16 39 15 2 4 4 2 16

16 2 2 4 16 2 4 40 15 2 4 16 2 4

17 2 8 2 4 4 16 41 15 8 2 4 4 16

18 2 8 2 16 4 4 42 15 8 2 16 4 4

19 2 8 4 4 2 16 43 15 8 4 4 2 16

20 2 8 4 16 2 4 44 15 8 4 16 2 4

21 2 15 2 4 4 16 45 15 15 2 4 4 16

22 2 15 2 16 4 4 46 15 15 2 16 4 4

23 2 15 4 4 2 16 47 15 15 4 4 2 16

24 2 15 4 16 2 4 48 15 15 4 16 2 4



26 WONG & WU

Table 2: Coverage probabilities and error probabilities for the by Maity and Sherman’s
t-method, the signed log-likelihood ratio method (r), and the proposed method (r∗). The
nominal values are 0.95, 0.025 and 0.025 respectively.

Coverage Upper error Lower error

Design Method probability probability probability

1 t 0.9080 0.0443 0.0477

r 0.8712 0.0608 0.0680

r∗ 0.9304 0.0325 0.0371

2 t 0.9528 0.0245 0.0227

r 0.9459 0.0286 0.0264

r∗ 0.9517 0.0254 0.0229

3 t 0.9115 0.0432 0.0453

r 0.8750 0.0620 0.0630

r∗ 0.9333 0.0322 0.0345

4 t 0.9531 0.0232 0.0237

r 0.9454 0.0275 0.0271

r∗ 0.9515 0.0248 0.0237

5 t 0.9508 0.0248 0.0244

r 0.9453 0.0274 0.0273

r∗ 0.9502 0.0251 0.0247

6 t 0.9496 0.0276 0.0228

r 0.9492 0.0277 0.0231

r∗ 0.9495 0.0276 0.0229

7 t 0.9505 0.0247 0.0248

r 0.9441 0.0279 0.0280

r∗ 0.9505 0.0247 0.0248

8 t 0.9475 0.0255 0.0270

r 0.9473 0.0255 0.0272

r∗ 0.9475 0.0255 0.0270
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Table 2: (continued)

Coverage Upper error Lower error

Design Method probability probability probability

9 t 0.9504 0.0262 0.0234

r 0.9489 0.0268 0.0243

r∗ 0.9503 0.0262 0.0235

10 t 0.9503 0.0250 0.0247

r 0.9499 0.0253 0.0248

r∗ 0.9501 0.0251 0.0248

11 t 0.9512 0.0234 0.0254

r 0.9495 0.0239 0.0266

r∗ 0.9511 0.0235 0.0254

12 t 0.9503 0.0252 0.0245

r 0.9503 0.0252 0.0245

r∗ 0.9503 0.0252 0.0245

13 t 0.8906 0.0544 0.0550

r 0.8406 0.0814 0.0780

r∗ 0.9254 0.0384 0.0362

14 t 0.9492 0.0274 0.0234

r 0.9380 0.0322 0.0298

r∗ 0.9502 0.0274 0.0224

15 t 0.8965 0.0531 0.0504

r 0.8448 0.0806 0.0746

r∗ 0.9285 0.0365 0.0350

16 t 0.9516 0.0222 0.0262

r 0.9391 0.0277 0.0332

r∗ 0.9507 0.0221 0.0272
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Table 2: (continued)

Coverage Upper error Lower error

Design Method probability probability probability

17 t 0.9451 0.0279 0.0270

r 0.9359 0.0319 0.0322

r∗ 0.9455 0.0276 0.0269

18 t 0.9508 0.0235 0.0257

r 0.9502 0.0240 0.0258

r∗ 0.9508 0.0235 0.0257

19 t 0.9476 0.0284 0.0240

r 0.9383 0.0332 0.0285

r∗ 0.9480 0.0280 0.0240

20 t 0.9507 0.0268 0.0225

r 0.9499 0.0269 0.0232

r∗ 0.9506 0.0268 0.0226

21 t 0.9501 0.0251 0.0248

r 0.9479 0.0259 0.0262

r∗ 0.9500 0.0252 0.0248

22 t 0.9491 0.0242 0.0267

r 0.9488 0.0242 0.0270

r∗ 0.9491 0.0242 0.0267

23 t 0.9506 0.0241 0.0253

r 0.9479 0.0256 0.0265

r∗ 0.9505 0.0242 0.0253

24 t 0.9514 0.0249 0.0237

r 0.9512 0.0250 0.0238

r∗ 0.9513 0.0249 0.0238
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Table 2: (continued)

Coverage Upper error Lower error

Design Method probability probability probability

25 t 0.8719 0.0615 0.0666

r 0.7868 0.1033 0.1099

r∗ 0.9239 0.0347 0.0414

26 t 0.9274 0.0360 0.0366

r 0.9059 0.0475 0.0466

r∗ 0.9385 0.0305 0.0310

27 t 0.8783 0.0593 0.0624

r 0.7944 0.1029 0.1027

r∗ 0.9275 0.0360 0.0365

28 t 0.9282 0.0363 0.0355

r 0.9036 0.0491 0.0473

r∗ 0.9377 0.0322 0.0301

29 t 0.9460 0.0265 0.0275

r 0.9292 0.0349 0.0359

r∗ 0.9479 0.0256 0.0265

30 t 0.9515 0.0232 0.0253

r 0.9483 0.0253 0.0264

r∗ 0.9508 0.0236 0.0256

31 t 0.9458 0.0280 0.0262

r 0.9292 0.0366 0.0342

r∗ 0.9477 0.0266 0.0257

32 t 0.9502 0.0253 0.0245

r 0.9477 0.0269 0.0254

r∗ 0.9497 0.0256 0.0247
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Table 2: (continued)

Coverage Upper error Lower error

Design Method probability probability probability

33 t 0.9496 0.0253 0.0251

r 0.9433 0.0291 0.0276

r∗ 0.9499 0.0250 0.0251

34 t 0.9511 0.0229 0.0260

r 0.9501 0.0235 0.0264

r∗ 0.9510 0.0229 0.0261

35 t 0.9494 0.0257 0.0249

r 0.9422 0.0302 0.0276

r∗ 0.9499 0.0255 0.0246

36 t 0.9501 0.0264 0.0235

r 0.9494 0.0267 0.0239

r∗ 0.9501 0.0264 0.0235

37 t 0.8751 0.0651 0.0598

r 0.7723 0.1155 0.1122

r∗ 0.9268 0.0411 0.0321

38 t 0.9097 0.0459 0.0444

r 0.8771 0.0610 0.0619

r∗ 0.9323 0.0327 0.0350

39 t 0.8789 0.0592 0.0619

r 0.7760 0.1092 0.1148

r∗ 0.9270 0.0346 0.0384

40 t 0.9071 0.0443 0.0486

r 0.8771 0.0592 0.0637

r∗ 0.9303 0.0322 0.0375
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Table 2: (continued)

Coverage Upper error Lower error

Design Method probability probability probability

41 t 0.9439 0.0288 0.0273

r 0.9252 0.0373 0.0375

r∗ 0.9451 0.0285 0.0264

42 t 0.9511 0.0249 0.0240

r 0.9460 0.0277 0.0263

r∗ 0.9507 0.0251 0.0242

43 t 0.9452 0.0264 0.0284

r 0.9272 0.0347 0.0381

r∗ 0.9469 0.0254 0.0277

44 t 0.9502 0.0243 0.0255

r 0.9454 0.0261 0.0285

r∗ 0.9496 0.0246 0.0258

45 t 0.9457 0.0278 0.0265

r 0.9368 0.0327 0.0205

r∗ 0.9464 0.0273 0.0263

46 t 0.9501 0.0251 0.0248

r 0.9486 0.0257 0.0257

r∗ 0.9499 0.0252 0.0249

47 t 0.9457 0.0266 0.0277

r 0.9365 0.0311 0.0324

r∗ 0.9461 0.0263 0.0276

48 t 0.9516 0.0241 0.0243

r 0.9507 0.0244 0.0249

r∗ 0.9514 0.0241 0.0245
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6 CONCLUSION

A likelihood-based third order method is proposed to obtain confidence interval for the dif-

ference in means problem when the two populations are independently normally distributed

with one variance assumed to be known as the other variance remained unknown. Simulation

results illustrated the supreme accuracy of the proposed method in terms of both coverage

probability and the symmetry of error rate especially when the sample sizes are small. It

is also important to note that the proposed method can be extended to the Behrens-Fisher

problem.

Appendix A. General Methodology for Obtaining Q(ψ)

To derive the general formula for Q(ψ), we need to first reduce the dimension of the variable

to the dimension of the parameter. This dimension reduction can be achieved by condition-

ing on an implicit ancillary statistic. However, it is not easy to obtain the ancillary statistic.

Moreover, the exact ancillary statistic may not exist or even if exists, it may not be unique.

Fraser and Reid (1995) showed that only tangent directions, V , to this ancillary statistic are

necessary. In fact, V can be obtained by using a pivotal quantity k(y, θ) and differentiating

the data y with respect to the parameter θ while holding the pivotal quantity fixed. In other

words,

V =
∂y

∂θ

∣∣∣∣
θ̂

=

{
∂k(y, θ)

∂y

}−1{
∂k(y, θ)

∂θ

}∣∣∣∣∣
θ̂

.

Fraser and Reid (1995) also showed that the resulting model can then be approximated by

a tangent exponential model with the locally defined canonical parameter

ϕ(θ) =
∂`(θ)

∂y
V.

This locally defined canonical parameter gives the relevant parameterization for likelihood

inference. Given this new parameterization, and without explicitly specifying the nuisance

parameter, Fraser, Reid and Wu (1999) developed a marginalization procedure that gives the

recalibrated parameter of interest χ(θ) as given in Section 3. Hence Q(ψ) can be obtained

as in Section 3.

Appendix B. R Code for the Proposed Method

# function to calculate mle standard deviation

msd<-function(data) sd(data) * sqrt((length(data)-1)/length(data))

# function to calculate left tail probability for t, r, rstar respectively.

# "x", "y" are vector values for sample X and Y

# "s1" is the standard deviation for X, "psi" is value of interest.
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tailprob <- function(x,y,s1,psi) {

xbar <- mean(x)

ybar <- mean(y)

msd2 <- msd(y)

m <- length(x)

n <- length(y)

A <- m

B <- m*psi-2*m*ybar-m*xbar

C <- (-2)*m*psi*ybar+m*(msd2^2)+m*(ybar^2)+2*m*xbar*ybar+n*(s1^2)

n <- length(y)

D <- m*psi*(msd2^2)+m*psi*(ybar^2)-m*xbar*(ybar^2)-n*ybar*(s1^2)

-m*xbar*(msd2^2)

v <- 40 # initial value to solve below function "fx"

fx <- A*(v^3) + B*(v^2)+ C* v +D

dfx <- A*(v^2) + B*v + C

d <- 1

while ( d!=0 ) {

v <- v - fx/dfx

fx <- A*(v^3) + B*(v^2)+ C* v +D

d <- abs(round(fx,5))

}

u20 <- v

msdc2 <- sqrt(msd2^2 + (ybar-u20)^2 ) # Constrained MLE SD

lamda <- n/(msdc2^2)*(ybar-u20)

u10 <- ((s1^2)/m)*lamda+xbar

lkh.mle <- sum(dnorm(x,xbar,s1,log=TRUE))+sum(dnorm(y,ybar,msd2,log=T))

lkh.psi <- sum(dnorm(x, u10,s1,log=TRUE))+sum(dnorm(y,u20,msdc2,log=T))

r <- sign(xbar-ybar-psi)*sqrt(2*(lkh.mle-lkh.psi))

if (r==0) rstar <- 0 else {

Q <- sign(xbar-ybar-psi)*abs(xbar-u10+(u20-ybar)*(msdc2^2)

/(msd2^2))*sqrt(((msd2^6)/(msdc2^6))/(s1^2/m + msdc2^2/n

- (s1^2/m)*(2*(ybar-u20)^2)/(msdc2^2)))

rstar <- r-(1/r)*log(r/Q)

}

df <- (s1^2/m+sd(y)^2/n)^2/((sd(y)^2/n)^2/(n-1))

t <- (xbar-ybar-psi)/sqrt(s1^2/m+sd(y)^2/n)

c(1-pt(t,df),1-pnorm(r), 1-pnorm(rstar))

}

# function to calculate the (1-2*alpha)100% CIs for rstar and r. "ini" is

# the initial value of lower bound the CI. The left tail probability for
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# initial value needs to be less than alpha.

rstarCI <- function(x,y,s1,ini,alpha){

prstar <-tailprob(x,y,s1,ini)[3]

while ( prstar < alpha) {

ini <- ini+0.0001

prstar <-tailprob(x,y,s1,ini)[3]

}

if ( abs(tailprob(x,y,s1,ini-0.0001)[3]-alpha) < abs(prstar-alpha)) {

prstar <- tailprob(x,y,s1,ini-0.0001)[3]

ini <- ini - 0.0001

c(prstar,ini,2*(mean(x)-mean(y))-ini)

}

c(ini,2*(mean(x)-mean(y))-ini)

}

#

rCI <- function(x,y,s1,ini,alpha){

pr <-tailprob(x,y,s1,ini)[2]

while ( pr < alpha) {

ini <- ini+0.0001

pr <-tailprob(x,y,s1,ini)[2]

}

if ( abs(tailprob(x,y,s1,ini-0.0001)[2]-alpha) < abs(pr-alpha)) {

pr <- tailprob(x,y,s1,ini-0.0001)[2]

ini <- ini - 0.0001

}

c(ini,2*(mean(x)-mean(y))-ini)

}

# numerical example in Section 5

x<-c(724,718,776,760,745,759,795,756,742,740,761,749,739,747,742)

y<-c(735,775,729,755,783,760,738,780)

s1<-20

rstarCI(x,y,s1,-22.7050,0.05) # 90% CI for rstar

rCI(x,y,s1,-21.6245,0.05) # 90% CI for r

######################
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