
Journal of Statistical Research ISSN 0256 - 422 X

2008, Vol. 42, No. 1, pp. 75-83

Bangladesh

A NOTE ON DOUBLE K-CLASS ESTIMATORS UNDER

ELLIPTICAL SYMMETRY

S. M. M. Tabatabaey and M. Arashi

Department of Statistics, School of Mathematical Sciences

Ferdowsi University of Mashhad, Mashhad, Iran

Email: tabatab@math.um.ac.ir

summary

In this paper, estimation of the regression vector parameter in the multiple re-
gression model y = Xβ + ε is considered, when the error term belongs to the
class of elliptically contoured distributions (ECD), say, ε ∼ ECn(0, σ2V , ψ),
where σ2 is unknown and V is a symmetric p.d known matrix with the char-
acteristic generator ψ. It is well-known that UMVU estimator of β has the
form (X ′V −1X)−1X ′V −1y. In this paper using integral series representation
of ECDs, the dominance conditions of double k-class estimators given by

β̂k1,k2 =

»

1 −

k1ε̂
′V −1 ε̂

y′y − k2 ε̂′V −1 ε̂

–

β̂

over UMVUE, have been derived under weighted quadratic loss function.
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1 Introduction

Following Stein (1956) and James and Stein (1961), constructing improved estimators over

minimum variance unbiased estimators (MVUEs) under normal theory, there are a lot of

works involving biased estimators to make different types of dominant estimators under

many sorts of statistical models. For the review on the recent results, see Brandwein and

Strawderman (1991), Lehmann and Casella (1998), and Saleh (2006).

Ullah and Ullah (1978) proposed double k-class (DKC) estimators that under a mild

condition, dominated the MVUE of a regression vector parameter in a multiple regression

model, under normal assumptions. After that, Singh (1991) provided some conditions for

demonstrating the superiority of DKC estimators upon MVUE of the regression vector

parameter using multivariate Student’s t distribution with the scale matrix σ2In. No work
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has been done so far under the assumption of elliptical symmetry.

To deal with such situations, consider the multiple regression model given by

y = Xβ + ε (1.1)

where y is an n-vector of responses, X is an n x p matrix with full rank p, β = (β1, · · · , βp)′
is p-vector of regression coefficients and ε = (ε1, · · · , εn)′ is the n-vector of errors distributed

according to the law belonging to the class of elliptically contoured distributions (ECDs),

denoted by ECn(0, σ2V , ψ) for a symmetric p.d. known matrix V with the following char-

acteristic function

φε(t) = ψ

(
σ2

2
t′V t

)
(1.2)

for some functions ψ : [0,∞) → < say characteristic generator (Fang et al., 1990).

If ε has a density, then it can be represented as

f(ε) = dn|σ2V|− 1
2 gn

[
1

2σ2
ε′V −1ε

]

for a normalizing constant dn and for some function gn(.) say density generator satisfying

the following condition ∫ ∞

0

x
n
2 −1gn(x)dx <∞

Then we will use the notation ε ∼ ECn(0, σ2V , gn). In addition, if gn does not depend on

n, we use the notation g instead.

Then for σ2
e = −2σ2ψ′(0) we have

E(ε) = 0, E(ε′ε) = −2σ2ψ′(0)V = σ2
eV,

provided |ψ′(0)| <∞.

Some of the well-known members of the class of ECDs are the multivariate normal, Pear-

son Type VII, multivariate Student’s t, multivariate Cauchy, Pearson Type II, multivariate

logistic distribution, multivariate Laplace distribution, multivariate Kotz type distribution

and Generalized Slash. For more details on ECDs see Fang et al. (1990) and Gupta and

Varga (1993).

We need the following essential Lemma for the proofs of the main results of this approach.

Lemma 1.1 (Chu, 1973). If z is a n-dimensional elliptically contoured random vector with

mean equal to θ and scale matrix Σ and density function h(z), then, under some regularity

conditions, there exists a scalar function w(t) defined on (0,∞) such that

h(z) =

∫ ∞

0

w(t)φN (z)dt,

where φN (z) denotes the density function of Nn(θ, t
−1Σ), and

w(t) = (2π)n/2|Σ|1/2t−n/2L−1(f(s)),

L−1(f(s)) denotes the inverse Laplace transform of f(s) with f(s) = h(z) when s = z′Σ−1z
2 .
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Distribution h(s) w(t)

Multivariate Normal |V |−1/2e−s

(2π)n/2
δ(t)

Multivariate Pearson Γ(m)|V |−1/2

(qπ)n/2Γ(m−n/2)
tm−n/2−1e−qt/2

(q/2)n/2−mΓ(m−n/2)

Type V II ×(1 + 2s/q)−m

Multivariate Exponential Power kΓ(n/2)|V |−1/2r
n
2k e−rs

(2π)n/2Γ(n/2k)
δ(t− r)

Multivariate Student-t νν/2Γ((ν+n)/2)|V |−1/2

πn/2Γ(ν/2)

ν(νt/2)ν/2−1e−νt/2

2Γ(ν/2)

with ν d.f. ×(ν + 2s)−(ν+n)/2

Multivariate Laplace Γ(n/2)|V |−1/2e−
√

2s

2πn/2Γ(n)
δ(t−

√
2)

Generalized Slash νs−n/2−ν |V |−1/2

(2π)n/2
νtν−1

×[Γ(n/2 + ν) − Γ(n/2 + ν, s)]

Multivariate Kotz type qm−1+n/2Γ(n/2)|V |−1/2

πn/2Γ(m−1+n/2)
(2q)m−1+n/2|V |−1/2Γ(n/2)

Γ(m−1+n/2)

(2s)m−1e−2qs t−n/2δ(m−1)(t− 2q)

Table 1: Some mixtures by weighting function

For details on the properties of Laplace transform and its inverse see Debnath and Bhatta

(2007).

On integrating h(z) over <n, w(t) integrates to 1. Thus for nonnegative function w(t),

it is a density. Some explicit representations of h(.) and w(.) for s = z ′Σ−1z/2 are given in

Table 1. Here δ(.) is the unit impulse function or the Dirac delta function with the following

properties

1.
∫∞
0 δ(t)dt = 1

2.
∫∞
−∞ f(x)δ(x)dx = f(0) for every Borel measurable function f(·).

Also δ(m)(t) denotes the mth derivative of δ(t) w.r.t t. See Gupta and Varga (1995) and

Cheong (1999) for some applications of Lemma 1.1.

2 DKC Estimators

In this section, we define the double k-class estimators.

By direct computations, it can be obtained that the MVUE of β is given by

β̂ = (X ′V −1X)−1X ′V −1y = G1X
′y, G1 = (X ′V −1X)−1 (2.1)

Also the LSE of σ2 is

σ̃2 =
1

n
(y − Xβ̃)′V −1(y − Xβ̃)
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Under the assumption ε ∼ ECn(0, σ
2V , g), using 2.1 we get β̂ ∼ ECn(β, σ

2G1, g) which

leads

E(β̂ − β)′(β̂ − β) = −2σ2Ψ′(0)tr(G1) = σ2
e tr(G1).

Now consider the DKC estimators with the following structure

β̂k1,k2 =

[
1 − k1ε̂

′V −1ε̂

y′y − k2ε̂′V −1ε̂

]
β̂. (2.2)

Ullah and Ullah (1978) utilized such estimators for the model (1.1) assuming ε ∼ Nn(o, σ
2In).

Theil (1971), Bock (1975) and Judge and Bock (1976) considered the DKC estimators taking

k2 = 1 under normal theory. Singh (1991) extended the results by taking ε ∼Mt(0, σ2In, ν),

multivariate Student’s t distribution with mean vector 0 and variance-covariance structure
σ2ν
ν−2In for known degrees of freedom ν. Considering DKC estimators given by (2.2) by the

assumption ε ∼ EC(0, σ2V , g) in the model (1.1), has the following advantages comparing

to all the works have done yet.

1. The broader class of distributions is considered which contains heavier/lighter tail al-

ternatives to the multivariate normal model such as multivariate normal and Student’s

t types.

2. Based on the proof of Theorem 1, we can conclude that the dominance conditions

of DKCEs over MVUE, is robust under normal theory and it does not change by

departure from normality.

3. Comparing to the method used in Singh (1991), he applied the scale mixture repre-

sentation of multivariate Student’s t distribution, but we use the integral of a set of

multivariate normal densities to obtain the results.

4. Taking the general structure V in variance-covariance matrix, enables to consider

correlated variables.

3 Main Results

In this section, using weighted quadratic loss function, we provide conditions on k1 and

k2 under which β̂k1,k2 given by (2.2) dominate β̂ in the sense that R(β̂k1,k2 ;β) < R(β̂;β)

denoted by β̂k1,k2 � β̂.

In this approach, we use R(β̂;β) = Eβ [L(β̂;β)] for the weighted quadratic loss given by

L(β̂;β) = (β̂ − β)′W (β̂ − β), (3.1)

where W is a symmetric p.d. known matrix.

Theorem 1. Suppose in the multiple regression model (1.1), ε ∼ ECn(0, σ
2V , g), where

σ2 is unknown and V is a p.d. known matrix. Also assume L−1(f(s)) for s = ε′V −1ε
2σ2
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is nonnegative. Then β̂k1,k2 � β̂ w.r.t the weighted quadratic loss function given by (3.1)

provided k2 ≤ 1 and

0 < k1 ≤ 2(F − 2)

m+ 2
, F =

tr[G1W ]

λ1[G1W ]
, m = n− p,

where λ1(G1W ) is the largest eigenvalue of G1W .

Proof. Consider in the model (1.1), ε ∼ ECn(0, σ2V , g), then using Lemma 1.1, the density

of ε can be expressed as

hε(z) =

∫ ∞

0

w∗(t)φN∗(z)dt,

where φN∗ denotes the density of N(0, σ2t−1V ) and

w∗(t) = (2π)n/2σn|V |1/2t−n/2L−1(f(s)), (3.2)

with f(s) = h(z) when s = z′V −1z
2σ2 for nonnegative L−1(f(s)). Then we have

R(β̂;β) −R(β̂k1,k2 ;β) = EEC [(β̂ − β)′W (β̂ − β) − (β̂k1,k2 − β)′W (β̂k1,k2 − β)]

=

∫ ∞

0

w∗(t)EN∗ [(β̂ − β)′W (β̂ − β)

−(β̂k1,k2 − β)′W (β̂k1,k2 − β)], (3.3)

where EEC and EN∗ denote taking expectation w.r.t elliptical and normal assumptions

respectively.

Then in order to prove R(β̂;β) −R(β̂k1,k2 ;β) > 0, it is enough to show that

DN∗ = EN∗ [(β̂ − β)′W (β̂ − β)] −EN∗ [(β̂k1,k2 − β)′W (β̂k1,k2 − β)] > 0

Now let

z∗ = σ−1(tG1)
1
2 β̂, ∆ = σ−1(tG1)

1
2 β

v =
ε̂′V −1ε̂

σ2t−1
, u =

v

z∗′z∗ + (1 − k2)v
.

In this case we obtain

β̂k1,k2 − β = β̂ − β − k1ε̂
′V −1ε̂

y′V −1y − k2ε̂′ε̂

= σ(tG1)
− 1

2 [(z∗ − ∆) − k1uz
∗]

Similar to Srivastava and Chaturvedi (1985), one can get

DN∗ = σ2t−1

{
2k1EN∗ [u(Z∗ − ∆)′G

1
2
1 WG

1
2
1 z

∗]

−k2
1EN∗ [u2z∗′G

1
2
1 WG

1
2
1 z

∗]

}
(3.4)
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Then using Stein lemma, we obtain

EN∗ [u(z∗ − ∆)′G
1
2
1 WG

1
2
1 z

∗] = EN∗

[
∂(uG

1
2
1 WG

1
2
1 z

∗)

∂z∗′

]

= EN∗ [utr(G1W )]

−EN∗ [2u2v−1z∗′G
1
2
1 WG

1
2
1 z

∗] (3.5)

Also by direct computations similar to Singh (1991), we get

EN∗ [u2z∗′G
1
2
1 WG

1
2
1 z

∗] = (m+ 2)EN∗

[
vz∗′G

1
2
1 WG

1
2
1 z

∗

[z∗′z∗ + (1 − k2)v]2

]

−4(1− k2)EN∗

[
u2z∗′G

1
2
1 WG

1
2
1 z

∗

z∗′z∗ + (1 − k2)v

]

< (m+ 2)EN∗

[
u2

vz∗′G
1
2
1 WG

1
2
1 z

∗

]
(3.6)

Then, using (3.4), (3.5) and (3.6) we have

EN∗ [(β̂ − β)′W (β̂ − β) − (β̂k1,k2 − β)′W (β̂k1,k2 − β)]

≥ t−1{2k1tr(G1W ) − [4k1 + (m+ 2)k2
1]λp(G1W )}EN∗(u) > 0,

provided 0 < k1 ≤ 2(F−2)
m+2 , since

uv−1z∗′G
1
2
1 WG

1
2
1 z

∗ ≤ (z∗′z∗)−1z∗′G
1
2
1 WG

1
2
1 z

∗ ≤ λ1(G
1
2
1 WG

1
2
1 ).

Singh (1991) proposed the same theorem changing F with d = tr[(X′
X)−1

W ]
λp[G1W ] under

multivariate Student’s t model. As it can be obtained, we will be in reach of the same

result as in Theorem 1 under normal assumptions. Because the density generator g plays

no role in obtaining the dominance conditions using Lemma 1.1.Therefore we can conclude

the dominance conditions given in Theorem 1 are robust under normal theory.

Corollary 3.1. Taking k1 = n−1ψ′(0) and k2 = 1 − k1 in (2.2), β̂k1,k2 � β̂ provided

F ≥ (m+ 2)ψ′(0)

2n
+ 2.

For the proof consider that from Theorem 1, β̂k1,k2 � β̂ for all k2 ≤ 1 and for all

0 < k1 ≤ F0−2
m+2 , where F0 = λ−1

i

∑
λi > 2 and the result follows directly.

Corollary 3.2. Ignoring the term O
(
δ−3
∗
)

for δ∗ = β′G−1
1 β, we have

R(β̂;β) −R(β̂k1,k2 ;β) = D, (3.7)
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where

D =
mk1℘2

δ∗

[
2tr(G1W ) − [(m+ 2)k1 + 4]β′Wβ

δ∗

]

+
mk1℘3

δ∗

[
2tr(G1W )[(2k2 − k1)(m+ 2) − 2n]

δ∗

+
8[(m+ 2)k1 + 4]tr(βWβ′)

δ2∗

]
,

where

℘i =

∫ ∞

0

t−iw∗(t)dt and w∗(t) = (2π)n/2σn|V |1/2t−n/2L−1(f(s)). (3.8)

Proof. Using equations (8) and (14) and the proof of Theorem 3 from Singh (1991), by some

direct computations we can obtain

R(β̂;β) −R(β̂k1,k2 ;β) =

∫ ∞

0

mk1t
−2w∗(t)

δ∗

{
tr(G1W )

×
(

1 +
t−1[(2k2 − k1)(m+ 2) − 2n]

δ∗

)

−
[
β′Wβ

δ∗
− 8t−1tr(βWβ′)

δ2∗

]
× [(m+ 2)k1 + 4]

}

=
mk1℘2

δ∗

[
2tr(G1W ) − [(m+ 2)k1 + 4]β′Wβ

δ∗

]

+
mk1℘3

δ∗

[
2tr(G1W )[(2k2 − k1)(m+ 2) − 2n]

δ∗

+
8[(m+ 2)k1 + 4]tr(βWβ′)

δ2∗

]

4 General Remarks

In this paper, we obtained the dominance conditions under which DKC estimators perform

better than the UMVUE of regression coefficient vector. We assumed that the error term

has elliptically contoured distribution. We used the inverse Laplace transform to obtain the

main results. But it is important to consider the following notes

1. Based on Lemma 1.1, we derived the results for the case ε ∼ ECn(0, σ2V , g). Those

are the same for the case ε ∼ ECn(0, σ2V , gn).

2. Involving Lemma 1.1, the inverse Laplace transform of h(.) exists if the following

conditions are satisfied.

(a) h(t) is differentiable when t is sufficiently large.

(b) h(t) = o(t−m) as t→ ∞, m > 1.
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However, it is rather difficult to calculate the inverse Laplace transform of some func-

tions, we can handle it for many density generators of elliptical densities. See Debnath

and Bhatta (2007) for more details.

3. Theorem 1 is significantly true even for some elliptical distributions that inverse

Laplace transform do not exist. Because the density generator g (gn) plays no role

in obtaining the sufficient conditions of the Theorem 1 and those are robust under

normal assumptions.

4. Involving Corollary 3.2, there exist four method to determine the ℘i, i = 1, 2, 3 as

follows.

(a) Partial fraction decomposition.

(b) Convolution theorem.

(c) Contour integral of the Laplace inverse integral.

(d) Heaviside’s expansion theorem.

See Debnath and Bhatta (2007) for more details.
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