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summary

Eight R2 type statistics proposed to use in logistics regression analysis are eval-
uated based upon their ability to predict the proportion of explained variation
(ρ2) for an underlying linear model with latent scale continuous dependent vari-
able. Functional relationships between these statistics are also studied. Predictive
quality of these statistics depends mainly upon the proportion of success in the
sample and ρ2, the quantity to be predicted. We found R2

CS (Hagle and Mitchell
(1992)) to be numerically closest to the underlying ρ2. There is a one-to-one
correspondence between the likelihood based R2 statistics, some of which have
been considered independent until recently.
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1 Introduction

Logistic regression analysis is popularly used to model the relationship between a binary

response variable Y and a set of covariates X = (X1, X2 . . . Xp)
′. Unlike the ordinary least

squares (OLS ) regression analysis, where R2 is widely accepted as a measure of explained

variation, more than a dozen summary measures have been suggested for logistic regression

models (Mittlböck and Schemper (1996); Menard (2000); DeMaris (2002); Liao and McGee

(2003)). Mittlböck and Schemper (1996) review 12 coefficients of determination for logistic

regression, Menard (2000) six and DeMaris (2002) seven, with some overlap. Other authors

have proposed adjusted R2 analogs (for example, see Mittlböck and Schemper (2002) and

Liao and McGee (2003)). But there is no consensus on the “best” R2 statistic for use with
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logistic models. Recommendations based on various research are different as different criteria

are used to evaluate the R2 analogs. Nevertheless, these statistics are reported to have two

major drawbacks. Firstly, all of the statistics are sensitive to the proportion of success (i.e.

P (Y = 1)) in the data and secondly, they usually have small values. The second drawback is

of particular importance when the binary random variable Y represents the categorization of

an underlying continuous random variable. In many practical situations Y is used as a proxy

for an underlying continuous random variable U , such that Y = 1 if U ≥ c for some c ∈ R,

and Y = 0 otherwise. If U is linearly related to X, the usual coefficient of determinant R2

can be used as a measure of the extent to which U is explained by X. But measurements

on U are usually not available and a researcher using a logistic model and seeking answer to

the question “How well the covariates explain U?” has to rely on some measure of explained

variation based on the logistic regression analysis of Y on X. The tendency of some of

the R2 statistics to have very small values in logistic regression analysis poses a problem

while estimating the extent of variation in U explained by X based on the logistic regression

analysis of Y .

The focus of this paper is to compare and evaluate some commonly used R2 statistics

for logistic regression according to their ability to estimate the explained variation in an un-

derlying continuous outcome variable. We consider eight R2 statistics for our study. These

statistics are described in Section 2. In Section 3 we present functional relationships be-

tween these statistics and how they compare with each other. A model for the unobservable

underlying continuous outcome variable is developed and numerical results are presented in

Section 4. Finally the conclusions of our study are presented in Section 1.2.

2 Measures of Explained Variation

Consider n observations (yi,xi), where yi = 0 or 1 and is the outcome of the ith subject,

and the relationship between yi and xi is modeled by

P (yi = 1|xi) ≡ πi =
eβ

′
xi

1 + eβ′
xi
,

where β is a (p+1)-dimensional parameter vector. We denote the estimates from a logis-

tic regression by P̂ (yi = 1|xi) = π̂i and P̂ (yi = 1) ≡ π̄ =
∑n

i=1(yi/n). Furthermore,

let D(yi) denote a measure of dispersion for the ith observation relative to the marginal

distribution of y and D(yi|xi) represents the measure computed conditional on the model

and covariate vector xi. Then the reduction in variation of the outcome variable due to

the covariates can be expressed by the difference
n∑
i=1

D(yi) −
n∑
i=1

D(yi|xi) and the ratio

PEV = [
∑n

i=1 D(yi) −
∑n

i=1D(yi|xi)] /
∑n
i=1 D(yi) is the proportion of explained varia-

tion (Efron (1978); Agresti (1986)).

A number of variation functions have been proposed for a binary response. Some exam-

ples of these functions are the squared error, prediction error, entropy and linear error (Efron

(1978)). Three of the eight measures of explained variation discussed in this section differ
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in their specification of D(yi) and D(yi|xi) and have a PEV interpretation. Though the

remaining five statistics do not have intuitive PEV interpretation, they are either derived

as direct extensions of the different forms of R2 statistics used in OLS regression analysis

or are scaled versions of these R2 analogs.

Ordinary Least Squares R2: In OLS regression the coefficient of determination is de-

fined as R2 = 1−SSE/SST and uses SST =
∑
i

D(yi) and SSE =
∑
i

D(yi|xi). A natural ex-

tension of this idea to the case of a binary y would be to useD(yi) = (yi−ȳ)2 and D(yi|xi) =

(yi − π̂i)
2. For binary dependent variable, this R2 statistic becomes

R2
OLS = 1 −

n∑

i=1

(yi − π̂i)
2/

n∑

i=1

(yi − ȳ)2. (2.1)

Gini’s Concentration R2: Gini’s concentration measure C(π) = 1−∑s
j=1 π

2
j is proposed

as a measure of dispersion of a nominal random variable Y that assumes the integral values

j, 1 ≤ j ≤ s, with probability πj (Haberman, (1982)). If the outcome variable is binary,

C(π) reduces to 2π(1 − π), where π = P (Y = 1). Thus using D(yi) = 2ȳ(1 − ȳ) and

D(yi|xi) = 2π̂i(1 − π̂i) this R2 statistic reduces to

R2
G = 1 −

n∑

i=1

π̂i(1 − π̂i)/

n∑

i=1

ȳ(1 − ȳ). (2.2)

The Likelihood Ratio R2: Let L0 be the likelihood of the model containing only the

intercept, and LM be the likelihood of the model containing all of the predictors. The

quantity DM = −2 logLM represents the SSE for the full model and D0 = −2 logL0

represents the SSE of the model with only the intercept included, analogs to the total sum

of squares (SST) in OLS. Thus using
∑
iD(yi) = −2 log(L0) and

n∑
i=1

D(yi|xi) = −2 logLM

the likelihood ratio R2 for a logistic model becomes

R2
L = 1 − log (LM )/ log (L0). (2.3)

R2 Based Upon Geometric Mean Squared Improvement: In the linear regression

model with normally distributed errors with zero mean and constant variance it can be shown

that R2 = 1−(L0/LM)2/n (DeMaris (2002)). Since the method of maximum likelihood is the

primary method of parameter estimation in the logistic regression, it seems quite natural to

extend this concept of explained variation to the logistic regression setting. Maddala (1983)

and Magee (1900) proposed using the following R2 analog:

R2
M = 1 − e−

2
n [ln(LM )−ln(L0)] = 1 − (L0/LM )

2/n
. (2.4)
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Since L0 ≤ LM , R2
M must be less than one. The maximum attainable value for R2

M in

Equation (2.4) is max(R2
M ) = 1 − (L0)

2/n. Nagelkerke (1991) proposed adjusting R2
M by

its maximum, 1 − L
2/n
0 , to produce

R2
N =

1 − (L0/LM )
2/n

1 − L
2/n
0

. (2.5)

Contingency Coefficient R2: Aldrich and Nelson (1984) proposed an R2 analog based

on the model Chi-squared statistics GM = −2 log (L0/LM ). It is a variant of the contingency

coefficient and is given by:

R2
C = GM/(GM + n). (2.6)

R2
C has the same mathematical form of the squared contingency coefficient and as such

can not equal one, even for a model that fits the data perfectly, because of the addition of

the sample size in the denominator. Because of this limitation, Hagle and Mitchell (1992)

proposed to adjust R2
C by its maximum to produce:

R2
CS = R2

C/max(R
2
C), (2.7)

where, max(R2
C) = −2[ȳ log ȳ+(1−ȳ) log (1−ȳ)]

1−2[ȳ log ȳ+(1−ȳ) log (1−ȳ)] and ȳ =
n∑
i

yi/n is the sample proportion of

cases for which y = 1.

Squared Pearson Correlation: In linear regression R2 is mathematically equivalent to

the squared correlation between y and ŷ, its sample fitted value according to the model.

The same idea is extended to the case of logistic regression and the R2 analog is obtained

by squaring the correlation coefficient between y and π̂ (Maddala (1983)). This R2 statistic

becomes

R2
P = [corr(y, π̂)]2 =

[
n∑
i=1

yiπ̂i − nȳ2

]2

nȳ(1 − ȳ)
n∑
i=1

(π̂i − ȳ)2
. (2.8)

3 Comparison of R2 Analogs

Comparison of Likelihood Based R2 Measures: In Section 2 we have presented five

R2 statistics based on the likelihood function. There is a close relationship between these

statistics and all of them can be expressed as a function of any of the other likelihood based

R2 statistic. With simple algebra R2
M , R2

N , R2
C and R2

CS can be written as a function of
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R2
L as follow:

R2
M = 1 − (L0/LM )

2/n
= 1 − e−

2
n [log LM−log L0] = 1 − e−δ R

2
L (3.1a)

R2
N =

1 − e−δR
2
L

1 − L
2/n
0

=
1 − e−δR

2
L

1 − e−δ
(3.1b)

R2
C =

−2(log L0 − log LM )

−2(log L0 − log LM ) + n
=

δR2
L

δR2
L + 1

(3.1c)

R2
SS =

R2
C

max(R2
C)

=

[
δR2

L

δR2
L + 1

]
/

[
δ

δ + 1

]
=

(1 + δ)R2
L

δR2
L + 1

(3.1d)

where, δ ≡ −2 log L0/n = −2 [π̄ log π̄ + (1 − π̄) log (1 − π̄)].

Typically R2
L is small in value. Therefore, for sufficiently small R2

L the right hand side

in (3.1a) can be linearized as R2
M ≈ δ R2

L. Similarly, using (3.1c) we may write R2
C/R

2
L =

δR2
L/
(
δ(R2

L)2 +R2
L

)
≈ δ for sufficiently small R2

L. Now δ, the key parameter in defining

the above functional relationships is a parabolic function of π̄ in the range [0, 1] and attains

its maximum at π̄ = 0.5. Furthermore, δ > 1 if 0.2 < π̄ < 0.8, and δ < 1 otherwise.

This suggests that, for sufficiently small values of R2
L, R2

L < R2
M and R2

C when 0.2 < π̄ <

0.8, and R2
L > R2

M and R2
C , otherwise. Using simple algebra it can be easily shown that

that R2
C < R2

M < R2
N < R2

CS and R2
L < R2

N < R2
CS.

Comparison of R2
OLS, R

2
P and R2

G: R2
G differs from the R2

OLS and R2
P in that it is based

on the predicted values rather than the error vector. However there is a close relationship

between these three R2 statistics (Hu et al. (2006))

(
R2
G +R2

OLS

)2
= 4R2

PR
2
G (3.2)

Applying the Cauchy-Schwartz inequality to the right hand side of Equation (3.2) we have

the following inequality

R2
P ≥ R2

OLS (3.3)

Similarly, we can write

(
R2
P +R2

OLS

)2 ≥ 4R2
PR

2
OLS , and

(
R2
P +R2

G

)2 ≥ 4R2
PR

2
G.

Subtracting the first inequality from the second and after simplification we have the following

R2
G ≥ R2

P (3.4)

This leads to the following relationship between R2
OLS , R2

P and R2
G

R2
G ≥ R2

P ≥ R2
OLS (3.5)
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4 Simulation Study

Let the underlying (continuous) random variable U be related with a set of covariates X

through a linear model U = a + b′X + ε, where ε is an error term assumed to be iid

N(0, 1). The usual coefficient of determinant ρ2 = 1 − E [Var(U |X)] /Var(U) measures the

extent to which the covariates of interest explain the underlying outcome variable. U is

unobservable in practice but quite often is represented by it’s binary proxy Y such that

Y = 1 if U ≥ c for some c ∈ R, and Y = 0 otherwise. The relationship between Y and X is

quite often modeled by the logistic model

π ≡ P (Y = 1|X) = exp(β0 + β′X)/ [1 + exp(β0 + β′X)] .

If the estimation of the extent of variation in U due to X is of interest, it is desirable to

compute a coefficient of determinant from the logistic model and use it as an estimate of

ρ2, the theoretical coefficient of determinant of the underlying linear model. Obviously the

objective is then to select an R2 analog that, along with other desirable criteria, is closest

to the ρ2 of the underlying model.

In our simulation study we considered linear regression models with a single covariate,

which was generated from N(0, σ2
x). The regression parameters b and σx were selected in

such a way that the underlying model would produce a given value of ρ2. A continuous

random variable U was generated for five levels of ρ2 ranging from 0.1 to 0.9. Each U

was then transformed to a binary dependent variable Y with probability of success π̄, also

termed as the base-rate, ranging from 0.05 to 0.5; in total 10 levels of π̄ were considered.

Pseudo R2 statistics were then computed for each combination of ρ2 and π̄. The simulation

experiment was replicated 10,000 times each for five sample sizes ranging from 250 to 2000.

The desired criteria of agreement of the Pseudo R2 statistics with the ρ2 of the un-

derlying linear model was evaluated by comparing the means of the sampling distribution

of the various R2 statistics with the underlying ρ2. To the extent that the means of the

R2 statistics depart from the ρ2 they exhibit bias. The results are presented in Figure 1, for

experimental conditions with n = 250 and π̄ = 0.05, 0.2, 0.35 and 0.5. Any deviation from

the 45◦ line indicates bias.

All the statistics responded to the underlying ρ2 to some degree. With the exception of

R2
CS , which was upwardly biased for estimating small ρ2 at moderate to large π̄, all other

statistics underestimated the underlying ρ2. The hierarchical order among R2
CS , R2

N , R2
M

and R2
C derived in Section 3, is also evident from Figure 1 with R2

C and R2
M most severely

underestimating the ρ2. This is obviously due to the fact that the upperbounds of these two

statistics are functions of the base-rate and cannot exceed 0.75 and 0.5802 for R2
M and R2

C ,

respectively. However, when scaled by their respective maximum this upperbound restriction

was eliminated and the resulting statistics: R2
CS and R2

N provided much improved estimates

of the underlying ρ2. As noted in Section 3, R2
CS provided the best estimates for the

underlying ρ2 followed by the R2
N in all simulation conditions. Although R2

L uniformly

provided poorer estimates of ρ2 as compared to R2
N and R2

CS at all experimental conditions,

it was interesting to note that it performed better than the rest of the R2 statistics at low
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Figure 1: Means of R2 Statistics by ρ2 at π̄ = 0.05, 0.2, 0.35, 0.5; and n = 250.

base-rate conditions. When the proportion of successes are less than 20%, R2
L performed

better than the R2
P , R2

OLS and R2
G at all level of ρ2 , and than the R2

M and R2
C while

estimating small ρ2.

In general, we observed a greater degree of discrepancy between the actual and estimated

value of moderately large ρ2 (around 0.75) at small base-rate conditions, which tended to

become narrower as the π̄ approached to 0.5.

The ability of these statistics to predict underlying ρ2 is evaluated in Table 1, which

presents the Mean Squared Errors (MSE) for estimating the underlying ρ2 of various

R2 statistics under selected experimental conditions. The R2
CS appeared to have clear ad-

vantages over other R2 statistics at most experimental conditions except when estimating

small ρ2 (e.g. in the neighborhood of 0.1); the R2
N provided better estimates of ρ2 in

such situations irrespective to the base-rate. It is also noted that the R2
L was ranked at

third place (average rank 2.6 to 3.0) when π̄ ≤ 0.15. However the relative performance

of this R2 statistic deteriorated noticeably when the base-rate was greater than 0.2 (av-

erage rank 6.6 to 7.2). In general, the MSE tends to decrease with increasing base-rate

for all R2 statistics, except the R2
L, which shows a small but increasing tendency with the

base-rate.

The predictive quality of these statistics is further investigated by comparing the MSE

of the corresponding R2 statistic to that of the R2
CS , which produced the smallest MSE in
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Table 1: Mean Squared Error Evaluation of R2 Statistics by Selected Levels of ρ2 and π̄ at
n = 250.

π̄ ρ2 R2

P R2

OLS R2

G R2

L R2

M R2

N R2

C R2

CS

0.10 0.10 0.0043 0.0043 0.0041 0.0030 0.0044 0.0027 0.0045 0.0030

0.25 0.0224 0.0226 0.0206 0.0139 0.0270 0.0085 0.0282 0.0068

0.50 0.0663 0.0667 0.0596 0.0422 0.1049 0.0215 0.1142 0.0133

0.75 0.0897 0.0900 0.0807 0.0605 0.2210 0.0299 0.2529 0.0185

0.90 0.0640 0.0640 0.0582 0.0449 0.2918 0.0226 0.3500 0.0149

0.25 0.10 0.0026 0.0026 0.0026 0.0030 0.0027 0.0019 0.0027 0.0024

0.25 0.0128 0.0128 0.0122 0.0153 0.0141 0.0053 0.0159 0.0040

0.50 0.0387 0.0388 0.0363 0.0470 0.0521 0.0121 0.0669 0.0055

0.75 0.0569 0.0569 0.0531 0.0681 0.1071 0.0172 0.1560 0.0083

0.90 0.0427 0.0428 0.0397 0.0498 0.1348 0.0132 0.2186 0.0078

0.45 0.10 0.0020 0.0020 0.0020 0.0030 0.0020 0.0017 0.0021 0.0023

0.25 0.0093 0.0093 0.0091 0.0160 0.0095 0.0041 0.0114 0.0036

0.50 0.0298 0.0298 0.0288 0.0497 0.0343 0.0085 0.0505 0.0037

0.75 0.0459 0.0460 0.0436 0.0710 0.0701 0.0117 0.1227 0.0052

0.90 0.0363 0.0363 0.0340 0.0525 0.0882 0.0094 0.1759 0.0056

Smallest MSEs in each experimental condition are given in bold type.

most of the experimental conditions, except when ρ2 ≤ 0.1. This error ratio is termed as

the Relative Mean Squared Error (RMSE ), and can be interpreted as the average squared

error loss of a R2 statistic relative to that of the R2
CS . RMSE of various R2 statistics are

plotted against π̄ at selected levels of ρ2 in Figure 2.

The relative losses in comparison with the R2
CS appeared to increase as the underlying

ρ2 increased and could be noticeably large. For example the average squared loss of R2
C was

about 25 time larger than R2
CS and that of the R2

L, the most commonly used R2 statistic, is

about 15 times larger when the ρ2 = 0.75 and π̄ = 0.5. While the The RMSE of R2
L tended

to increase with π̄, relative losses could rise or fall for other statistics with π̄ depending upon

the ρ2. However, at ρ2 ≥ 0.5 the relative losses appeared to increase with π̄ in general.

5 Summary

Many real life events, including many diseases are progressive in nature. Based on some

predefined criteria scientists determine whether a particular event has occurred or not.
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Figure 2: Relative Mean Squared Error of R2 Statistics by π̄ at ρ2 = 0.1, 0.25, 0.5, 0.75; and
n = 250.

Therefore, existence of a latent variable underlying a dichotomous variable Y , representing

whether the event has occurred or not, is often a reasonable assumption to make. For exam-

ple, suppose that a clinician conducts a Fasting Plasma Glucose (FPG) test to determine

whether a subject is diabetic or not. Using the National Institute of Health classification

for diabetes, he/she classifies the subjects as diabetic if the FPG test reveals a fasting blood

glucose level equal or greater than 126 mg/dL. Further suppose that an applied researcher

is interested in modeling the determinants of diabetes in the study population but he/she

has only access to data on whether the subjects are diabetic or not. Assuming that data

on covariates of interest are also recorded for these subjects, the researcher might want to

model diabetes using logistic regression. However, his/her interest is to study blood glucose

level per se, and not just whether someone is diabetic. Here the interest is on blood glucose

level as a latent scale and the binary classification is just a crude measure of it. If the goal is

to estimate the extent of variation in blood glucose level due to the set of covariates then it

is desirable to use an R2 statistic in logistic regression analysis that is numerically consistent

with the ρ2 of the underlying linear model. In other words, if the underlying ρ2 exists, a

“good” R2 statistic should be able to estimate it reasonably well. Knowing the value of

an R2 statistic that is numerically close to the underlying ρ2 helps to explain the strength

of the relationship between the covariates and the latent variable underlying the observed
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binary dependent variable.

Using the Monte Carlo Simulations we find that while all the eight R2 statistics are

strongly correlated with the ρ2, some of them severely underestimate it. R2
CS provides the

best estimate of the underlying ρ2 : it has the smallest bias at all experimental conditions

and the smallest MSE for estimating ρ2 > 0.1. We also showed that the underestimation

depends on the proportion of successes in the sample as well as ρ2 of the underlying model.

In particular, underestimation of the R2
L increases as the base-rate increases. While the

relative mean squared loss of R2
L is quite small for estimating small ρ2, it increases noticeably

as the ρ2 increases. We found R2
N to be the next best predictor of ρ2.

In this paper we also showed that the likelihood based R2 statistics, some of which have

been considered independent until recently, are not independent statistics. In fact there

is a one-to-one correspondence between them and each of the likelihood based R2 statistic

can be presented as a function of R2
L (or any other likelihood based R2 statistic for that

matter) and a parameter δ, which is a parabolic function of π̄ in the range [0, 1]. There is,

however, a clear hierarchical order among these R2 statistics with R2
CS being the largest in

value followed by R2
N . This hierarchical order can be summarized as below:

1. R2
C < R2

M < R2
N < R2

CS irrespective of ρ2 and π̄;

2. For sufficiently small ρ2,

R2
L < R2

M and R2
C when .2 < π̄ < .8, and

R2
L > R2

M and R2
C otherwise;

3. R2
L < R2

N < R2
CS irrespective of ρ2 and π̄;

4. And finally, R2
G ≥ R2

P ≥ R2
OLS .

These results are also verified from simulation results.

The very existence of a plethora of R2 statistics for logistic regression sometime creates

confusion about which statistic to use to evaluate the worth of a logistic regression model.

Use of R2
L in logistic regression has become a standard practice and many researchers have

recommended it (for example, Menard (2000); Liao and McGee (2003)). In this paper we

have showed that R2
CS deserve a serious consideration specially when it is reasonable to

believe that a underlying latent variable exists and estimation of explained variation in the

underlying dependent variable is of interest. This statistic provides valuable information

regarding the strength of relationship between the covariates and the underlying latent

variable, which R2
L fails to provide.
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