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summary

This paper shows that more data or information is better in estimating the mean
of a multivariate normal distribution. Precisely, the mean volume of confidence
ellipsoid for the mean decrease with addition of independent observation. This
result is obvious when the variance-covariance matrix of the multivariate normal
distribution is known, but it not so straight to see the result when the variance-
covariance matrix is unknown.
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1 Introduction

It is widely believed that more data or information is always better in statistical inference.

Some are so extreme that they think this is an obvious principle and there is no need

to verify it mathematically at all. However, this intuitive or naive principle is, in fact,

not always true. Hengartner (1999) gave an example in which two independent samples

of binary random variables were drawn; in the first one, the probability of success is p

(unknown); in the second one the probability of success is q (unknown) and it is known that

q < p. It is found in Hengartner (1999) that depending on the value of p, the maximum

likelihood estimator using both samples has a larger variance and mean squared error than

the maximum likelihood estimator of p that uses only the first sample. Kim and Verducci

(1999) gave another example in which it is possible to construct a uniformly most powerful

(UMP)test for a sample of size one, but there is no UMP test for larger sample size. Both

examples are in contradiction with the above mentioned naive principle. Therefore, for

each individual statistical inference, if the effect of more sampling is a concern, then the

foregoing naive principle should be carefully verified unless it is trivial. In the present paper
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we will show that the naive principle holds in estimating the mean of multivariate normal

population.

In multivariate data analysis often we want to obtain confidence region for an unknown

parameter vector. In particular, in the case of multivariate, say p-dimensional, normal

population Np(µ,Σ), we want to obtain the confidence region for the population mean µ. If

the population variance-covariance matrix Σ is unknown, then based on Hotelling’s T 2 test

statistic, the confidence region is actually a p-dimensional ellipsoid. If Σ is known, then in

addition to Hotelling’s T 2 method, we can use chisquare distribution to obtain confidence

region for µ. The resulting confidence region is also a p-dimensional ellipsoid. These methods

are discussed, for instance, in Anderson (1984), Johnson and Wichern (1998), and Rencher

(1998). From the confidence ellipsoids obtained from applying either Hotelling’s T 2-method

or chisquare method we can further find their projections (shadow) into any q-dimensional

subspace with 1 ≤ q ≤ p to obtain the confidence regions for the projections of µ onto these

subspaces. These projections are again ellipsoids but of course, of q-dimension.

The above discussion indicates that if Σ is known in the case of Np(µ,Σ) population,

there are two approaches to constructing confidence ellipsoid for µ, and consequently to

obtaining confidence ellipsoids for the projections of µ onto all q-dimensional subspaces. In

this paper we will study the effect of the sample size on the mean volume of such ellipsoids.

Mean volumes of these ellipsoids correspond to the mean width in the univariate case. In

Section 2 some preliminary results are stated. It is proved in Section 3 that as sample size n

increases, the mean volume of those confidence ellipsoids strictly decreases no matter which

method is used for constructing confidence region. That is, more data is better in estimating

the mean of a multivariate normal population. From this aspect this article validates the

naive principle.

2 Mean Volume of Confidence Ellipsoid

Let X1, X2, . . . , ;Xn be a random sample from p-dimensional normal population Np(µ,Σ)

where Σ is positive definite. Suppose we are interested in the confidence regions for the

projection of µ onto a q-dimensional subspace space. That is, if {u1, . . . , uq} is a set of or-

thogonal basis of a given q-dimensional subspace and matrix U has u1, . . . , uq as its columns,

then we want to obtain the confidence regions of vectors U ′µ. Suppose Σ is known, then

there are two ways to obtain the confidence regions for U ′µ. Let 0 < 1−α < 1 be any given

confidence coefficient. Without using Σ, from the Hotelling’s T 2-method, a 100(1 − α)%

confidence region for µ is the p-dimensional ellipsoid determined by

{
µ : n(X̄ − µ)′S−1(X̄ − µ) ≤ c2T

}
(2.1)

where X̄ and S, respectively, are the sample mean and sample variance-covariance matrix

based on X1, . . . , Xn, and

c2T =
p(n− 1)Fα(p, n− p)

n− p
,
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where Fα(p, n− p) is the upper α-percentile of F -distribution with numerator and denomi-

nator degrees of freedom p and n− p, respectively. Then the confidence regions for U ′µ are

the projections of the ellipsoid (2.1) onto the q-dimensional space spanned by u1, . . . , uq. On

the other hand, if Σ is applied, then we can used chisquare method and then a 100(1−α)%

confidence region for µ is the p-dimensional ellipsoid given by

{
µ : n(X̄ − µ)′Σ−1(X̄ − µ) ≤ c2Z

}
(2.2)

where c2Z = χ2
α(p) and χ2

α(p) is the upper α-percentile of chisquare distribution with p

degrees of freedom since n(X̄−µ)′Σ−1(X̄−µ) follows chisquare distribution with p degrees

of freedom. Then the confidence regions for U ′µ are the projections of the ellipsoid (2.2)

onto the q-dimensional subspaces spanned by u1, . . . , uq. In order to investigate the effect

of increasing the sample size on the mean volume of the confidence region from the above

two approaches, we have to obtain mathematical expressions for the mean volumes of the

simultaneous confidence ellipsoids. In the following we use VT and VZ to denote the volumes

of the q-dimensional ellipsoids obtained as projections of the p-dimensional ellipsoids (2.1)

and (2.2), respectively, onto the subspace spanned by u1, u2, . . . , uq.

Applying Hotelling’s T 2-method, the projection of the p-dimensional ellipsoid (2.1) onto

the subspace spanned by u1, . . . , uq is given by

{
v : n(UX̄ − v)′(U ′SU)−1(UX̄ − v) ≤ c2T

}
(2.3)

where v ≡ U ′µ belongs to the subspace spanned by u1, . . . , uq. This fact regarding projection

can be found, for instance, in Johnson and Wichern (1998). The volume of the ellipsoid

(2.3) is given by

VT = kq
√

det(U ′SU) cqT
/
nq/2 (2.4)

where the constant kq is defined by

kq =
2πq/2

qΓ(q/2)
.

The calculation of volume of ellipsoid is given, for example, in Cramér (1946). Similarly we

can obtain the expression of VZ as

VZ = kq
√

det(U ′ΣU) cqZ
/
nq/2. (2.5)

To compute the mean volume E(VT ) we have to obtain E(
√

det(U ′SU)) as can be seen

from (2.4). It is known that (n − 1)S follows Wishart distribution with (n − 1) degrees

of freedom, (n − 1)S ∼ Wn−1(·|Σ). It yields U ′(n − 1)SU ∼ Wn−1(·|U ′ΣU). Further,

since the distribution of the determinant of the generalized sample variance det(S) is the

same as the distribution of det(Σ)/(n− 1)p times the product of q independent factors, the
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distribution of the ith factor being the chisquare distribution with n− i degrees of freedom,

the distribution of
√

det(U ′SU) is the same as that of

√
det(U ′ΣU)

(n− 1)q/2

q∏

i=1

ξn−i,

where ξn−i, 1 ≤ i ≤ q are independent and ξn−i follows chi-distribution with degrees of

freedom n− i. Then we can obtain

E
(√

det(U ′SU)
)

=

√
det(U ′ΣU)

(n− 1)q/2

q∏

i=1

√
2Γ((n− i+ 1)/2)

Γ((n− i)/2)

=

√
det(U ′ΣU)

(n− 1)q/2
· 2q/2 Γ(n/2)

Γ((n− q)/2)
(2.6)

3 Change of Mean Volume of Confidence Ellipsoid

It is easy to believe intuitively that statistical inference will be more accurate in certain

sense as the sample size increases since that would include more information. In this section

we consider the following problem. Suppose that we want to obtain confidence ellipsoid for

U ′µ where U and µ are the same as defined in the previous section. Will the mean volumes

of these ellipsoids decrease as sample size increases? The answer to this question is easy in

the case of known variance-covariance matrix Σ. Actually from (2.5) we immediately see

that E(VZ) = VZ strictly decreases in n > p since the constant kq
√

det(U ′ΣU) cqZ does not

depend on n at all. However, it is not easy to answer the same question when Σ is not

known. To this end we first prove the following auxiliary result.

Lemma. For any 1 ≤ q ≤ p < n, the following inequality holds

(
Γ((n+ 1)/2)Γ((n− q)/2)

Γ(n/2)Γ((n+ 1 − q)/2)

)p/q(
Γ((n+ 1)/2)Γ((n− p)/2)

Γ(n/2)Γ((n+ 1 − p)/2)

)−1

≤ 1 (3.1)

and the equality holds if and only if p = q.

(Proof) The inequality (3.1) is clearly true when p = q. Actually the left hand side of (3.1)

equals to 1 exactly when p = q. Hence in the following we assume q < p. For z ≥ n/2 define

ϕ(z) =

(
Γ(z + 1/2)Γ(z − q/2)

Γ(z)Γ(z − (q − 1)/2)

)p/q(
Γ(z + 1/2)Γ(z − p/2)

Γ(z)Γ(z − (p− 1)/2)

)−1

.

The desired inequality is equivalent to ϕ(n/2) < 1. We will show that ϕ(z) < 1 for all

z ≥ n/2. Taking the natural logarithm, we see that we need to show

lnϕ(z) =

(
p

q
− 1

)[
ln Γ(z +

1

2
) − ln Γ(z)

]
− p

q

[
ln Γ(z − q − 1

2
) − ln Γ(z − q

2
)

]
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+

[
ln Γ(z − p− 1

2
) − ln Γ(z − p

2
)

]
< 0, ∀ z ≥ n

2
.

Notice that

ϕ′(z)

ϕ(z)
=

(
p

q
− 1

)[
ψ(z +

1

2
) − ψ(z)

]
− p

q

[
ψ(z − q

2
+

1

2
) − ψ(z − q

2
)

]

+

[
ψ(z − p

2
+

1

2
) − ψ(z − p

2
)

]
,

where ψ(z) ≡ Γ′(z)/Γ(z) is the digamma function. If we further define

η(u) ≡ ψ(u+
1

2
) − ψ(u), ∀ u > 0,

then

ϕ′(z)

ϕ(z)
= (

p

q
− 1)η(z) − p

q
η
(
z − q

2

)
+ η

(
z − p

2

)

=
p

q

{
(1 − q

p
)η(z) +

q

p
η(z − p

2
) − η(z − q

2
)

}
, z ≥ n

2
. (3.2)

Now we claim that η(u) is a strict convex function on (0,∞). As a matter of fact we have

η′′(u) = ψ′′(u+
1

2
) − ψ′′(u) = ψ′′′(u+ θ)

with 0 < θ < 1/2. But ψ′′′(u) > 0, ∀u > 0, thus the claim is true. Since

(
1 − q

p

)
z +

q

p

(
z − p

2

)
= z − q

2
,

by the strict convexity of η(u) we conclude that ϕ′(z) > 0, ∀z ≥ n/2 from (3.2). It

implies that ϕ(z) is strictly increasing in z ≥ n/2. Note that limz→∞ ϕ(z) = 1, therefore

ϕ(z) < 1, ∀ z ≥ n/2. Particularly, we obtain ϕ(n/2) < 1. This ends the proof.

The following result shows that the mean volume of the confidence ellipsoid (2.3) strictly

decreases in n ≥ p+ 1.

Theorem. For any 0 < α < 1, 1 ≤ q ≤ p < n, the mean volume E(VT ) strictly decreases

in n ≥ p+ 1.

(Proof) We denote VT as VT (n) to emphasize the dependence of VT on the sample size n.

What we need to show is E(VT (n)) > E(VT (n+ 1)), for any n ≥ p+ 1.

From (2.4) and (2.6) we see that

E

(
VT (n)

)
=

L

(n(n− p))q/2
Γ(n/2)

Γ((n− q)/2)
(Fα(p, n− p))q/2 ,
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where the constant L = kq
√

(2p)qdet(U ′ΣU) is independent of n. Hence E(VT (n)) >

E(VT (n+ 1)) is equivalent to

Fα(p, n− p) > b(n, p) Fα(p, n+ 1 − p), (3.3)

where

b ≡ b(n, p) ≡ n(n− p)

(n+ 1)(n+ 1 − p)

(
Γ((n+ 1)/2)Γ((n− q)/2)

Γ(n/2)Γ((n+ 1 − q)/2)

)2/q

.

In order to show (3.3) it suffices to show that

∞∫

bt

fF (x; p, n− p)dx >

∞∫

t

fF (x; p, n+ 1 − p)dx, ∀ t > 0 (3.4)

where fF (x; p, n−p) is the density function of F -distribution with numerator degrees of free-

dom p and denominator degrees of freedom n− p. Because if (3.4) is true, then particularly

choosing t = Fα(p, n+ 1 − p) gives

∞∫

bFα(p,n+1−p)

fF (x, p, n− p)dx >

∞∫

Fα(p,n+1−p)

fF (x; p, n+ 1 − p)dx = α

and consequently

Fα(p, n− p) > bFα(p, n+ 1 − p).

The inequality (3.4) is equivalent to

∞∫

t

bfF (bx; p, n− p)dx >

∞∫

t

fF (x; p, n+ 1 − p)dx, ∀ t > 0. (3.5)

The function bfF (bx; p, n− p) obviously is a probability density function on (0,∞). Hence

in order to prove (3.5) it is sufficient to show that bfF (bx; p, n− p)− fF (x; p, n+ 1− p) has

exactly one change of sign on (0,∞) and the change of sign occurs from − to + (See Boland

et al.(1989), and Shaked and Shanthikumar (1994)).

We define

r(x) ≡ bfF (bx; p, n− p)

fF (x; p, n+ 1 − p)
=

(
n

n+ 1

)p/2(
Γ((n+ 1)/2)Γ((n− q)/2)

Γ(n/2)Γ((n+ 1 − q)/2)

)p/q

·
(

Γ((n+ 1)/2)Γ((n− p)/2)

Γ(n/2)Γ((n+ 1 − p)/2)

)−1√
g(x),

where

g(x) =

(
1 + px

/
(n+ 1 − p)

)n+1

(
1 + pbx

/
(n− p)

)n .
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It can be verified that

g′(x)[1 +
pbx

(n− p)
]2n = (n+ 1)[1 +

px

(n+ 1 − p)
]n

p

n+ 1 − p
· [1 +

pbx

(n− p)
]n

− [1 +
px

(n+ 1− p)
]n+1 · n[1 +

pbx

(n− p)
]n−1 pb

n− p

p[1 +
px

(n+ 1 − p)
]n[1 +

pbx

(n− p)
]n−1{ n+ 1

n+ 1 − p
[1 +

pbx

(n− p)
]

− nb

n− p
[1 +

px

(n+ 1− p)
]}

= p[1 +
px

(n+ 1 − p)
]n[1 +

pbx

(n− p)
]n−1

× pbx− [nb(n+ 1 − p) − (n+ 1)(n− p)]

(n− p)(n+ 1 − p)
(3.6)

Thus it is easy to see that

g(x)





strictly decreases, if x < x0;

achieves its minimum, if x = x0;

strictly increases, if x > x0,

where x0 ≡ [nb(n + 1 − p) − (n + 1)(n − p)]/pb. No matter whether x0 ≤ 0 or x0 ≥ 0, we

can see that the equation r(x) = 1 has exactly one solution on (0,∞) since

r(0) =

(
n

n+ 1

)p/2(
Γ((n+ 1)/2)Γ((n− q)/2)

Γ(n/2)Γ((n+ 1 − q)/2)

)p/q (
Γ((n+ 1)/2)Γ((n− p)/2)

Γ(n/2)Γ((n+ 1 − p)/2)

)−1

<

(
Γ((n+ 1)/2)Γ((n− q)/2)

Γ(n/2)Γ((n+ 1 − q)/2)

)p/q (
Γ((n+ 1)/2)Γ((n− p)/2)

Γ(n/2)Γ((n+ 1 − p)/2)

)−1

≤ 1,

where the second inequality follows from the Lemma, and limx→∞ r(x) = ∞. This means

that the desired property of change of sign is true, and therefore the result of the theorem

follows.
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