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summary

In this paper the generalized log-gamma model is modified for possibility that
long-term survivors may be present in the data. The model attempts to sepa-
rately estimate the effects of covariates on the acceleration/deceleration of the
timing of a given event and surviving fraction, that is, the proportion of the pop-
ulation for which the event never occurs. The logistic function is used for the
regression model of the surviving fraction. We consider maximum likelihood and
Jackknife estimators for the parameters of the model. We derive the appropriate
matrices for assessing local influence on the parameter estimates under different
perturbation schemes and we also present some ways to perform global influence.
Finally, a data set from the medical area is analyzed under the log-gamma gen-
eralized mixture model. A residual analysis is performed in order to select an
appropriate model.
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1 Introduction

Models for survival analysis typically assume that every subject in the study population

is susceptible to the event under study and will eventually experience such event if the

follow-up is sufficiently long. However, there are situations when a fraction of individuals

are not expected to experience the event of interest, that is, those individuals are cured or

not susceptible. For example, researchers may be interested in analyzing the recurrence of

a disease. Many individuals may never experience a recurrence; therefore, a cured fraction

of the population exists. Cure rate models have been used to estimate the cured fraction.

Cure rate models are survival models which allow for a cured fraction of individuals. These

models extend the understanding of time-to-event data by allowing for the formulation of

more accurate and informative conclusions. These conclusions are otherwise unobtainable

from an analysis which fails to account for a cured or insusceptible fraction of the population.

If a cured component is not present, the analysis reduces to standard approaches of survival

analysis. Use of cure rate models has been used for modelling time-to-event data for various

types of cancers, including breast cancer, non-Hodgkin’s lymphoma, leukaemia, prostate

cancer and melanoma. Perhaps the most popular type of cure rate models is the mixture

model introduced by Berkson and Gage (1958) and Maller and Zhou (1996). In this model,

the population is divided into two subpopulation so that an individual either is cured with

probability p, or has a proper survival function S(t), with probability 1 − p. This gives an

improper population survivor function G(t) in the form of mixture, that is,

G(t) = p+ (1 − p)S(t), S(∞) = 0, G(∞) = p, (1.1)

Common choices for S(t) in (1) are the exponential and Weibull distributions which are

particular cases of the family of generalized log-gamma distribution. With those choices

we have respectively the exponential mixture model and Weibull. Mixture models involving

these distributions have been studied by several authors, including Farewell (1982), Goldman

(1984), Greenhouse (1998) and Sy and Taylor (2000). The book by Maller and Zhou (1996)

provides a wide range of applications of the long-term survivor mixture model.

Influence diagnostic is an important step in the analysis of a data set as it provides an

indication of bad model fitting or of influential observations. However, there are not appli-

cations of influence diagnostic to the mixture models. Cook (1986) proposed a diagnostic

approach named local influence to assess the effect of small perturbations in the model

and/or data on the parameter estimates. Several authors have applied the local influence

methodology in more general regression models than the normal regression model (see, for

example, Paula 1993, Galea et al., 2002 and Daz-Garca, et al., 2003). Also, some authors

have investigated the assessment of local influence in survival analysis models: for instance,

Pettit and Bin Daud (1989) have investigated local influence in proportional hazard regres-

sion models; Escobar and Meeker (1992) have adapted local influence methods to regression

analysis with censoring; Ortega et al. (2003) have considered the problem of assessing local

influence in generalized log-gamma regression models with censored observations and Ortega

et al. (2006) have derived the curvature calculations under various perturbation schemes in
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log-Weibull-exponentiated regression models with censored data. In this paper, we consider

the generalized log-gamma mixture model with covariates, where the covariates are modelled

through the logistic function. In section 2, we present the generalized log-gamma mixture,

in addition with the maximum likelihood and Jackknife estimators. The score functions

and observed Fisher information matrix are given as well as the process for estimating the

regression coefficients and the remaining parameter is discussed. In Section 3 we use several

diagnostic measures considering case-deletion and the normal curvatures of local influence

are derived under various perturbation schemes in the generalized log-gamma mixture. Sec-

tion 4, two kinds of deviance-type residuals are proposed. An application with real data,

which have not been analyzed from a diagnostic perspective, is discussed in section 5. The

last section deals with some concluding remarks.

2 The Generalized Log–Gamma Mixture with Covari-

ates

Consider first the uncensored case and the generalized log-gamma model

Y = µ+ σZ, (2.1)

where µ ∈ R is a location parameter, σ > 0 is a scale parameter, and Z follows a distribution

with probability density function given by

f(z; q) =





|q|
Γ(q−2) (q

−2)q
−2

exp
{
q−1z − q−2exp(qz)

}
, if q 6= 0

1√
2π

exp(− z2

2 ), if q = 0,
(2.2)

where θ = (µ, σ, q)T and z = (y − µ)/σ. The extreme value distribution is a particular case

of (2.1), when q = 1. With the parameterisation given in (2.1) the maximum likelihood

estimation and large-sample methods are less complicated than the parameterisation given

in Lawless (2003, Section 5.3). Consider now the censored case with the assumption of

uninformative censoring. Let y be either the observed log-lifetime or log-censoring time for

the individual. The survivor function S(y; θ) assumes the following forms:

S(y; θ) =





Q
[
q−2, q−2exp{q( y−µσ )}

]
, if q > 0

1 −Q
[
q−2, q−2exp{q( y−µσ )}

]
, if q < 0

1 − Φ( y−µσ ), if q = 0,

with Φ(z) denoting the standard normal cumulative distribution, while

Q(k, a) =

∫ ∞

a

xk−1e−x

Γ(k)
dx (2.3)

is the incomplete gamma integral and Γ(q) the gamma function.
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Thus given a sample y1, y2 . . . , yn, where yi is either the observed log-lifetime or log-

censuring time for the ith individual, let a binary random variable bi, i = 1, . . . , n indicating

that the ith individual in a population is at risk or not with respect to a certain type of

failure, that is, bi = 1 indicates that the ith individual will eventually experience a failure

event (uncured) and bi = 0 indicates that the individual will never experience such event

(cured). For an individual with covariate vector xi, the proportion of uncured p can be

specified to be the logistic link of x such that the conditional distribution of b is given by

Pr

(
bi = 1|xi

)
=

1

1 + exp(xTi β)
= 1 − pi

where β = (β1, β2, . . . , βp)
T is a vector p-dimensional parameters. Observe that the cured

probability varies from individual to individual, so that the probability that individual i is

cured is modelled by

pi =
exp(xTi β)

1 + exp(xTi β)
, (2.4)

and the logistic link keeps each pi strictly between 0 and 1. Suppose that Yis are independent

and identically distributed with generalized log-gamma distribution with density function

is given by

f(yi;µ, σ, q|Yi = 1) =





|q|
Γ(q−2)σ (q−2)q

−2

exp
{
q−1z − exp(qz)

}
if q 6= 0

1√
2π

exp{− z2

2 }, if q = 0.
(2.5)

where µ ∈ R is the location parameter, q ∈ R is the shape parameter, σ > 0 is the scale

parameter and z = (y − µ)/σ. Figure 1 presents graphs for the density (2.5).

The maximum likelihood method is used to estimate the parameters. Thus, the contri-

bution of an individual that failed at yi to the likelihood function is given by





(1−pi)|q|
Γ(q−2)σ (q−2)q

−2

exp
{
q−1zi − exp(qzi)

}
if q 6= 0

(1−pi)√
2πσ

exp{− z2i
2 }, if q = 0.

and the contribution of an individual that is at risk at time ti is





pi + (1 − pi)Q[q−2, q−2 exp{qzi}], if q > 0

pi + (1 − pi)
(
1 −Q[q−2, q−2exp{qzi}]

)
, if q < 0

pi + (1 − pi)
[
1 − Φ(zi)

]
, if q = 0,

Thus the log-likelihood function corresponding to the parameter vector θ = (µ, σ, β1, β2, . . . , βp)
T



The Generalized Log–Gamma Mixture Model. . . 89

 
q=0

-3 -2 -1 0 1 2 3
y

C
en

si
ty

f
(
y
;

µ
,

σ
,
q
)

q=-2
q=2
q=0

-3 -2 -1 0 1 2 3
y

C
en

si
ty

f
(
y
;

µ
,

σ
,
q
)

q=-2
q=2

Figure 1: Graphs of the generalized log-gamma distribution for some values of q and by
assuming µ = 0 and σ = 1.

is given by

l(θ) =





∑
i∈F

log
[

(1−pi)q
Γ(q−2)σ (q−2)q

−2

exp
{
q−1zi − q−2 exp(qzi)

}]

+
∑
i∈C

log
[
pi + (1 − pi)Q[q−2, q−2 exp{qzi}]

]
, if q > 0

∑
i∈F

log
[

(1−pi)(−q)
Γ(q−2)σ (q−2)q

−2

exp
{
q−1zi − q−2 exp(qzi)

}]

+
∑
i∈C

log
[
pi + (1 − pi)

{
1 −Q[q−2, q−2 exp{qzi}]

}]
, if q < 0

∑
i∈F

log
[

(1−pi)√
2πσ

exp{− z2i
2 }
]

+
∑
i∈C

log
[
pi + (1 − pi){1 − Φ(zi)}

]
, if q = 0

(2.6)

where F and C denote, respectively, that the set of individuals is a log-lifetime or a log-

censoring time, Φ(.) denotes the standard normal cumulative distribution, Q(.) is the incom-

plete gamma integral, r is the number of uncensored observations (failures), pi = is defined

by (2.4) and zi = yi−µ
σ . The maximization of (2.6) follows two steps for obtaining the

maximum likelihood estimates of θ. Since, in general, it is reasonable to expect that shape

parameter q belongs to interval [−3, 3], we fixed in the first step of the iterative process

different q values in this interval. Then, assuming q fixed we find the maximum likelihood
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estimates β̃(q), µ̃(q) and σ̃(q) and the maximized log-likelihood function lmax(q) is deter-

mined, using the subroutine MAXBFGS available in Ox (see, for instance, Doornik, 1996).

In the second step, the log-likelihood lmax(q) is maximized and then q̂ is obtained. The

maximum likelihood estimates of β, µ and σ are, respectively, given by β̂ = β̃(q), µ̂ = µ̃(q)

and σ̂ = σ̃(q).

Covariance estimates for the maximum likelihood estimators θ̂ can also be obtained

using the Hessian matrix. Confidence intervals and hypothesis testing can be conducted

by using the large sample distribution of MLE which is a normal distribution with the

covariance matrix as the inverse of Fisher information since regularity conditions are satisfied[
θ̂ ∼ Np+2

{
θ,−I(θ)−1

}]
, where the asymptotic covariance matrix is given by I−1(θ) with

I(θ) = −E[L̈θθ] such that L̈θθ =

{
∂2l(θ)

∂θ∂θT

}
.

Since it is not possible to compute the Fisher information matrix I(θ) due to the censored

observations (censoring is random and noninformative), it is possible to use the matrix of

second derivatives of the log likelihood, −L̈θθ, evaluated at MLE θ = θ̂, which is consistent.

Then

L̈θθ) =




Lµµ Lµσ Lµβ

. Lσσ Lσβ

. . Lββ




with the submatrices given in appendix A.

2.1 Jackknife Estimator

The idea of jackknifing is to transform the problem of estimating any population parameter

into the problem of estimating a population mean. So, what is done when estimating a

mean value is realized in this method but from an unusual point of view. An important

work of implementing the jackknife method is given by Lipsitz et al. (1990) that suggest an

alternative robust estimator of the covariance matrix based on the jackknife for analyzing

data from repeated measures studies. In this paper, we use this method as an alternative

to estimate the population parameters.

Suppose that T1, T2, . . . , Tn is a random sample of n values and the sample mean is given

by

T̄ =
n∑

i=1

Ti
n
,

that is used to estimate the mean of the population.

Now, it is calculated the sample mean with the lth observation missed out,

T̄−l =

∑n
i=1 Ti − Tl
n− 1

.
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Then, we obtain

Tl = nT̂ − (n− 1)T̄−l. (2.7)

In a general situation, consider that θ is a parameter estimated by Ê(T1, T2, . . . , Tn) and

for ease of notation drop (T1, T2, . . . , Tn). Finally, it is calculated Ê−l that is obtained with

the Tl observation missed out. It follows, from (2.7) that pseudo-values can be calculated

Ê∗
l = nÊ − (n− 1)Ê−l, l = 1, . . . , n.

The average of the pseudo-values is given by

Ê∗ =

∑n
l=1 Ê

∗
l

n

that is the Jackknife estimate of θ.

Manly (1997) suggests that an approximate 100(1−α)% confidence interval for θ is given

by Ê∗± tα/2,n−1s/
√
n, where tα/2,n−1 is the value that is exceeded with probability α/2 for

the t distribution with (n−1) degrees of freedom and the Jackknife estimator has the effect

of removing bias of order 1/n.

The Jackknife estimate calculations for the generalized log-gamma mixture with covari-

ates regression model are realized for µ, σ and βj (j = 1, . . . , p) and confidence intervals are

calculated separately for each parameter.

3 Sensitivity Analysis

3.1 Global Influence

The first tool to perform sensitivity analysis as stated before is by means of global influence

starting from case-deletion (see, Cook, 1977). Case-deletion is a common approach to study

the effect of dropping the ith case from the data set. The case-deletion for the model (2.1)

is given by

Yl = µ+ σZl, l = 1, 2, . . . , n, l 6= i. (3.1)

In the following, a quantity with subscript “(i)” means the original quantity with the ith

case deleted. For the model (3.1), the log-likelihood function is denoted by l(i)(θ).

Let θ̂(i) = (µ̂(i), σ̂(i), β̂
T

(i))
T be the ML estimate of θ from l(i)(θ). To assess the influence

of the ith case on the ML estimate θ̂ = (µ̂, σ̂, β̂
T
)T , the basic idea is to compare the

difference between θ̂(i) and θ̂. If deletion of a case seriously influences the estimates, more

attention should be paid to that case. Hence, if θ̂(i) is far from θ̂, then the case is regarded as

an influential observation. A first measure of global influence is defined as the standardized

norm of θ̂(i) − θ̂ (generalized Cook distance)

GDi(θ) = (θ̂(i) − θ̂)T
{
− L̈(θ)

}
(θ̂(i) − θ̂).
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Other alternative is to assess the values GDi(β) and GDi(µ, σ), which reveal the impact of

the ith case on the estimates of β and (µ1, σ), respectively. Another popular measure of

the difference between θ̂(i) and θ̂ is the likelihood displacement

LDi(θ) = 2
{
l(θ̂) − l(θ̂(i))

}
.

Besides, we can also compute βj − βj(i)(j = 1, 2, . . . , p) to see the difference between β̂ and

β̂(i). Alternative global influence measures are possible. One could think of the behavior of

a test statistics, such as a Wald test for covariates or censoring effect, under a case deletion

scheme.

To avoid the direct model estimation for all observations we can use the following one-

step approximation to reduce the burden:

θ̂(i) = θ̂ + L̈(θ̂)−1 l̇(i)(θ̂),

where l̇i(θ̂) =
∂l(i)(θ)

∂θ
is evaluated at θ = θ̂ (see, Cook and Weisberg, 1982).

3.2 Local Influence

Local influence calculation can be carried out in model (2.5). If likelihood displacementLD(ω) =

2{l(θ̂)− l(θ̂ω)} is used, where θ̂ω denotes the MLE under the perturbed model, the normal

curvature for θ at direction `, ‖ ` ‖= 1, is given by C`(θ) = 2|`T∆T L̈−1
θθ ∆`|, where ∆ is

a (p + 2)n matrix that depends on the perturbation scheme and whose elements are given

by ∆ij = ∂2l(θ|ω)/∂θi∂ωj , i = 1, 2, . . . , p + 2 and j = 1, 2, . . . , n evaluated at θ̂ and ω0,

where ω0 is the no perturbation vector (see Cook, 1986). For the generalized log-gamma

mixture model the elements of L̈θ̂θ̂ are given in appendix A. We can also calculate normal

curvatures C`(β),C`(µ) and C`(σ) to perform various index plots, for instance, the index

plot of lmax, the eigenvector corresponding to C`max , the largest eigenvalue of the matrix

B = −∆T L̈−1
θθ ∆ and the index plots of C`i(β), C`i(µ) and C`i(σ) named total local in-

fluence (see, for example, Lesaffre and Verbeke, 1998), where `i denotes an n1 vector of

zeros with one at the i− th position. Thus, the curvature at direction `i assumes the form

Ci = 2|∆T
i L̈−1

θθ ∆i| where ∆T
i denotes the ith row of ∆. It is usual to point out those cases

such that

Ci ≥ 2C̄, C̄ =
1

n

n∑

i=1

Ci. (3.2)

3.3 Curvature Calculations

Next, we calculate, for three perturbation schemes, the matrix

∆ = (∆ji)(p+2)×n =

(
∂2l(θ|ω)

∂θiωj

)

(p+2)×n
, j = 1, 2, . . . , p+ 2 and i = 1, 2, . . . , n, (3.3)

considering the model defined in (2.4) and its log-likelihood function given by (2.6).
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3.3.1 Case–Weights Perturbation

Consider the vector of weights ω = (ω1, ω2, . . . , ωn)
T .

• q > 0

In this case the log-likelihood function takes the form

l(θ|ω) =
∑

i∈F
ωi log

[ (1 − pi)q

Γ(q−2)σ
(q−2)q

−2

exp
{
q−1zi − q−2 exp(qzi)

}]

+
∑

i∈C
ωi log

[
pi + (1 − pi)Q[q−2, q−2 exp{qzi}]

]
. (3.4)

• q < 0

Here the weighted log-likelihood function becomes expressed in the form

l(θ|ω) =
∑

i∈F
ωi log

[ (1 − pi)(−q)
Γ(q−2)σ

(q−2)q
−2

exp
{
q−1zi − q−2 exp(qzi)

}]

+
∑

i∈C
ωi log

[
pi + (1 − pi)

{
1 −Q[q−2, q−2 exp{qzi}]

}]
. (3.5)

• q = 0

In this case the weighted log-likelihood function takes the form

l(θ|ω) =
∑

i∈F
ωi log

[ (1 − pi)√
2pσ

exp{−z2
i /2}

]
+
∑

i∈C
ωi log

[
pi+(1−pi){1−Φ(zi)}

]
, (3.6)

where 0 ≤ ωi ≤ 1 and ω = (1, . . . , 1)T . The elements of matrix ∆ = (∆1, . . . ,∆p+2)
T

in appendix B.

3.3.2 Response Perturbation

We will consider here that each yi is perturbed as yiw = yi+ωiSy, where Sy is a scale factor

that may be the estimated standard deviation of Y and ωi ∈ R.

• q > 0

Here the perturbed log-likelihood function becomes expressed as

l(θ|ω) =
∑

i∈F
log
[ (1 − pi)q

Γ(q−2)σ
(q−2)q

−2

exp
{
q−1z∗i − q−2 exp(qz∗i )

}]

+
∑

i∈C
log
[
pi + (1 − pi)Q[q−2, q−2 exp{qz∗i }]

]
. (3.7)
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• q < 0

In this case the perturbed log-likelihood function is expressed as

l(θ|ω) =
∑

i∈F
log
[ (1 − pi)(−q)

Γ(q−2)σ
(q−2)q

−2

exp
{
q−1z∗i − q−2 exp(qz∗i )

}]

+
∑

i∈C
log
[
pi + (1 − pi)

{
1−Q[q−2, q−2 exp{qz∗i }]

}]
. (3.8)

• q = 0

In this case the weighted log-likelihood function takes form

l(θ|ω) =
∑

i∈F
log
[ (1 − pi)√

2pσ
exp{−z

2∗
i

2
}
]

+
∑

i∈C
log
[
pi + (1 − pi){1 − Φ(z∗i )}

]
, (3.9)

where z∗i =
(yi+ωiSy)−µ

σ . The elements of matrix ∆ = (∆1, . . . ,∆p+2)
T in appendix

C.

3.3.3 Explanatory Variable Perturbation

Consider now an additive perturbation on a particular continuous explanatory variable,

namely Xt, by making xitω = xit + ωiSt, where St is a scaled factor, ωi ∈ R. This

perturbation scheme leads to the following expressions for the log-likelihood function and

for the elements of matrix ∆:

• q > 0

In this case the log-likelihood function takes the form

l(θ|ω) =
∑

i∈F
log
[ (1 − p∗i )q

Γ(q−2)σ
(q−2)q

−2

exp
{
q−1zi − q−2 exp(qzi)

}]

+
∑

i∈C
log
[
p∗i + (1 − p∗i )Q[q−2, q−2 exp{qzi}]

]
. (3.10)

• q < 0

In this case the perturbed log-likelihood function is expressed as

l(θ|ω) =
∑

i∈F
log
[ (1 − p∗i )(−q)

Γ(q−2)σ
(q−2)q

−2

exp
{
q−1zi − q−2 exp(qzi)

}]

+
∑

i∈C
log
[
p∗i + (1 − p∗i )

{
1 −Q[q−2, q−2 exp{qzi}]

}]
. (3.11)
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• q = 0

In this case the weighted log-likelihood function takes form

l(θ|ω) =
∑

i∈F
log
[ (1 − p∗i )√

2pσ
exp{−z

2
i

2
}
]

+
∑

i∈C
log
[
p∗i + (1 − p∗i ){1− Φ(zi)}

]
, (3.12)

where p∗i = [1+exp(−x∗T
i β)]−1 and x∗T

i = β1+β2xi2+· · ·+βt(xit+ωiSt)+· · ·+βpxip.
The elements of matrix ∆ = (∆1, . . . ,∆p+2)

T in appendix D.

4 Residual Analysis

In order to study departures from the error assumptions as well as the presence of outlying

observations, we will consider two kinds of residuals: deviance component residual (see, for

instance, McCullagh & Nelder, 1989) and martingale-type residual (see, for instance, Barlow

& Prentice, 1988 and Therneau, Grambsch & Fleming, 1990). More details may be found

in Ortega, Bolfarine & Paula (2003).

4.1 Martingale–Type and Deviance Component Residual

Therneau, Grambsch and Fleming (1990) introduced the deviance component residual in

the counting process area by using basically martingale residuals. For example, the deviance

component residual for the Cox model with no time-dependent covariates may be described

as

rDi = sgn(rMi)
{
− 2
[
rMi + δi log(δi − rMi)

]}1/2

, (4.1)

where rMi is the martingale residual. In the generalized log-gamma mixture model on which

we are working, the martingale residual can be described as

• q > 0

rMi =





1 + log

{
p̂+ (1 − p̂)Q

[
q̂−2, q̂−2exp{q̂ẑi}

]}
if i ∈ F

log

{
p̂+ (1 − p̂)Q

[
q̂−2, q̂−2exp{q̂ẑi}

]}
if i ∈ C,

(4.2)

• q < 0

rMi =





1 + log

{
p̂+ (1 − p̂)

(
1 −Q

[
q̂−2, q̂−2exp{q̂ẑi}

])}
if i ∈ F

log

{
p̂+ (1 − p̂)

(
1 −Q

[
q̂−2, q̂−2exp{q̂ẑi}

])}
if i ∈ C,

(4.3)
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• q = 0

rMi =





1 + log

{
p̂+ (1 − p̂)

(
1 − Φ

[
ẑi
])}

if i ∈ F

log

{
p̂+ (1 − p̂)

(
1 − Φ

[
ẑi}
])}

if i ∈ C,
(4.4)

where ẑi = yi−µ̂
σ̂ and Q(.) is the incomplete gamma integral.

More details about counting processes can be found, for instance, in Fleming and Har-

rington (1994) and Ortega (2001). These authors show that the distribution of the deviance

component residual based on the martingale residual has very close asymptotic distribution

to the normal distribution.

Therefore, considering q fixed, we have that the deviance component residual for gener-

alized log-gamma mixture model becomes

• q > 0

rDi =





sgn(rMi)
√

2

{
− 1 − log

[
G1(yi, θ̂) log

{
G1(yi, θ̂)−1

}]} 1
2

if i ∈ F,

sgn(rMi)
√

2

{
log
[
G1(yi, θ̂)−1

]} 1
2

if i ∈ C.

(4.5)

where G1(yi, θ̂) = p̂+ (1 − p̂)Q
[
q̂−2, q̂−2exp{q̂ẑi}

]
.

• q < 0

rDi =





sgn(rMi)
√

2

{
− 1 − log

[
G2(yi, θ̂) log

{
G2(yi, θ̂)−1

}]} 1
2

if i ∈ F,

sgn(rMi)
√

2

{
log
[
G2(yi, θ̂)−1

]} 1
2

if i ∈ C.

(4.6)

where G2(yi, θ̂) = p̂+ (1 − p̂)
{

1 −Q
[
q̂−2, q̂−2exp{q̂ẑi}

]}
.

• q = 0

rDi =





sgn(rMi)
√

2

{
− 1 − log

[
G3(yi, θ̂) log

{
G3(yi, θ̂)−1

}]} 1
2

if i ∈ F,

sgn(rMi)
√

2

{
log
[
G3(yi, θ̂)−1

]} 1
2

if i ∈ C.

(4.7)

where G3(yi, θ̂) = p̂+ (1 − p̂)
{

1 − Φ
[
ẑi
]}

.
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5 Applications

In this section, the application of the local influence theory to a set of real data on cancer

recurrence is discussed. The data are part of an assay on cutaneous melanoma (a type of

malignant cancer) for the evaluation of postoperative treatment performance with a high

dose of a certain drug (interferon alfa-2b) in order to prevent recurrence. Patients were

included in the study from 1991 to 1995, and follow-up was conducted until 1998. The

data were collected by Ibrahim et al. (2001); variable T represented the time until the

patient’s death. The original size of the sample was n = 427 patients , 10 of whom did not

present a value for covariable tumor thickness, herein denominated as Breslow. When such

cases were removed, a sample of size n = 417 patients was considered. The percentage of

censored observations was 56%. The following data were associated with each participant,

i = 1, 2, . . . , n.

• ti: observed time (in years);

• δi: censoring indicator (0=censoring, 1=lifetime observed);

• xi1: treatment (0=observation, 1=interferon);

• xi2: age (in years);

• xi3: nodule (nodule category: to 4);

• xi4: sex (0=male, 1=female);

• xi5: p.s. (performance status-patient’s functional capacity scale as regards his daily

activities: 0=fully active, 1=other);

• xi6: tumor (tumor thickness in mm.).

The survival function graph, Kaplan-Meier estimate, is presented in Figure 2, from where a

significant fraction of survivors can be observed.

5.1 Maximum Likelihood and Jackknife Estimation

To obtain the maximum likelihood estimates for the parameters in model (2) we use the

subroutine MAXBFGS in Ox, whose results are given in the Table 1. The mean cure fraction

estimated was p̂ = 0.4837 and the only significant variable is x3 (nodule).

In Table 2 we report the Jackknife estimates for the parameters of the generalized log-

gamma mixture with covariates.

From Table 2 we may observe that the explanatory variables x3, is significant for the

model when the Jackknife estimator is used. Although the estimates from the two methods

seem to be very similar. Therefore, since for this sample size (n = 417) is expected normality

for the Jackknife estimator, one may also expect some symmetric distribution for the MLEs

with heavy tails. We will continue the analysis by using the MLEs.
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Figure 2: Plot of the Survivor Function.

Table 1: Maximum likelihood estimates from the fit of the generalized log-gamma mixture
with covariates

Parameter Estimate SE p-value 95% Confidence Interval

µ 0.6529 0.0934 <0.0001 (0.4692 ; 0.8366)

σ 0.7789 0.0648 <0.0001 (0.6514 ; 0.9062)

β0 2.4047 0.6554 0.0003 (1.1165 ; 3.6929)

β1 -0.1590 0.2427 0.5128 (-0.6360 ; 0.3181)

β2 -0.0158 0.0093 0.0912 (-0.0341 ; 0.0025)

β3 -0.6016 0.1406 <0.0001 (-0.8780 ; -0.3253)

β4 0.1999 0.2493 0.4231 (-0.2902 ; 0.690)

β5 -0.1367 0.3661 0.7091 (-0.8564 ; 0.5830)

β6 -0.0765 0.0481 0.1131 (-0.1712 ; 0.8201)

q 0.2500

p 0.4837

5.2 Global and Local Influence Analysis

In this subsection, we use Ox to compute case-deletion measures GDi(θ) and LDi(θ) pre-

sented in subsection 3.1. The results of such influence measures index plots are displayed
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Table 2: Jackknife estimates from the fit of the generalized log-gamma mixture with co-
variates.

Parameter Estimate SE 95% Confidence Interval

µ 0.6533 0.1007 (0.4553 ; 0.8509)

σ 0.8275 0.0724 (0.6852 ; 0.9695)

β0 2.3176 0.6987 (0.9441 ; 3.6885)

β1 -0.1845 0.2488 (-0.6736 ; 0.3038)

β2 -0.0150 0.0094 (-0.0335 ; 0.0034)

β3 -0.5947 0.1582 (-0.9057 ; -0.2843)

β4 0.3046 0.2562 (-0.1990 ; 0.8073)

β5 -0.2475 0.3781 (-0.9907 ; 0.4943)

β6 -0.0732 0.0600 (-0.1911 ; 0.0445)

in Figure 3. From this figure we can see that cases ]47, ]199, ]279 and ]341 are possible

influential observations.
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Figure 3: (a) Index plot of GDi(θ) and (b) Index plot of LDi(θ) from the fit of model (2)
to the generalized log-gamma mixture.
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5.3 Local Influence Analysis

In this section, we will make an analysis of local influence for the cancer data .

5.3.1 Case–Weights Perturbation

By applying the local influence theory developed in sub-section (3.2), where case-weight

perturbation is used, value C`max = 1.6566 was obtained as maximum curvature. In Figure

4(a), the graph of eigenvector corresponding to C`max is presented, and total influence Ci
is shown in Figure 4(b) and observations 47, 68, 176 and 341 are the most distinguished in

relation to the others.
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Figure 4: (a)Index plot of `max for θ (case-weights perturbation). (b)Total local influence
on the estimates θ (case-weights perturbation)

5.3.2 Influence Using Response Variable Perturbation

Next, the influence of perturbations on the observed survival times will be analyzed. The

value for the maximum curvature calculated was C`max
= 21.334. Figure 5(a), containing

the graph for |`max| versus the observation index, shows that some points were distinguished

from the others, among which are points 23, 47 and 176. The same applies to Figure 5(b),

which corresponds to total local influence (Ci). By analyzing the data associated with these

two observations, it is noted that that the highlighted observations refer to patients with

shorter non-censored survival times.
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(a) (b)
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Figure 5: (a)Index plot of `max for θ (response perturbation). (b)Total local influence on
the estimates θ (response perturbation)

5.3.3 Influence Using Explanatory Variable Perturbation

The perturbation of vectors for covariables age(x2) and tumor(x6) is investigated here. For

perturbation of covariable age, value C`max = 1.0375 was obtained as maximum curvature,

and for perturbation of covariable tumor, value C`max = 1.5753 was achieved. The respective

graphs of |`max| as well as total local influence Ci against the observation index are shown

in Figures 6(a), 6(b), 6(c) and 6(d). These four graphs do not present observations with

high influence.

5.4 Residual Analysis

In order to detect possible outlying observations as well as departures from the assumptions

of the generalized log-gamma mixture model, we present in Figure 7 the graphs of rMi and

rDi against the order observations.

By analyzing the residual and martingale deviance graph (Figure 7), a random behavior

is observed for the data. A tendency to form two groups is also noted; however, this

results from considering the logistic function to introduce covariables. Such problems are

also observed in the logistic regression. For further details, refer to Hosmer et al. (1989),

McCullagh et al. (1989), among others.
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Figure 6: (a)Index plot of `max for θ(age explanatory variable perturbation). (b)Total local
influence on the estimates θ(age explanatory variable perturbation). (c)Index plot of `max
for θ( Breslow explanatory variable perturbation). (d)Total local influence on the estimates
θ(Breslow explanatory variable perturbation).
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Figure 7: (a) Index plot of the martingale deviance residual rMi . (b) Index plot of the
deviance residual rDi .

5.5 Impact of the Detected Influential Observations

Therefore, diagnostic analysis (local influence, global influence and residual analysis) de-

tected the following four cases ]47, ]176 and ]341 as potentially influential. In order to

reveal the impact of these three observations on the parameter estimates, we refitted the

model under some situations. First, we individually eliminated each one of these three cases.

In Table 3, we have the relative changes (in percentage) of each parameter estimate, defined

by: RCθj
= [(θ̂j − θ̂j(I))/θ̂j ]100, and the corresponding p-values, where θ̂j(I) denotes the

MLE of θj after that “set I” of observations has been removed.

From Table 3, we can notice some robust aspects of the maximum likelihood estimates

from the generalized log-gamma mixture with covariates. This is an indication that there

three observations (]476/]176/]341), deleted in the influential analysis, are masking the

importance of the explanatory variable (x6). Since is it not clear to remove these observa-

tions from the analysis we will present in the Table 4 the maximum likelihood estimator by

removing the most influential ones.

5.6 Goodness of Fitting

In order to measure quality of fitting, a Kaplan-Meier survival graph and a survival graph

estimated by the generalized log-gamma mixture model with a cure fraction were plotted
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Table 3: Relative changes [-RC- in %], parameter estimates and their p-values in paren-
theses for the indicated set.

Dropping β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6

- - - - - - -

all observations 2.40 -0.16 -0.016 -0.60 0.20 -0.14 -0.08

(<0.0001) (0.51) (0.09) (<0.0001) (0.42) (0.71) (0.11)

[6] [-13] [-4] [-6] [13] [-21] [-21]

]47 2.55 -0.14 -0.02 -0.64 0.17 -0.11 -0.09

(<0.0001) (0.57) (0.08) (<0.0001) (0.49) (0.77) (0.06)

[2] [-5] [-3] [-4] [3] [-8] [-6]

]176 2.36 -0.17 -0.02 -0.58 0.19 -0.15 -0.07

(<0.0001) (0.48) (0.09) (<0.0001) (0.43) (0.68) (0.11)

[0] [-12] [0] [-2] [10] [11] [-2]

]341 2.40 -0.18 -0.02 -0.59 0.22 -0.15 -0.07

(<0.0001) (0.46) (0.09) (<0.0001) (0.37) (0.68) (0.11)

[4] [-9] [-1] [-2] [17] [-14] [-15]

]47/]176 2.51 -0.14 -0.02 -0.61 0.16 -0.12 -0.09

(<0.0001) (0.55) (0.08) (<0.0001) (0.50) (0.74) (0.06)

[4] [-9] [-1] [-2] [17] [-14] [-15]

]47/]341 2.51 -0.14 -0.02 -0.61 0.16 -0.12 -0.09

(<0.0001) (0.55) (0.08) (<0.0001) (0.50) (0.74) (0.06)

[5] [-2] [-1] [0] [8] [-4] [-14]

]476/]176/]341 2.51 -0.16 -0.02 -0.60 0.18 -0.13 -0.09

(<0.0001) (0.49) (0.08) (<0.0001) (0.45) (0.71) (0.05)

(see, Figure 8). Good model fitting was observed.

6 Concluding Remarks

In this study, the generalized log-gamma regression model was modified in order to include

long-term individuals. In the proposal under consideration, log-linear parametric modelling

was taken as a basis for survival time. The logit function showed to be an adequate link
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Table 4: Maximum likelihood estimates for the generalized log-gamma mixture by removing
the most influential observation (]476/]176/]341).

Parameter Estimate SE p-value

µ 0.6191 0.0801 <0.0001

σ 0.7361 0.0570 <0.0001

β0 2.5142 0.6298 <0.001

β1 -0.1622 0.2376 0.4950

β2 -0.0160 0.0091 0.0785

β3 -0.6013 0.1312 <0.0001

β4 0.1833 0.2442 0.4529

β5 -0.1311 0.3560 0.7128

β6 -0.0872 0.0453 0.0540
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Figure 8: Theoretical survival curve, Kaplan-Meier curve and Upper and Lower 95% confi-
dence limits.

function to include covariables in the proposed model. We used the Quasi-Newton algorithm

to obtain the maximum likelihood estimates and were realized asymptotic tests for the

parameters based on the asymptotic distribution of the maximum likelihood estimators.
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On the other hand, as an alternative analysis, the paper discusses the use of the Jackknife

estimator for the generalized log-gamma mixture with covariates. In addition to a study on

martingale and deviance residuals in the generalized log-gamma regression model with long-

term individuals in order to better evaluate the proposed model. The matrices necessary

for application of the technique were obtained by considering various types of perturbation

to the data elements and the model. By applying such results to a data set, indication was

found which showed that the proposed model is a robust one, since the perturbations to

the model and maximum likelihood estimators did not change significantly. The results of

applications indicate that the use of the local influence technique as well as the analysis

of residuals in the regression model with long-term individuals can be rather useful in the

detection of possible influential points. In order to measure goodness of fitting was correct.

We also plotted the Kaplan-Meier survival function with that given by proposed model,

which indicated good fitting for the model.
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Appendix A. Matrix of Second Derivatives L̈(θ)

Here we derive the necessary formulae to obtain the second order partial derivatives of the

log-likelihood function. After some algebraic manipulations, we obtain when q > 0

Lµµ = − 1

q2σ2

∑

i∈F
ui +

∑

i∈C

{
(1 − pi)q

2

σ2Γ(q−2)
ui

(q−2+1) exp{−ui}

×
[
q−2 + 1 − ui

hi1
− (1 − pi)ui

q−2+1 exp{−ui}
Γ(q−2)h2

i1

]}

Lµσ =
r

qσ2
− q

σ2

∑

i∈F
ui −

q2

σ2

∑

i∈F
uizi +

∑

i∈C

{
(1 − pi)q

σ2Γ(q−2)
ui
q−2+1 exp{−ui}

×
[
(q−2 + 1)qzi − quizi − 1

hi1
− (1 − pi)qui

q−2+1 exp{−ui}zi
Γ(q−2)h2

i1

]}
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Lσσ =
r

σ2
+

2

qσ2

∑

i∈F
zi −

q2

σ2

∑

i∈F
z2
i ui −

2q

σ2

∑

i∈F
ziui +

∑

i∈C

{
(1 − pi)qui

(q−2+1)

σ2Γ(q−2)

× exp{−ui}zi
[
(q−2 + 1)qzi − quizi + 2

hi1
− (1 − pi)qui

q−2+1exp{−ui}zi
Γ(q−2)h2

i1

]}

Lµβ =
q

σΓ(q−2)

∑

i∈C

xij(ui)
q−2+1 exp{−ui} exp{xTi β}
h2
i1

[
exp{xTi β}

]2

Lσβ =
q

σΓ(q−2)

∑

i∈C

xijzi(ui)
q−2+1 exp{−ui} exp{xTi β}
h2
i1

[
exp{xTi β}

]2

Lββ =
∑

i∈F
− xijxis exp{xTi β}

(1 − pi)2
[
1 + exp{xTi β}

]4

{
(1 − pi)

[
1 + exp{xTi β}

]2

+ exp{xTi β} − 2(1− pi) exp{xTi β}
[
1 + exp{xTi β}

]}

+
∑

i∈C

xijxis

[
1 −Q(q−2, ui)

]
exp{xTi β}

h2
i1

[
1 + exp{xTi β}

]4

{
hi1

[
1 + exp{xTi β}

]2

− exp{xTi β}
[
1 −Q(q−2, ui)

]
− 2hi1 exp{xTi β}

[
1 + exp{xTi β}

]}

When q < 0

Lµµ =
1

q2σ2

∑

i∈F
ui +

∑

i∈C

{
(1 − pi)q

2

σ2Γ(q−2)
ui
q−2+1 exp{−ui}

×
[−q−2 − 1 + ui

hi2
− (1 − pi)ui

q−2+1 exp{−ui}
Γ(q−2)h2

i2

]}

Lµσ =
1

qσ2
− q

σ2

∑

i∈F
ui −

q2

σ2

∑

i∈F
uizi +

∑

i∈C

{
(1 − pi)q

σ2Γ(q−2)
ui
q−2+1 exp{−ui}

[−(q−2 + 1)qzi + quizi − 1

hi2
− (1 − pi)qui

q−2+1 exp{−ui}zi
Γ(q−2)h2

i2

]}

Lσσ =
r

σ2
+

2

qσ2

∑

i∈F
zi −

q2

σ2
z2
i ui −

2q

σ2
ziui +

∑

i∈C

{
(1 − pi)qu

(q−2+1)
i exp{−ui}zi
σ2Γ(q−2)

[−(q−2 + 1)qzi + quizi − 2

hi2
− (1 − pi)qui

q−2+1 exp{−ui}zi
Γ(q−2)hi2

2

]}
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Lµβ =
−q

σΓ(q−2)

∑

i∈C

xij(ui)
q−2+1 exp{−ui} exp{xTi β}
h2
i2

[
exp{xTi β}

]2

Lσβ =
−q

σΓ(q−2)

∑

i∈C

xijzi(ui)
q−2+1 exp{−ui} exp{xTi β}
h2
i2

[
exp{xTi β}

]2

Lββ =
∑

i∈F
− xijxis exp{xTi β}

(1 − pi)2
[
1 + exp{xTi β}

]4

{
(1 − pi)

[
1 + exp{xTi β}

]2

+ exp{xTi β} − 2(1 − pi) exp{xTi β}
[
1 + exp{xTi β}

]}

+
∑

i∈C

xijxisQ(q−2, ui) exp{xTi β}

h∗2i2

[
1 + exp{xTi β}

]4

{
hi2

[
1 + exp{xTi β}

]2

− exp{xTi β}Q(q−2, ui) + 2hi2 exp{xTi β}
[
1 + exp{xTi β}

]}

When q = 0

Lµµ = − r

σ2
+

1

σ

∑

i∈C
(1 − pi)φ(zi)h

−2
i3

[
zihi3 − (1 − pi)φ(zi)

]

Lµσ = − 2

σ2

∑

i∈F
zi +

∑

i∈C
(1 − pi)h

−2
i3 φ(zi)σ

−2

{[
− 2 + z2

i

]
hi3 − (1 − pi)ziφ(zi)

}

Lσσ =
r

σ2
− 2

σ

∑

i∈F
z2
i +

∑

i∈C
(1 − pi)h

−2
i3 z

2
i σ

−2

×
{[

− 3z−1
i φ(zi) + ziσ

−1 exp
{
− z2

i

2

}]
hi3 −

[
φ(zi)

]2
}

Lµβ = − 1

σ

∑

i∈C

xijpiφ(zi)[
1 + exp{xTi β}

]
[
h−1
i3 + (1 − Pi)h−2

i3 Φ(zi)

]

Lσβ = − 1

σ

∑

i∈C

xijpiziφ(zi)[
1 + exp{xTi β}

]
[
h−1
i3 + (1 − Pi)h−2

i3 Φ(zi)

]
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Lββ =
∑

i∈F
(1 − pi)

−2
[
1 + exp{xTi β}

]−4
[
xijxis exp{xTi β}

{
(1 − pi)

[
1 + exp{xTi β}

]2

+ exp{xTi β} − 2(1 − pi) exp{xTi β}
[
1 + exp{xTi β}

]}]

+
∑

i∈C

[
1 + exp{xTi β}

]−4

hi3
−2

[
Φ(zi)xijxis exp{xTi β}

{[
1 + exp{xTi β}

]2
hi3

−2 exp{xTi β}
[
1 + exp{xTi β}

]
hi3 + Φ(zi)

}]

where

hi1 =
[
pi + (1 − pi)Q(q−2, ui)

]
, hi2 =

[
pi + (1 − pi)

{
1 −Q(q−2, ui)

}]
,

hi3 =
[
pi + (1 − pi)

{
1 − Φ(zi)

}]
, ui = q−2 exp{qzi}, zi =

yi − µ

σ

pi =
exp(xTi β)

1 + exp(xTi β)

i = 1, 2, . . . , n, j, s = 0, 1, 2, . . . , p, Φ(·) denoting the standard normal cumulative distribu-

tion, φ(·) standard normal density function and Q(·) is the incomplete gamma integral.

Appendix B. Case–Weight Perturbation Scheme

Here, we provide the of the elements the matrix ∆ considering the case-weight perturbation

scheme.

• q > 0

Then the elements of vector ∆1 take the form

∆1i =





(q̂σ̂)−1
[
− 1 + exp{q̂ẑi}

]
if i ∈ F

(1 − p̂i)û
q̂−2
i exp{−ûi}q̂

[
ĥi1σ̂Γ(q̂−2)

]−1

if i ∈ C

On the other hand, the elements of vector ∆2 can be shown to be given by

∆2i =





−(σ̂)−1 − (q̂σ̂)−1ẑi[1 − exp{q̂ẑi}] if i ∈ F

(1 − p̂i)û
q̂−2
i exp{−ûi}ẑiq̂

[
ĥi1σ̂Γ(q̂−2)

]−1

if i ∈ C

The elements of vector ∆j , for j = 3, . . . , p+ 2, may be expressed as

∆ji =





−xij p̂i(1 − p̂i)
−1
[
1 + exp{xTi β̂}

]−1
if i ∈ F

xij p̂i
[
1 −Q(q̂−2, ûi)

][
1 + exp(xTi β̂)

]−1
[ĥi1]

−1 if i ∈ C
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• q < 0

Then the elements of vector ∆1 take the form

∆1i =





(q̂σ̂)−1
[
− 1 + exp{q̂ẑi}

]
if i ∈ F

(1 − p̂i)û
q̂−2
i exp{−ûi}(−q̂)

[
ĥi2σ̂Γ(q̂−2)

]−1

if i ∈ C

On the other hand, the elements of vector ∆2 can be shown to be given by

∆2i =





−(σ̂)−1 − (q̂σ̂)−1ẑi[1 − exp{q̂ẑi}] if i ∈ F

(1 − p̂i)û
q̂−2
i exp{−ûi}ẑi(−q̂)

[
ĥi2σ̂Γ(q̂−2)

]−1

if i ∈ C

The elements of vector ∆j , for j = 3, . . . , p+ 2, may be expressed as

∆ji =





−xij p̂i(1 − p̂i)
−1
[
1 + exp{xTi β̂}

]−1
if i ∈ F

xij p̂iQ(q̂−2, ûi)
[
1 + exp(xTi β̂)

]−1
[ĥi2]

−1 if i ∈ C

• q = 0

Then the elements of vector ∆1 take the form

∆1i =





σ̂−1ẑi if i ∈ F

(1 − p̂i)φ(ẑi)σ̂
−1ĥ−1

i3 if i ∈ C

On the other hand, the elements of vector ∆2 can be shown to be given by

∆2i =





σ̂−1(−1 + ẑ2
i ) if i ∈ F

(1 − p̂i)φ(ẑi)ẑiσ̂
−1ĥ−1

i3 if i ∈ C

The elements of vector ∆j , for j = 3, . . . , p+ 2, may be expressed as

∆ji =





−xij p̂i(1 − p̂i)[1 + exp{xTi β̂}] if i ∈ F

xij p̂iΦ(ẑi)[1 + exp{xTi β̂}]ĥ−1
i3 if i ∈ C
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Appendix C. Response Perturbation Scheme

Here, we provide the of the elements ∆ij considering the response variable perturbation

scheme.

• q > 0 The elements of vector ∆1 take form

∆1i =





q̂−1σ̂−2 exp{q̂ẑi}Sy if i ∈ F

(1−p̂i)q̂Sy
σ̂Γ(q̂−2)

[
ûq̂

−2

i (q̂−1−ûi exp{−ûi}q̂)
σ̂ĥi1

+
û2q̂−2

i q̂(1−p̂i) exp{−2ûi}
σ̂Γ(q̂−2)ĥ2

i1

]
if i ∈ C

On the other hand, the elements of vector ∆2 can be shown to be given by

∆2i =





−(q̂σ̂2)−1Sy
[
− 1 + exp{q̂ẑi}(1 + ẑiq̂)

]
if i ∈ F

(1−p̂i)q̂Sy
σ̂2Γ(q̂−2)

{
ûq̂

−2

i

[
ẑi(q̂

−1−ûi exp{−ûi}q̂)+exp{−ûi}
]

ĥi1

+
û2q̂−2

i exp{−2ûi}ẑi(1−p̂i)q̂
Γ(q̂−2)ĥ2

i1

}
if i ∈ C

The elements of vector ∆j , for j = 3, . . . , p+ 2, may be expressed as

∆ji =





0 if i ∈ F

xij p̂iû
q̂−2

i exp{−ûi}q̂Sy
σ̂Γ(q̂−2)

[
1+exp{xTi

ˆβ}
]
{
ĥ−1
i + ĥ−2

i (1 − p̂i)
[
1 −Q(q̂−2, ûi)

]}
if i ∈ C

• q < 0

Then the elements of vector ∆1 take the form

∆1i =





q̂−1σ̂−2 exp{q̂ẑi}Sy if i ∈ F

(1−p̂i)(−q̂)Sy
σ̂Γ(q̂−2)

[
ûq̂

−2

i (q̂−1−ûi exp{−ûi}q̂)
σ̂ĥi2

− û2q̂−2

i q̂(1−p̂i) exp{−2ûi}
σ̂Γ(q̂−2)ĥ2

i2

]
if i ∈ C

On the other hand, the elements of vector ∆2 can be shown to be given by

∆2i =





−(q̂σ̂2)−1Sy
[
1 − exp{q̂ẑi}(1 + ẑiq̂)

]
if i ∈ F

(1−p̂i)(−q̂)Sy
σ̂2Γ(q̂−2)

{
ûq̂

−2

i

[
ẑi(q̂

−1−ûi exp{−ûi}q̂)+exp{−ûi}
]

ĥi2

+
û2q̂−2

i exp{−2ûi}ẑi(1−p̂i)q̂
Γ(q̂−2)ĥ2

i2

}
if i ∈ C

The elements of vector ∆j , for j = 3, . . . , p+ 2, may be expressed as

∆ji =





0 if i ∈ F

xij p̂iû
q̂−2

i exp{−ûi}(−q̂)Sy
σ̂Γ(q̂−2)

[
1+exp{xTi

ˆβ}
]
{
ĥ−1
i + ĥ−2

i (1 − p̂i)Q(q̂−2, ûi)

}
if i ∈ C
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• q = 0

Then the elements of vector ∆1 take the form

∆1i =





σ̂−2Sy if i ∈ F
(1−p̂i)φ(ẑi)Sy

σ̂2

[
− ẑiĥ

−1
i3 + φ(ẑi)(1 − p̂i)ĥ

−2
i3

]
if i ∈ C

On the other hand, the elements of vector ∆2 can be shown to be given by

∆2i =





2σ̂−2ẑiSy if i ∈ F
(1−p̂i)φ(ẑi)Sy

σ̂2

[
(1 − ẑ2

i )ĥ
−1
i3 + φ(ẑi)(1 − p̂i)ẑiĥ

−2
i3

]
if i ∈ C

The elements of vector ∆j , for j = 3, . . . , p+ 2, may be expressed as

∆ji =





0 if i ∈ F
xij p̂iφ(ẑi)Sy

σ̂
[
1+exp{xTi

ˆβ}
]
[
ĥ−1
i3 + Φ(ẑi)(1 − p̂i)ĥ

−2
i3

]
if i ∈ C

Appendix D. Explanatory Variable Perturbation

Here we provide derivations of the of elements ∆ij considering the explanatory variable

perturbation scheme.

• q > 0

The elements of the vector ∆1 are expressed as

∆1i =





0 if i ∈ F

ûq̂
−2

i exp{−ûi}(−q̂)p̂i(1−p̂i)β̂tSx
σ̂Γ(q̂−2)

{
ĥ−1
i1 + (1 − p̂i)

[
1 −Q(q̂−2, ûi)

]
ĥ−2
i1

}
if i ∈ C,

the elements of vector ∆2 are expressed as

∆2i =





0 if i ∈ F

ûq̂
−2

i exp{−ûi}ẑi(−q̂)p̂i(1−p̂i)β̂tSx
σ̂Γ(q̂−2)

{
ĥ−1
i1 + (1 − p̂i)

[
1 −Q(q̂−2, ûi)

]
ĥ−2
i1

}
if i ∈ C,

the elements of vector ∆j , for j = 1, . . . , p and j 6= t, take the forms

∆ji =





−xij p̂2
i β̂tSx(1 − p̂i)

−1
[
1 + exp{xTi β̂}

]−1
if i ∈ F

−xij p̂2
i (1 − p̂i)β̂tSx

[
1 −Q(q̂−2, ûi)

]2[
1 + exp{xTi β̂}

]−1

ĥ−2
i1 if i ∈ C,

the elements of the vector ∆t are given by
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∆ti =





−p̂iSx
[
xitβ̂t(1 − p̂i) + 1

]
if i ∈ F

xitp̂i(1 − p̂i)
[
1 −Q(q̂−2, ûi)

]
{(

1 − β̂tp̂iSx
)
ĥ−1
i1 − p̂i(1 − p̂i)β̂tSx

[
1 −Q(q̂−2, ûi)

]
ĥ−2
i1

}
if i ∈ C

• q < 0

The elements of vector ∆1 are expressed as

∆1i =





0 if i ∈ F

ûq̂
−2

i exp{−ûi}q̂p̂i(1−p̂i)β̂tSx
σ̂Γ(q̂−2)

{
ĥ−1
i2 + (1 − p̂i)Q(q̂−2, ûi)ĥ

−2
i2

}
if i ∈ C,

the elements of vector ∆2 are expressed as

∆2i =





0 if i ∈ F

ûq̂
−2

i exp{−ûi}ẑiq̂p̂i(1−p̂i)β̂tSx
σ̂Γ(q̂−2)

{
ĥ−1
i2 + (1 − p̂i)Q(q̂−2, ûi)ĥ

−2
i2

}
if i ∈ C,

the elements of vector ∆j , for j = 1, . . . , p and j 6= t, take the forms

∆ji =





−xij p̂2
i β̂tSx(1 − p̂i)

−1
[
1 + exp{xTi β̂}

]−1
if i ∈ F

−xij p̂2
i (1 − p̂i)β̂tSx

[
Q(q̂−2, ûi)

]2[
1 + exp{xTi β̂}

]−1

ĥ−2
i2 if i ∈ C,

the elements of vector ∆t are given by

∆ti =





−p̂iSx
[
xitβ̂t(1 − p̂i) + 1

]
if i ∈ F

xitp̂i(1 − p̂i)Q(q̂−2, ûi)

{(
1 − β̂tp̂iSx

)
ĥ−1
i2

−p̂i(1 − p̂i)β̂tSxQ(q̂−2, ûi)ĥ
−2
i2

}
if i ∈ C

• q = 0

The elements of vector ∆1 are expressed as

∆1i =





0 if i ∈ F

−σ̂−1p̂i(1 − p̂i)β̂tSxφ(ẑi)
[
ĥ−1
i3 − (1 − p̂i)Φ(ẑi)ĥ

−2
i3

]
if i ∈ C,

the elements of vector ∆2 are expressed as

∆2i =





0 if i ∈ F

−σ̂−1ẑip̂i(1 − p̂i)β̂tSxφ(ẑi)
[
ĥ−1
i3 − (1 − p̂i)Φ(ẑi)ĥ

−2
i3

]
if i ∈ C,
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the elements of vector ∆j , for j = 1, . . . , p and j 6= t, take the forms

∆ji =





−xij p̂2
i (1 − p̂i)

−1p̂iβ̂tSx if i ∈ F

−xij p̂2
i (1 − p̂i)β̂tSx

[
Φ(ẑi)

]2[
1 + exp{xTi β̂}

]−1

ĥ−1
i3 if i ∈ C,

the elements of vector ∆t are given by

∆ti =





−p̂iSx
[
xitβ̂t(1 − p̂i) + 1

]
if i ∈ F

xitpi(1 − pi)Φ(zi)
[(

1 − βtSxpi
)
h−1
i3 − pi(1 − pi)βtSxΦ(zi)h

−2
i3

]
if i ∈ C

where

ĥi1 =
[
p̂i + (1 − p̂i)Q(q̂−2, ûi)

]
, ĥi2 =

[
p̂i + (1 − p̂i)

{
1 −Q(q̂−2, ûi)

}]
,

ĥi3 =
[
p̂i + (1 − p̂i)

{
1 − Φ(ẑi)

}]
, ûi = q̂−2exp{q̂ẑi}, ẑi =

yi − µ̂

σ̂

p̂i =
exp(xTi β̂)

1 + exp(xTi β̂)

Φ(·) denoting the standard normal cumulative distribution, φ(·) standard normal density

function and Q(·) the incomplete gamma integral.


