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summary

In this paper, the estimation for the reciprocal of the shape parameter of the
Pareto distribution (1/a) has been considered. If (1/a0) be the prior guess value
of (1/a) then shrunken estimator for (1/a) has been proposed and its properties
have been studied. For socio-economic data n is usually large, the normal approx-
imation to test statistics can be applied (see Rahman et al. (1997)) which gives
equal tail areas on either side of uniformly most powerful unbiased test. By taking
normal approximations to test statistics a shrunken testimator and preliminary
testimator for (1/a) have been proposed and its properties are discussed.

Keywords and phrases: Preliminary Testimator, Shrinkage Testimator, Linex
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1 Introduction

The guess value can be incorporated in the estimation procedure to increase the precision of

the estimate through preliminary testing or shrinkage techniques (see Bancroft (1944) and

Thompson (1968)). Saleh (2006) considered the theory of preliminary test and Stein type

estimations. Hirano (1977), Pandey and Singh (1980), Pandey (1979), Singh et al. (1973),

Mehta and Srinivasan (1971), Pandey and Srivastava (2001), Pandey et al. (2004), Pandey et

al. (2005) have investigated preliminary testimators and shrunken testimators for different

distributions. Sclove et al. (1972) showed the non-optimality of a Preliminary Testimator

(P.T.) for the mean of a normal distribution. Davis and Arnold (1970) proposed shrunken

estimators for variance using P.T. for the mean of a normal distribution. Hirano (1984)

specified the best value of level of significance as 16%. Kamboo et al. (1990) proposed

shrunken testimator for the mean of exponential distribution under type II censored data.

Hogg (1974) used a different weight k which is more conservative than the above in the
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sense that if test statistics is near to boundary of the critical region one takes k ' 1 while

Hogg’s take k = 1/2. This suggests that the use of test statistics for the P.T. in the

construction of weight function k is more reasonable than fixed or predetermined value of

k. Conerly and Hardin (1991) suggested that shrunken estimators perform quite poorly

in probability nearness (P.N.) criterion. Thomas (1976) derived the reciprocal moments

of linear combinations of exponential variates. The resultant formula is used to obtain

the moments of quantile and other similar estimators for the shape parameter of a Pareto

distribution. The general formula for the reciprocal moments is shown to be potentially

useful in linear models and in studying models of the variation in the rate of births in a

pure birth process.

Vilfredo Pareto (1897) introduced Pareto distribution, which is commonly used to study

the higher income distribution. Arnold (1983) and Longe (1978) discussed the history and

sociological implications of Pareto distribution. Davis and Foldstein (1979) viewed Pareto

distribution as a potential model for life testing experiments. Let x1, x2, . . . , xn be a random

sample of size n from a Pareto distribution with probability density function (p.d.f.)

f (x, a, σ) = a σax−(a+1), x ≥ σ, a > 0, (1.1)

where a and σ are shape and scale parameters, respectively. The maximum likelihood

estimates (m.l.e.) of a and σ are

σ̂ = x(1) = min (x1, x2, . . . , xn) and â =

[
1

n

n∑

i=1

log
xi
x(1)

]−1

, (1.2)

which are jointly sufficient and consistent estimates of a and σ are respectively. Malik

(1970) derived the distribution of m.l. estimators and showed that they are independently

distributed. Sakesena and Johnson (1984) obtained the unique minimum variance unbiased

estimators for shape parameters based on complete sufficient statistics (see Baxter (1980),

Likes (1969)). If we make the transformation y = log x, the resulting distribution has the

p.d.f. given by

f (y, logσ, a) = ae−a(y−log σ), y ≥ logσ, a > 0, (1.3)

which is displaced exponential distribution with shifted location parameter logσ and scale

parameter (1/a), respectively. The maximum likelihood estimator of logσ and (1/a) are

given by

log σ̂ = y(1) = logx(1) and

(
1

â

)
=

[
1

n

n∑

1

(
yi − y(1)

)
]

= P1. (1.4)

We concentrate on the conditional distribution of order statistics (y(2), y(3), . . . , y(n)) of

the sample given y(1) when the first failure occur. Using the classical transformation

Zi = (n− i+ 1)
(
y(i) − y(i−1)

)
, i = 2, . . . , n (1.5)
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more specifically, Z1 = ny(1), Z2 = (n−1)(y(2)−y(1)), Z3 = (n−2)(y(3)−y(2)) and so on. It

is clear that Z1 and T =
∑n
i=2 Zi are independent and (Z1 −n logσ)/a0 has Γ

(
1, (aa0)

−1
)
.

We have Z2, Z3, . . . , Zn as i.i.d. exponential with mean (1/a). Thus, problem reduces

to estimating (1/a) on the basis of random samples of size (n− 1) from a population with

p.d.f. p (z | a) = a e−az, a > 0. If 1/a0 be the prior guess value of 1/a, the test statistic

for H0 : a0/a = 1 is based on T/a0 =
∑n

i=2 Zi/a0. We know that (2aT/a2
0) ∼ χ2

2(n−1).

Therefore we have

E

[
T

(n− 1)a2
0

]
=

1

a
(1.6)

Sakesena and Johnson (1984) obtained minimum mean squared error (MMSE) estimator

for a in the class

P2 = c1

{
(n− 2)a2

0

T

}
is P ∗

2 =

{
(n− 3)a2

0

T

}
,

which has

MSE (P ∗
2 ) =

a2

n− 2
. (1.7)

The MMSE estimator for (1/a) in the class

P3 = c2
T

(n− 1)a2
0

as P ∗
3 =

T

na2
0

which has

MSE (P ∗
3 ) =

1

na2
. (1.8)

We have considered the shrunken estimator P2s for (1/a) and expression for mean square

error and Risk under modified Linex loss function has been obtained in Section 2. Com-

parison with respect to P ∗
3 is made. The shrunken estimator is preferable if H0 : a0/a = 1

is accepted otherwise the MMSE estimator may be preferred. The shrunken testimator for

(1/a) is

P2e =





1
a0

[
1 −

“

1− T
(n−1)a0

”3

“

1− T
(n−1)a0

”2
+ T2

(n−1)3a20

]
, under H0 : a0

a = 1

T
na2

0
, otherwise.

(1.9)

Muniruzzaman (1957) obtained a test statistics for H0: (a0/a) = 1 against H1: (a0/a) 6= 1

as T ∗ = (2aT/a2
0) ∼ χ2

2(n−1). The rejection rule can be obtained by using chi-square

statistics. Reject H0 if χ2
2(n−1) ≤ l1 or χ2

2(n−1) ≥ l2, where l1 and l2 are the unbiased

partitioned or equal tail partitioned values of chi-square at α% level of significance with

2(n− 1) degree of freedom.

In socio-economic data, the values of n are usually large and one can use the normal

approximation to (T/a0) which justify the use of a test with equal tail areas in either side.

The statistics

y =
(aT/a2

0) − (n− 1)√
n− 1

∼ N (0, 1) (1.10)
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and is symmetrical. The hypothesis H0 : a = a0 cannot be rejected if

P

[
−1 ≤ (T/a0) − (n− 1)

Zα
2

√
n− 1

≤ 1

]
= 1 − α (1.11)

The shrunken factor may be taken as

0 ≤
[

(T/a0) − (n− 1)

Zα
2

√
n− 1

]2

≤ 1 (1.12)

which provides the shrunken estimator for (1/a) as

P3 =
1

a0

[
1 +

{(T/a0) − (n− 1)}3

(n− 1)2Z2
α
2

]
(1.13)

We also have the proposed shrunken testimator for 1/a as

P3e =





1
a0

[
1 + {(T/a0)−(n−1)}3

(n−1)2Z2
α
2

]
, if 1 − Zα

2√
n−1

≤ T
(n−1)a0

≤ 1 +
Zα

2√
n−1

T
na2

0
, otherwise.

(1.14)

The expressions for MSE of the above testimator P3e has been obtained in Section 3 and

comparison with respect to the estimator T/(na2
0) has been made. If 1/a0 be the estimate

of 1/a and MLE for 1/a is P1, the Shrunken estimator for 1/a may be given as

P ∗
1 =

1

a0
+ k1

(
P1 −

1

a

)
, 0 ≤ k1 ≤ 1.

The estimated value of k1 for which MSE (P ∗
1 ) will be minimum, is

k̂1m =

(
1 − T

(n−1)a0

)2

(
1 − T

(n−1)a0

)2

+ T 2

(n−1)3a4
0

. (1.15)

More precisely, the preliminary shrunken testimator for 1
a is defined as

P4e =





1
a0

+ k̂1m

(
P1 − 1

a0

)
, if 1 − Zα/2√

n−1
≤ T

(n−1)a0
≤ 1 +

Zα/2√
n−1

T
na2

0
Otherwise.

(1.16)

Varian (1975) proposed a very useful asymmetric loss function known as Linex loss

function which may be given as

L (∆) = b
[
ep∆ − p∆ − 1

]
, b > 0, p 6= 0,∆ = µ̂− µ.
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Where p is shape parameter and b is scale parameter. LINEX was originally proposed

because of its flexibility in capturing the asymmetry in a loss structure where such a property

is warranted, L (∆) rises exponentially when ∆ < 0 (under-estimation) and almost linearly

when ∆ > 0(over-estimation), for small values of |p|, L(∆) = bp2

θ2

(
θ̂ − θ

)2

is a symmetric

function (Basu and Ebrahimi (1991)).

Despite the flexibility and popularity of the LINEX loss function for the location param-

eter estimation it appears to be not suitable for the estimation of the scale parameter and

other quantities (Basu and Ebrahimi (1991) and Parsian and Sanjani Farsipour (1993). For

these reasons Basu and Ebrahimi (1991) defined a modified LINEX loss;

L (∆∗) = b
[
ep∆

∗ − p∆∗ − 1
]
,

where the estimation error ∆ is expressed by
(
(θ̂/θ) − 1

)
. Such modification does not

change the characteristics of Varian’s LINEX loss. This loss function has been considered

by Zellner (1986). Pandey et al. (1996) considered the Bayes estimation of shape parameter

of Pareto distribution under Linex-Loss function (c.f. Pandey and Rai (1992), Pandey and

Srivastava (2001), Pandey et al. (2004), Pandey et al. (2005)). In Section 4 we have proposed

the shrunken testimator for (1/a) under Linex loss function and properties of this testimator

have been discussed.

2 Shrinkage Estimator for (1/a) and Its Properties

The proposed shrunken estimator for (1/a) may be defined as

P2s =
1

a0


1 −

(
1− T

(n−1)a0

)3

(
1 − T

(n−1)a0

)2

+ T 2

(n−1)3a2
0


 . (2.1)

We have

MSE (P2s) = E

(
P2s −

1

a

)2

=
1

Γ(n− 1)a2
0

∫ ∞

0


1 −

(
1 − δu

(n−1)

)3

(
1 − δu

(n−1)

)2

+ δ2u2

(n−1)3

− δ




2

e−uun−2du, (2.2)

where u = aT/a2
0 , δ = a0/a.

The numerical integration can be obtained by 10 point Gauss-Laguerre quadrature for-

mula. We know that Z1 and T =
∑n
i=2 Zi are independent random variables such that

(Zi − n logσ)/a0 has Γ
(
1, (a0a)

−1
)

distribution, which indicates that Z1 and T =
∑n
i=2 Zi



50 PANDEY, SRIVASTAVA & TIWARI

are independent random variables such that (Zi − n logσ)/a0 has Γ
(
1, (a0a)

−1
)

distribu-

tion. The relative efficiency of the estimator P2e with respect to MMSE estimator is defined

as

REF (P2s, P
∗
3 ) =

MSE (P ∗
3 )

MSE (P2s)
(2.3)

The relative efficiency for the above estimators for different values of n = 15(5)25, δ =

0.5(0.25)1.5 have been computed and are presented in Table 1 and we observe that

1. The relative efficiency is maximum near δ = 1

2. The relative efficiency decreases as the sample size increases

3. The effective interval of δ decreases as n increases

4. The estimator is preferable if 0.75 ≤ δ ≤ 1.25 and sample size is small

The risk of P2s under modified linex loss after little bit algebra is

R (P2s) = b

[
exp{−p(1− (1/δ))}

Γ(n− 1)

×
{∫ ∞

0

e−uun−2 exp
{
− p φ(u, δ, n)/δ + φ(u, δ, n)

}}
du+ (p− (p/δ) − 1)

]
(2.4)

where u = aT/a2
0, δ = a0/a and

φ(u, δ, n) =

(
1 − uδ

n−1

)3

(
1 − uδ

n−1

)2

+ u2δ2

(n−1)2

.

The numerical integration can be obtained by 10 point Gauss-Laguerre quadrature formula.

3 Shrunken Testimator for (1/a) and Its Properties us-

ing Normal Approximations

The shrunken testimator for (1/a) (after) taking normal approximations to test statistics

is

P3e =





P3, if 1 − Zα
2√
n−1

≤ T
(n−1)a0

≤ 1 +
Zα

2√
n−1

T
na2

0
, otherwise,

(3.1)

where

P3 =
1

a0


1 +

(n− 1)
{

T
(n−1)a0

− 1
}3

Z2
α
2


 (3.2)
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is the shrunken estimator. We observe that P3 has better performance if a
a0

≈ 1 and level

of significance is small.

MSE (P3e) = E

(
P3e −

1

a

)2

= E

[
P 2

3

∣∣∣∣ (n− 1) − Z∗
α
2
≤ T

a0
≤ (n− 1) + Z∗

α
2

]
Pr

{
(n− 1) − Z∗

α
2
≤ T

a0
≤ (n− 1) + Z∗

α
2

}

+ E

[(
T

na2
0

− 1

a

)2 ∣∣∣∣
T

a0
≤ (n− 1) − Z∗

α
2

⋂ T

a0
≥ (n− 1) + Z∗

α
2

]

×Pr

{
T

a0
≤ (n− 1) − Z∗

α
2

⋂ T

a0
≥ (n− 1) + Z∗

α
2

}
, (3.3)

where Z∗
α
2

= Zα
2

√
(n− 1). The expression can be written as

MSE (P3e) =
1

a2
√

2π

∫ b2

b1



{

1

δ (n− 1)
2
Z2
α
2

({(
y
√
n− 1 + (n− 1)

)
δ − (n− 1)

}3
+ (1/δ − 1)

)}2

−
(
y
√
n− 1 − 1

n

)2
]

exp
(
−y2/2

)
dy +

1

na2
(3.4)

where

y
√

(n− 1) =
{
aT
a2
0
− (n− 1)

}
∼ N(0, n− 1), b1 = 1

δ

{√
n− 1 − Zα

2

}
−
√
n− 1

b2 = 1
δ

{√
n− 1 + Zα

2

}
−
√
n− 1, δ = a0

a .

The numerical integration can be obtained by 16–point Gauss–quadrature formula.

RE (P3e, P
∗
3 ) =

MSE (P ∗
3 )

MSE (P3e)
(3.5)

The relative efficiency of the above estimator for different values n = 30, 40, 50, δ =

0.75(0.25)1.25, α = 0.01, 0.05, 0.16, have been computed and are shown in Table 2. We

observe that

1. The relative efficiency is maximum near δ = 1

2. The effective interval for δ is 0.75 ≤ δ ≤ 1.25

3. If δ ≤ 0.6, the maximum gain is obtained for moderate values of α (16%)
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4 Preliminary Testimator for (1/a) under Linex Loss

Function

We know that MMSE estimator for (1/a) in the class P3 is T/(na2
0) with MSE (P ∗

3 ) =

1/(na2). The modified LINEX loss function may be defined as

L (∆∗) = b
[
ep∆∗ − p∆ ∗ −1

]
, ∆∗ =

(
cT
1/a

−1

)
, A 6= 0, b > 0

L (∆∗) = b
[
ep(caT−1) − p (caT − 1) − 1

]
(4.1)

R (∆∗) = b
[
e−p

(
1− a2

0pc
)−(n−1) − (n− 1)a2

0pc+ p− 1
]
. (4.2)

The value of c for which risk will be minimum is

cmin =
1

a2
0p

(
1 − e−

p
n

)
. (4.3)

The improved estimator for (1/a) under Linex function is

P′
2 =

1

a2
0A

(
1 − e−

A
n

)
T (4.4)

MinR (P ′
2) = b

[
A− n

(
1 − e−

A
n

)]
(4.5)

If A → 0

P′
3 =

T

na2
0

which is MMSE estimator for (1/a). Thus, MMSE estimator T
na2

0
is inadmissible under linex

loss function.

If a0 is prior value of a then the preliminary testimator (Bancroft, 1944) for (1/a) is

P4e =





1
a0

if H0 : a = a0 is accepted

1
a2
0A

(
1 − e−

A
n

)
T otherwise

(4.6)

The test statistics for H0 : a = a0 is

y =

aT
a2
0
− (n− 1)
√
n− 1

∼ N (0, 1)
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Here

R (P4e) = bE
[{
eA( 1

δ−1) −A
(

1
δ − 1

)
− 1
}/

(n− 1) −
√

(n− 1)Zα
2
≤ T

a0
≤ (n− 1) −

√
(n− 1)Zα

2

]

Pr
[
(n− 1) −

√
(n− 1)Zα

2
≤ T

a0
≤ (n− 1) −

√
(n− 1)Zα

2

]

+b



{
e
A



1
δ2A

„

1−e−
A
n

«

−1

ff

−A
{

1
δ2A

(
1 − e−

A
n

)
− 1
}
− 1

}/



(
T
a0

≤ (n− 1) −
√

(n− 1)Zα
2

)⋂
(
T
a0

≥ (n− 1) +
√

(n− 1)Zα
2

)








Pr
[(

T
a0

≤ (n− 1) −
√

(n− 1)Zα
2

)⋂(
T
a0

≥ (n− 1) +
√

(n− 1)Zα
2

)]

(4.7)

R (P4e) = bδ
√

n−1
2π

∫ b2
b1

[
e−A

{
eA/δ − e

„

1−e−
A
n

«

+(
√
n−1y+(n−1))

}
− A

δ +
(
1 − e−

A
n

)]
e−

y2

2 dy

+ bδ
√
n− 1

[
e
−A+(n−1)

„

1−e−
A
n

«

+ 1
2

„

1−e−
A
n

«2

(n−1)
−
(
1 − e−

A
n

)
(n− 1) +A− 1

]

(4.8)

where

y =
aT

a2
0

−(n−1)
√
n−1

∼ N(0, 1),

b1 = 1
δ

{
1√
n−1

− Zα
2

}
−
√
n− 1, b2 = 1

δ

{
1√
n−1

+ Zα
2

}
−
√
n− 1 and δ = a0

a

If A→ 0, the Linex loss reduces to squared error loss and the proposed testimator is

P ′
4e =





1
a0

if 1− Zα
2√

n−1
≤ T

(n−1)a0
≤ 1 +

Zα
2√

n−1

T
na2

0
otherwise

(4.9)

The properties of the testimator P ′
4e can be studied.
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Table 1: R.E. (P2s, P3∗)

δ
n

0.5 0.75 1.0 1.25 1.5

15 1.0004 1.3265 1.5708 1.3687 1.0007

20 0.9864 1.2371 1.5944 1.2697 0.8967

25 0.6348 1.1467 1.6328 1.0347 0.4962

Table 2: R.E. (P3e, P3∗)

α δ
n

0.5 0.75 1.0 1.25

0.01 30
40
50

0.9431
1.0134
0.8625

1.7568
1.5832
1.2346

2.6439
2.2431
2.0749

1.8687
1.5934
1.3241

0.05 30
40
50

0.9523
1.0346
0.9325

1.4262
1.2315
1.1468

1.8477
1.6804
1.5436

1.5092
1.3607
1.1659

0.16 30
40
50

0.9814
1.0071
0.9636

1.3413
1.1517
1.0945

1.7258
1.5531
1.4153

1.4345
1.2015
1.0945

Figure 1: R.E. (P2s, P3∗)
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Figure 2: R.E. (P3e, P3∗) for n=30

Figure 3: R.E. (P3e, P3∗) for n=40
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Figure 4: R.E. (P3e, P3∗) for n=50
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