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summary

A size biased generalized geometric series distribution (SBGGSD) is defined and
studied. Estimation of its parameters by the Bayes method is proposed. A
goodness of fit is done in order to test its improvement over the zero truncated
generalized geometric series distribution (ZTGGSD) and the size biased geometric
series distribution (SBGGSD).

Keywords and phrases: Squared error loss function, Bayes estimator, Beta distri-
bution, size-biased geometric series distribution, zero-truncated generalized geo-
metric series distribution.

AMS Classification: 62E10, 62E15

1 Introduction

Mishra (1982) defined the generalized geometric series distribution (GGSD) by using the

results of the lattice path analysis with the probability function as

P (X = x) =
1

1 + βx

(
1 + βx

x

)
αx(1 − α)1+βx−x; 0 < a < 1, |αβ| < 1, x = 0, 1, 2, . . . (1.1)

It can be seen that at β = 1, the model (1.1) reduces to simple geometric distribution and

is a particular case of Jain and Consul’s (1971) generalized negative binomial distribution

(GNBD) in the same way as the geometric distribution is a particular case of the negative

binomial distribution.
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The first four moments about origin of the GGSD are given as

µ′
1 =

α

1 − αβ

µ′
2 =

α(1 − α)

(1 − αβ)3
+

α2

(1 − αβ)2

µ′
3 =

α3

(1 − αβ)3
+

3α2(1 − α)

(1 − αβ)4
+

α(1 − α)

(1 − αβ)5
[1 − 2α+ αβ(2 − α)]

µ′
4 =

α4

(1 − αβ)4
+

6α3(1 − α)

(1 − αβ)5
+
α2(1 − α)[7 − 11α+ 4αβ(2 − α)]

(1 − αβ)6

+
α(1 − α)[1 − 60 + 6α2 + 2αβ(4 − 9α+ 4α2) + α2β2(6 − 6α+ α2)]

(1 − αβ)7
(1.2)

The central moments are given as

µ2 =
α(1 − α)

(1 − αβ)3

µ3 =
α(1 − α)

(1 − αβ)5
[1 − 2α+ αβ(2 − α)]

µ4 =
3α2(1 − α)2

(1 − αβ)6

+
α(1 − α)[1 − 60 + 6α2 + 2α(4 − 9α+ 4α2) + α2β2(6 − 6α+ α2)]

(1 − αβ)7
(1.3)

The various interesting properties and estimation of (1.1) have been discussed by Mishra

(1979, 1982), Singh (1989), Mishra and Singh (1992), Hassan (1995) and Hassan et al.

(2002, 2003, and 2007). They found this distribution to provide much closer fits to all

those observed distributions where the geometric distribution and the various compound

geometric distributions have been fitted earlier by many authors. A brief list of authors and

their works can be seen in Johnson et al. (1992) and Consul and Famoye (2006).

In this paper, a size-biased geometric series distribution (SBGGSD) taking the weights

of the probabilities as the variate values, has been defined. The moments of the size-biased

GGSD have also been obtained. As far as estimation of parameters of the size-biased

generalized geometric series distribution (SBGGSD) is concerned, no method seems to have

been evolved so far. The estimation of the parameters of the GGSD is itself very difficult

and only the method of moments give the estimate of the parameters easily but it also fails

to provide estimates of the parameters in some cases. In this paper we have proposed a

Bayes estimator of the size-biased generalized geometric series distribution. A goodness of

fit test is done in order to test its improvement over the zero truncated generalized geometric

series distribution (ZTGGSD) and the size-biased generalized geometric series distribution

(SBGGSD).



On Bayesian Estimation of Size–Biased Generalized Geometric Series . . . 119

2 Truncated Generalized Geometric Series Distribution

A discrete random variable is said to have a zero truncated generalized geometric series

distribution (ZTGGSD) of its probability mass function is given by

P1(X = x) =
1

1 + βx

(
1 + βx

x

)
αx−1(1−α)1+βx−x; 0 < α < 1, |αβ| < 1, x = 1, 2, . . . . (2.1)

The moments of (2.1) about the origin may be obtained by just dividing the corresponding

moments of the GGSD (1.1) by α. We get

µ′
1 =

1

(1 − αβ)

µ′
2 =

α

(1 − αβ)2
+

(1 − α)

(1 − αβ)3

µ′
3 =

3α(1 − α)

(1 − αβ)4
+

α2

(1 − αβ)3
+

(1 − α)

(1 − αβ)5
[1 − 2α+ αβ(2 − α)] (2.2)

The central moments of the zero truncated GGSD (2.1) may be obtained by multiplying

the corresponding central moments of the GGSD (1.2) by β. We get

µ2 =
αβ(1 − α)

(1 − αβ)3
and µ3 =

αβ(1 − α)

(1 − αβ)5
[1 − 2α+ αβ(2 − α)] (2.3)

3 Size-biased Generalized Geometric Series Distribu-

tion

A size biased GGSD is obtained by taking the weight of (1.1) as X. We have from (1.1) and

(1.2)

∞∑

x=0

xP (X = x) =
α

1 − αβ
and

∞∑

x=0

x · 1

1 + βx

(
1 + βx

x

)
αx(1 − α)1+βx−x =

α

1 − αβ
.

Thus ∞∑

x=1

(1 − α)
¯

(
βx

x− 1

)
αx−1(1 − α)1+βx−x = 1

which is implies that
∞∑
x=1

P2[X = x] = 1 where P2[X = x] represents a probability function.

This gives the size-biased generalized geometric series distribution (SBGGSD) as

P2[X = x] = (1−αβ)

(
βx

x− 1

)
αx−1(1−α)1+βx−x; 0 < α < 1, |αβ| < 1, x = 1, 2, . . . (3.1)
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When β = 1 and β = 0, the SBGGSD (3.1) reduces to the size-biased geometric series dis-

tribution and the size biased Bernoulli distributions (SBBD). The rth moment of SBGGSD

(3.1) about origin is defined as

µ′
r(s) =

∞∑

x=1

xr
1 − αβ

α

(
βx

x− 1

)
αx1 − α)1+βx−x, r = 1, 2, 3 (3.2)

Obviously µ′
0(s) = 1 and for r ≥ 1

µ′
r(s) =

1 − αβ

α

∞∑

x=0

xr+1 1

1 + βx

(
1 + βx

x

)
αx(1 − α)1+βx−x

=
1 − αβ

α
µ′
r+1 (3.3)

where µ′
r+1 is the (r + 1)-th moments about the origin of the GGSD (1.1).

Using relations (1.3) to (1.5) for r = 1, 2, 3 in (3.3), the first three moments about origin

of (3.1) we have

µ′
1(s) =

(1 − α2β)

(1 − αβ)2
(3.4)

µ′
2(s) =

1

(1 − αβ)4

[
α4β2 + 2α3β − 6α2β + 2αβ + 1

]
. (3.5)

Also, the variance µ2(s) of the SBGGSD (3.1) is

µ2(s) =
1

(1 − αβ)4
[2α3β − 4α2β + 2αβ] (3.6)

µ′
3(s) =

1

(1 − αβ)6
[α3(1 − αβ)3 + 6α2(1 − α)(1 − αβ)2)

+α(1 − α)[7 − 11α− 4ααβ(2 − α)(1 − αβ)

[1 − 6α+ 6α2 + 2αβ(4 − 9α+ 4α2) + α2β2(6 − 6α+ α2)]] (3.7)

The higher moments of the SBGGSD (3.1) about the origin can be obtained similarly using

(3.3) if so desired.
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4 Recurrence Relationship of Moments about Origin of

Size Biased GGSD

A recurrence relationship of (3.1) can be obtained by differentiating (3.3) we have

∂µ′
r(s)

∂α
=

∞∑

x=1

xr
(
βx

x− 1

)[
∂

∂α
{αx−1(1 − αβ)(1 − α)1+βx−x}

]

=

∞∑

x=1

xr+1 (1 − αβ)2

α

(
βx

x− 1

)
αx−1(1 − α)βx−x

− 1

α

∞∑

x=1

xr
(
βx

x− 1

)
(1 − αβ)αx−1(1 − α)βx−x

−β
∞∑

x=1

xr
(
βx

x− 1

)
αx−1(1 − α)1+βx−x

=
(1 − αβ)

α(1 − α)
µ′
r+1(s) −

1

α(1 − α)
µ′
r(s) −

β

(1 − αβ)
µ′
r(s).

Thus

µ′
r+1(s) =

α(1 − α)

(1 − αβ)

∂µ′
r(s)

∂λ
+

(1 − α2β)

(1 − αβ)2
µ′
r(s). (4.1)

We can also obtain the moments of the SBGGSD about the origin from (4.1).

5 Bayesian Estimation of Truncated Generalized Geo-

metric Series Distribution

Let X1, X2, · · · , Xn be a random sample from distribution (2.1). The likelihood function is

given by

L(x | α, β) =
n∏

i=1

[
1

βxi + 1

(
betaxi + 1

xi

)
αi−1(1 − α)βxi−xi+1

]

= CαΣxi−n(1 − α)βΣxi−Σxi+n

= Cαnx−n(1 − α)βnx−n+n, (5.1)

where

C =

n∏

i=1

1

βxi + 1

(
βxi + 1

xi

)
.

Since 0 < α < 1, the prior distribution on α can be summarized by a beta distribution

B(a, b) with probability density function

g(α; a, b) =
αa−1(1 − α)b−1

B(a, b)
; a > 0, b > 0, 0 < α < 1. (5.2)
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When β is known the posterior distribution of α becomes

π(α/x) =
αnx−n+a−1(1 − α)βnx−nx+n+b−1

∫ 1

0
αnx−n+a−1(1 − α)βnx−nx+n+b−1dα

=
αnx−n+a−1(1 − α)βnx−nx+n+b−1

B(nx− n+ a, βnx− nx+ n+ b)
(5.3)

Using a squared error loss function, Bayes estimator of α is given as

α̂ =

∫ 1

0
αnx−n+a(1 − α)βnx−nx+n+b−1dα

B(nx− n+ a, βnx− nx+ n+ b)

=
B(nx − n+ a+ 1, βnx− nx+ n+ b)

B(nx− n+ a, βnx− nx+ n+ b)

which on simplification gives

α̂ =
nx− n+ a

βnx+ a+ b
(5.4)

6 Bayesian Estimator of Parameter of Size Biased Gen-

eralized Geometric Series Distribution

The likelihood function of the SBGGSD (3.1) can be given as

L(x | αβ) = (1 − αβ)n
n∏

i=1

(
βxi
xi − 1

)
α

n
P

i=1

xi−n
(1 − α)

β
n

P

i=1

xi−
n

P

i=1

xi+n

L(y | α, β) = K(1 − αβ)nαy−n(1 − α)βy−y+n, (6.1)

where y =
n∑
i=1

xi and K =
n∏
i=1

(
βxi
xi−1

)
.

Since 0 < α < 1, we assume that prior information for α when β is known is from a beta

distribution. Thus

f(α) =
αa−1(1 − α)b−1

B(a, b)
; 0 < α < 1, a, b > 0. (6.2)

The posterior distribution from (6.1) and (6.2) can be written as

p(α|y) =
(1 − αβ)nαy+a−n−1(1 − α)βy−y+n+b−1

∫ 1

0
(1 − αβ)nαy+a−n−1(1 − α)βy−y+n+b−1dα

. (6.3)

The Bayes estimator of the parametric function αz is given as

α
∗z =

∫ 1

0

αzp(α|y)dα

=

∫ 1

0 (1 − αβ)nαy+a−n+z−1(1 − α)βy−y+n+b−1dα
∫ 1

0
(1 − αβ)nαy+a−n−1(1 − α)βy−y+n+b−1dα

, (6.4)
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where

∫ 1

0

(1 − αβ)nαy+a−n+z−1(1 − α)βy−y+n+b−1dα

=
Γ(y + a− n+ z)Γ(βy + b− y + n)

Γ(βy + a+ b+ z)

× 2F1[−n, y + a− n+ z, βy + a+ b+ z, β] (6.5)

and

∫ 1

0

(1 − αβ)nαy+a−n−1(1 − α)βy−y+n+b−1dα

=
Γ(y + a− n)Γ(βy + b− y + n) 2F1[−n, y + a− n, βy + a+ b, β]

Γ(βy + a+ b)
(6.6)

where 2F1 refers to the generalized hyper geometric function with two arguments 2-numerator

and 1-denominator.

Putting these values in (6.4), the Bayes estimator of αz is obtained as

α
∗z =

Γ(y + a− n+ z)Γ(βy + a+ b)2F1[−n, y + a− n+ z, βy + a+ b+ z, β]

Γ(y + a− n)Γ(βy + a+ b+ z)2F1[−n, y + a− n, βy + a+ b, β]
. (6.7)

Similarly, the Bayes estimator of the parametric function (1 − α)z can be obtained as

(1 − α)z =

∫ 1

0
(1 − αβ)nαy+a−n−1(1 − α)βy−y+n+b−1+zdα
∫ 1

0 (1 − αβ)nαy+a−n−1(1 − α)βy−y+n+b−1dα
, (6.8)

where

∫ 1

0

(1 − αβ)nαy+a−n−1(1 − α)βy−y+n+b−1+zdα

=
Γ(y + a− n)Γ(βy + b− y + n+ z)2F1[−n, y + a− n, βy + a+ b+ z, β]

Γ(βy + a+ b+ z)
. (6.9)

Using the values from (6.9) and (6.6) in (6.8), the Bayes estimator of the parametric Function

(1 − α)z can be obtained as

(1 − α)
∗z =

2F1[−n, y + a− n, βy + a+ b+ z, β]
2F1[−n, y + a− n, βy + a+ b, β]

×
2F1[−n, y + a− n, βy + a+ b+ z, β]

2F1[−n, y + a− n, βy + a+ b, β]
(6.10)

Similarly, the Bayes estimator of some parametric functions φ(α) and of some particular

models of the SBGGSD are listed in Tables 1.
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Table 1: Bayes’ estimators of some pparametric functions in a SBGGSD and some of its
particular models

Parametric Bayes estimate

function αz

α (y+a−n)2F1[−n,y+a−n+1,βy+a+b+1,β]
(βy+a+b)2F1[−n,y+a−n,βy+a+b,β]

(1 − α) (βy+b−y+n)2F1[−n,y+a−n,βy+a+b+1,β]
(βy+a+b)2F1[−n,y+a−n,βy+a+b,β]

β Particular Bayes

distribution estimate

1 SBGSD y+a−n
y+a+b+n

0 SBBD y+a−n
a+b

7 Application

An attempt has been made to fit the SBGGSD (3.1) and the zero truncated GGSD (2.1) to

some zero-truncated biological data of McGuire et al. and Student on counts of the number

of European red mites on apple leaves and Haemayeytometerye yeast cell counts observed

per square respectively. Estmates of parameter has been obtained by using the Bayesian

method of estimation. Monte Carlo simulation technique and R-Software have been used to

obtain best fit for different values of a, b and β. In each of the following Tables 2 and 3 the

expected frequencies for a = b = 2 and β = 0.3 and the values of chi-square according to

the SBGGSD and the ZTGGSD are also given. So that a quick comparison can be made.

Table 2: McGuire et al. and Student on counts of the number of European red mites on
apple leaves, a = b = 2 and β = 0.3

No. of cells Observed No. of Expected frequency

per square squares (Based on Bayes Estimators)

TGGSD SBGGSD

1 128 126.36 127.54

2 37 39.00 37.84

3 18 19.26 18.34

4 3 1.06 1.83

5 1 1.32 1.45

Total 187 187.00 187.00

Mean 1.45991

χ2 0.129838 0.026985

d.f. 1 1

Estimates of α 0.814 0.875
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Table 3: Haemayeytometerye yeast cell counts observed per square a = b = 3 and β = 0.2

No. of per Observed No. of Expected frequency

Plant Plants (Based on Bayes Estimators)

TGGSD SBGGSD

1 83 84.03 83.04

2 36 37.05 35.08

3 14 13.06 13.87

4 2 1.25 2.87

5 1 0.61 1.14

Total 136 136.00 136.00

Mean 1.54412

χ2 0.332355 0.080308

d.f. 1 1

Estimates of α 0.1807 0.1048

It may be seen that from Tables 2 and 3 that the SBGGSD provides a better fits than

the ZTGGSD model at the same degree of freedom in all the cases.
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