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summary

Problem of estimating the population mean at current occasion in successive
sampling has been studied by various authors in design approach. Present work
is an attempt to study the similar kind of problem under a super-population
model. Optimum replacement policy and performance of the proposed chain
type difference estimator has been discussed under the assumed super-population
model. Empirical comparison of the proposed estimator is made with respect to
sample mean estimator and suitable recommendations are made.
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1 Introduction

In many surveys, the same population is sampled repeatedly and the same study variate is

measured at each occasion, so that the development over time can be followed.

For example in many countries, labor-force surveys are conducted monthly to estimate

the number of employed and the rate of unemployment. Other examples are monthly surveys

in which data on price of goods are collected to determine a consumer price index, and

political opinion survey conducted at regular intervals to measure voter preferences. These

practical situations are achieved by means of sampling on successive occasions according

to a specified rule, with partial replacement of units. A key issue is the extent to which

elements sampled at a previous occasion should be retained in the sample selected at the

current occasion; which is termed as optimum replacement policy.
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Theory of rotation (successive) sampling appears to have started with the work of Jessen

(1942). He pioneered using the entire information collected in previous investigations (oc-

casions). This theory was extended by Patterson (1950), Rao and Graham (1964), Gupta

(1979), Das (1982), among others. It is well known fact that an auxiliary variate assists

in the estimation of a study variate. Utilizing information on two auxiliary variates, Sen

(1971) developed estimators for the population mean on current occasion. Sen (1972, 73)

extended his work for several auxiliary variates. Singh et al. (1991) and Singh and Singh

(2001) used the auxiliary information on current occasion for estimating the current pop-

ulation mean in two-occasion successive sampling. Singh (2003) extended their work for

h-occasions successive sampling. In many situations, information on an auxiliary variate

may be readily available on the first as well as on the second occasion, for example tonnage

(or seat capacity) of each vehicle or ship is known in survey sampling of transportation,

number of polluting industries and vehicles are known in environmental surveys. Many

other situations in biological (life) sciences could be explored to show the benefits of the

present study. Utilizing the information on an auxiliary variate on both the occasions Feng

and Zou (1997), Biradar and Singh (2001), Singh (2005), Singh and Priyanka (2006, 2007 a

and 2008) have proposed varieties of chain ratio, difference and regression type estimators

for estimating the population mean at current (second) occasion in two-occasion successive

sampling.

Works quoted above are design based and consist the use of some known and unknown

population parameters. Some times it may be unrealistic to get the ready-made information

on unknown population parameters, in such situations it is more realistic to assume a

super population model with unknown model parameters, which may be estimated from

the available data. Such a model could efficiently link the study and auxiliary variate at

different occasions. Motivated with these arguments, Singh and Priyanka (2007b) proposed

two different estimators for estimating population mean at current occasion in two-occasion

successive sampling under a super-population model.

There are various ways for utilizing the available auxiliary information at estimation

stage in successive sampling. Chaining of auxiliary information in two-phase structure

is one of them, viz Chand (1975), Kiregyera (1980, 1984) and many others. Successive

(rotation) sampling resembles with two-phase sampling. Motivated with these points an

estimator of chain-type structure has been proposed under a linear super- population model

for estimating population mean at current occasion in two-occasion successive sampling.

Assumed super-population model links the study and auxiliary variate over two-occasion.

Auxiliary information available at both the occasions is stable over time. It is assumed

that under the super-population model, errors are correlated over two occasions and the

auxiliary variate is gamma distributed. Results are demonstrated through empirical means

of comparison.
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2 Notations

Let U = (U1, U2, . . . , UN ) be the N elements finite population, which has been sampled over

two-occasion, and the character under study be denoted by yh (h = 1, 2) on the hth occasion.

It is assumed that information on an auxiliary variate z (with known population mean), is

available on both the occasions. A simple random sample (without replacement) of n units

is taken on the first occasion. A random sub sample of m = nλ, units is retained (matched)

for its use on the second occasion, while a fresh simple random sample (without replacement)

of u = (n −m) = nµ, units is drawn on the second occasion from the remaining (N − n)

units of the population so that the sample size on the second occasion is n as well. λ and

µ (λ + µ = 1) denote the fractions of matched and fresh samples at the second (current)

occasion respectively. Under the super-population supposition we assume that the finite

population of size N is itself a sample from a super-population. The following notations are

considered for the further use:

Ȳh : The population mean of the study variate y on the hth (h = 1, 2) occasion.

ȳhn : The sample mean based on n units on the hth (h = 1, 2) occasion.

ȳhm : The sample mean on hth (h = 1, 2) occasion, based on m units, which are

common to both occasions.

ȳ2u : The sample mean based on u units drawn afresh at second (current) occasion.

Z̄ : The population mean of the auxiliary variate z.

S2
y , S

2
z : The population mean square (variance) of the variates y and z respectively.

z̄u, z̄m : The sample means of the auxiliary variate z of the sample sizes shown in

suffices.

3 Super-Population Model

It has been assumed that the finite population of sizeN under consideration is itself a sample

from a super-population and the auxiliary variate (z) and study variate (y) are inter-related

through a linear model given by

yhi = βhzi + ehi, h = 1, 2 and i = 1, 2, . . . , N (3.1)
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where βh (h = 1, 2) are unknown real constants and ehi’s are random errors (disturbances)

over hth (h = 1, 2) occasions, such that

Ec(ehi|zi) = 0 (3.2)

Ec(ehiehj |zi, zj) = 0 ∀ (i 6= j = 1, 2, . . . , N) (3.3)

Ec(e
2
hi|zi) = δhz

gh
i ; δh > 0; 0 ≤ gh ≤ 2 (3.4)

Ec(ehieh′j |zi, zj) = 0 ∀ (i 6= j = 1, 2, . . . , N) and h 6= h′ = 1, 2 (3.5)

Ec(ehieh′i|zi) = ρehe′h

√
δhδh′z

gh+g
h′

2

i ; δh′ > 0; 0 ≤ gh′ ≤ 2; h 6= h′ = 1, 2 (3.6)

where ρeheh′ is the coefficient of correlation between the random errors (disturbances) over

the two-occasion, δh and gh (h = 1, 2) are model parameters.

Ec denotes, the conditional expectation given zi (i = 1, 2, . . . , N) and zi’s are indepen-

dently and identically distributed gamma variates with common density

f(z) =
1

|θ
e−zzθ−1 ; z ≥ 0, θ > 1 . (3.7)

Let us denote the expectation with respect to common distribution of zi by Ez , model

expectation by Em (= EzEc) and design expectation by Ed.

4 Formulation of the Estimator T

To estimate the population mean Ȳ2 on the second occasion, two different estimators are

suggested. One is difference estimator based on sample of size u(= nµ) drawn afresh on the

second occasion and is given by

T1 = ȳ2u + β2(Z̄ − z̄u) (4.1)

Second estimator is a chain- type difference to difference estimator based on the sample of

size m(= nλ) common to both the occasions and is defined as

T2 = ȳ∗2m +K(ȳ∗1n − ȳ∗1m) (4.2)

where

ȳ∗2m = ȳ∗2m + β2(Z̄ − z̄m)

ȳ∗1n = ȳln + β1(Z̄ − z̄n)

ȳ∗1m = ȳ1m + β1(Z̄ − z̄m)

where K is an unknown constant to be determined so as to minimize the variance of the

estimator T2. Combining the estimators T1 and T2, the final estimator of Ȳ2 is defined as

T = ϕT1 + (1 − ϕ)T2 (4.3)
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where ϕ is an unknown constant to be determined such that it minimizes the variance of

the estimator T .

Remark 1. It is obvious that for estimating the mean on second occasion ignoring findings

from earlier occasions, the estimator T1 is suitable, and it would be appropriate to choose ϕ

to be 1, while for estimating the mean using information on the change from one occasion

to the next, the estimator T2 is emphasized so choosing ϕ as 0. For asserting both the

problems simultaneously, the suitable (optimum) choice of ϕ is desired.

5 Properties of the Estimator T

Theorem 1. T is an unbiased estimator of Ȳ2.

Proof. Since, T1 and T2 are the difference type estimators, so they are unbiased for Ȳ2.

The final estimator T is a convex linear combination of T1 and T2, therefore, T is also an

unbiased estimator of Ȳ2.

Theorem 2. Variance of T is obtained as

V (T ) = ϕ2V (T1) + (1 − ϕ)2V (T2)opt . (5.1)

where

V (T1) =

(
1

u
− 1

N

)(
δ2

|g2 + θ

|θ

)
(5.2)

and

V (T2)opt =

(
1

m
− 1

N

)
A+

(
1

m
− 1

n

)
B (5.3)

where

A = δ2
|g2 + θ

|θ
, B =

−
{
ρe1e2

√
δ1δ2

|g + θ

|θ

}2

δ1
|g1 + θ

|θ

and g =
(g1 + g2)

2
.

Proof. Since, samples are independent, the variance of T (ignoring the covariance term) is

given by

V (T ) = E(T − Ȳ2)
2 = ϕ2V (T1) + (1 − ϕ)2V (T2)

V (T2) is a function of unknown constant K, substituting the optimum value of K (say Kopt)

the V (T ) is give below:

V (T ) = E(T − Ȳ2)
2 = ϕ2V (T1) + (1 − ϕ)2V (T2)opt . (5.4)
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Under the assumed linear model yhi = βhzi + ehi, (i = 1, 2, . . . , N ;h = 1, 2) we can write

ȳ2u = β2z̄u + ē2u,

ȳ1n = β1z̄n + ē1n,

ȳ2m = β2z̄m + ē2m,

ȳ1m = β1z̄m + ē1m and

Ȳ2 = β2Z̄ + ē2N





(5.5)

where

ē2u = (1/u)
∑u
i=1 e2i, ē1n = (1/n)

∑n
i=1 e1i, ē2m = (1/m)

∑m
i=1 e2i,

ē1m = (1/m)
∑m
i=1 e1i, ē2N = (1/N)

∑N
i=1 e2i.

Following Rao (1968), the V (T1) and V (T2) have been derived in three steps: First,

we operate the design expectation Ed, secondly the conditional expectation Ec and finally

the expectation Ez with respect to the distribution of zi. The design expectation can be

evaluated using the results given in Sukhatme et al. (1984).

V (T1) = EmEd[T1 − Ȳ2]
2 = EmEd[ȳ2u + β2(Z̄ − z̄u) − Ȳ2]

2

= EmEd[ē2u − ē2N ]2 = Em[V (ē2u)] = EzEc

[(
1

u
− 1

N

)
S2
e2

]

= EzEc

[
1

N − 1

(
1

u
− 1

N

)( N∑

i=1

e22i −Nē22N

)]

Using the conditions in equations (3.2)-(3.6) Ec is evaluated and is obtained as

V (T1) =

(
1

u
− 1

N

)
1

N − 1
Ez

[(
N∑

i=1

δ2z
g2
i − 1

N

N∑

i=1

δ2z
g2
i

)]

Now, evaluating Ez using the probability distribution of zi, we have the V (T1) as in equa-

tion (5.2). Similarly,

V (T2) = EmEd[T2 − Ȳ2]
2 = EmEd

[
ȳ∗2m +K(ȳ∗1n − ȳ∗1m) − Ȳ2

]2
.

Applying the results of equation (5.5) and taking expectations in three steps, as discussed

in the case of V (T1), we have V (T2) as follows:

V (T2) =

(
1

m
− 1

N

)
δ2

|g2 + θ

|θ
+

(
1

m
− 1

n

)[
K2δ1

|g1 + θ

|θ
− 2Kρe1e2

√
δ1δ2

|g + θ

|θ

]
. (5.6)
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Since, the variance of the estimator T2 is a function of unknown constant K, so it is mini-

mized with respect to K and hence the optimum (minimum) value of k is obtained as

Kopt =

ρe1e2
√
δ1δ2

|g + θ

|θ

δ1
|g1 + θ

|θ

substituting, the value of Kopt in equation (5.6), we get the optimum value of the variance

of the estimator T2 as

V (T2)opt =

(
1

m
− 1

N

)
A+

(
1

m
− 1

n

)
B

where A = δ2
|g2 + θ

|θ
, B =

−
{
ρe1e2

√
δ1δ2

|g + θ

|θ

}2

δ1
|g1 + θ

|θ

and g =
(g1 + g2)

2
.

Further substituting the values of V (T1) and V (T2)opt in equation (5.4), we get the

expression for the variance of T given as in equation (5.1).

Since, variance of the estimator T in equation (5.1) is a function of the unknown constant

ϕ, it is minimized with respect to ϕ and subsequently the optimum value of ϕ is obtained as

ϕopt =
V (T2)opt

V (T1) + V (T2)opt
(5.7)

Substituting this optimum value ϕopt in equation (5.1) we obtain the minimum variance of

T as

V (T )opt =
V (T1)V (T2)opt

V (T1) + V (T2)opt
(5.8)

Further, substituting the values from equations (5.2) and (5.3) in equation (5.8), the sim-

plified value of V (T )opt is shown below in Theorem 3.

Theorem 3. The V (T )opt is derived as

V (T )opt =
−fA(fA+ B)µ2 + {fA2 +AB − f(1− f)A2}µ+ (1 − f)A2

fN [(2Af +B)µ2 − 2Afµ+A]
(5.9)

where u
(
=
u

n

)
and f =

n

N
.

Remark 2. To estimate the population mean on each occasion, a good choice for µ is 1

(the case of no matching) while for estimating the change from one occasion to the other, µ

should be 0 (the case of complete matching). To design a strategy that would be efficient

for both problems simultaneously, the optimum choice of µ is desired.
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Since V (T )opt is the function of µ (fraction of fresh sample at current occasion), which

is an important factor in reducing the cost of the survey, it is necessary to minimize the

V (T )opt in equation (5.9) with respect to µ. The minimum value of µ is obtained as

µ̂ =
−P2 ±

√
P 2

2 − P1P3

P1
= µ0 (say) (5.10)

where

P1 = (A1A5 −A2A4), P2 = (A1A6 −A3A4), P3 = (A2A6 −A3A5),

A1 = −fA(fA+B), A2 = fA2 +AB − f(1− f)A2, A3 = (1 − f)A2,

A4 = 2Af +B, A5 = −2Af and A6 = A.

The real values of µ̂ exists if (P 2
2 − P1P3) ≥ 0. For any combinations of the parameters

involved, which satisfies the above condition, two real values of µ̂ are possible, hence to

choose a value of µ̂, it should be remembered that 0 ≤ µ̂ ≤ 1. All other values of µ̂ are

inadmissible. Substituting the admissible value of µ̂ from equation (5.10) in equation (5.9)

we have

V (T )opt∗ =
−fA(fA+B)µ2

0 + {fA2 +AB − f(1 − f)A2}µ0 + (1 − f)A2

fN [(2Af +B)µ2
0 − 2Afµ0 +A]

(5.11)

where V (T )opt∗ is the optimum value of T with respect to both the parameters ϕ and µ.

6 Efficiency Comparison

The percent relative efficiencies of the estimator T with respect to the sample mean estimator

ȳ2n of the population mean Ȳ2 on current occasion, which is based exclusively on a sample

of size n on the second occasion, using no information gathered on the first occasion (i.e.,

case of no matching). Its variance under the assumed model is given by

V (ȳ2n) =

(
1

n
− 1

N

)(
β2

2θ + δ2
|g2 + θ

|θ

)
(6.1)

Tables 1–4 present the values of percent relative efficiencies, E and optimum values of µ,

i.e., µ0 of the estimator T over the estimator ȳ2n under optimal condition and for a few

combinations of the parametric values β2, g1, g2, θ, ρe1e2 , δ1 and δ2 under the assumed super-

population model for given N and n, where E =
V (ȳ2n)

V (T )opt∗
× 100.
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Table 1: Optimum values of µ and percent relative efficiencies of the estimator T over the
estimator ȳ2n for (δ1 = 1.0, δ2 = 2.0, θ = 8.0, β2 = 0.5)

ρe1e2 0.3 0.6 0.9

g1 g2 f ↓ µ0 E µ0 E µ0 E

0.0 0.0 0.1 0.5118 194.18 0.5556 211.76 0.6964 269.48

0.3 0.5118 169.29 0.5556 186.67 0.6964 246.50

0.5 0.5118 137.56 0.5556 153.85 0.6964 213.70

1.0 0.1 0.5114 109.14 0.5534 118.64 0.6833 148.51

0.3 0.5114 ∗ 0.5534 104.52 0.6833 135.36

0.5 0.5114 ∗ 0.5534 ∗ 0.6833 116.75

2.0 0.1 0.5104 ∗ 0.5481 105.82 0.6540 127.70

0.3 0.5104 ∗ 0.5481 ∗ 0.6540 115.48

0.5 0.5104 ∗ 0.5481 ∗ 0.6540 ∗
1.0 0.0 0.1 0.5114 194.03 0.5534 210.91 0.6833 264.01

0.3 0.5114 169.14 0.5534 185.81 0.6833 240.64

0.5 0.5114 137.42 0.5534 153.03 0.6833 207.56

1.0 0.1 0.5118 109.23 0.5556 119.12 0.6964 151.58

0.3 0.5118 ∗ 0.5556 105.00 0.6964 138.66

0.5 0.5118 ∗ 0.5556 ∗ 0.6964 120.21

2.0 0.1 0.5114 ∗ 0.5537 106.97 0.6846 134.13

0.3 0.5114 ∗ 0.5537 ∗ 0.6846 122.30

0.5 0.5114 ∗ 0.5537 ∗ 0.6846 105.54

2.0 0.0 0.1 0.5104 193.64 0.5481 208.74 0.6540 251.89

0.3 0.5104 168.76 0.5481 183.65 0.6540 227.80

0.5 0.5104 137.06 0.5481 150.99 0.6540 194.33

1.0 0.1 0.5114 109.15 0.5537 118.69 0.6846 148.83

0.3 0.5114 ∗ 0.5537 104.57 0.6846 135.70

0.5 0.5114 ∗ 0.5537 ∗ 0.6846 117.11

2.0 0.1 0.5118 ∗ 0.5556 107.35 0.6964 136.61

0.3 0.5118 ∗ 0.5556 ∗ 0.6964 124.96

0.5 0.5118 ∗ 0.5556 ∗ 0.6964 108.33

Note: “∗” indicates no gain
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Table 2: Optimum values of µ and percent relative efficiencies of the estimator T over the
estimator ȳ2n for (δ1 = 1.0, δ2 = 2.0, θ = 8.0, β2 = 1.5)

ρe1e2 0.3 0.6 0.9

g1 g2 f µ0 E µ0 E µ0 E

0.0 0.0 0.1 0.5118 970.91 0.5556 1058.8 0.6964 1347.4

0.3 0.5118 846.46 0.5556 933.33 0.6964 1232.5

0.5 0.5118 687.79 0.5556 769.23 0.6964 1068.5

1.0 0.1 0.5114 206.16 0.5534 224.09 0.6833 280.51

0.3 0.5114 179.72 0.5534 197.43 0.6833 255.68

0.5 0.5114 146.01 0.5534 162.60 0.6833 220.53

2.0 0.1 0.5104 108.92 0.5481 117.42 0.6540 141.69

0.3 0.5104 ∗ 0.5481 103.30 0.6540 128.14

0.5 0.5104 ∗ 0.5481 ∗ 0.6540 109.31

1.0 0.0 0.1 0.5114 970.15 0.5534 1054.6 0.6833 1320.1

0.3 0.5114 845.72 0.5534 929.07 0.6833 1203.2

0.5 0.5114 687.10 0.5534 765.18 0.6833 1037.8

1.0 0.1 0.5118 206.32 0.5556 225.00 0.6964 286.33

0.3 0.5118 179.87 0.5556 198.33 0.6964 261.91

0.5 0.5118 146.15 0.5556 163.46 0.6964 227.06

2.0 0.1 0.5114 109.15 0.5537 118.69 0.6846 148.83

0.3 0.5114 ∗ 0.5537 104.57 0.6846 135.70

0.5 0.5114 ∗ 0.5537 ∗ 0.6846 117.11

2.0 0.0 0.1 0.5104 968.17 0.5481 1043.7 0.6540 1259.5

0.3 0.5104 843.80 0.5481 918.26 0.6540 1139.0

0.5 0.5104 685.32 0.5481 754.93 0.6540 971.67

1.0 0.1 0.5114 206.17 0.5537 224.19 0.6846 281.12

0.3 0.5114 179.733 0.5537 197.52 0.6846 256.33

0.5 0.5114 146.02 0.5537 162.69 0.6846 221.21

2.0 0.1 0.5118 109.23 0.5556 119.12 0.6964 151.58

0.3 0.5118 ∗ 0.5556 105.00 0.6964 120.21

0.5 0.5118 ∗ 0.5536 ∗ 0.6964 138.66

Note:“∗” indicates no gain
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Table 3: Optimum values of µ and percent relative efficiencies of the estimator T over the
estimator ȳ2n for (δ1 = 1.0, δ2 = 3.0, θ = 8.0, β2 = 1.5)

ρe1e2 0.3 0.6 0.9

g1 g2 f µ0 E µ0 E µ0 E

0.0 0.0 0.1 0.5118 679.63 0.5556 741.18 0.6964 943.19

0.3 0.5118 592.52 0.5556 653.33 0.6964 862.76

0.5 0.5118 481.45 0.5556 538.46 0.6964 747.95

1.0 0.1 0.5114 169.78 0.5534 184.55 0.6833 231.01

0.3 0.5114 148.00 0.5534 162.59 0.6833 210.56

0.5 0.5114 120.24 0.5534 133.91 0.6833 181.61

2.0 0.1 0.5104 104.89 0.5481 113.09 0.6540 136.44

0.3 0.5104 ∗ 0.5481 ∗ 0.6540 123.39

0.5 0.5104 ∗ 0.5481 ∗ 0.6540 105.26

1.0 0.0 0.1 0.5114 679.10 0.5534 738.19 0.6833 924.04

0.3 0.5114 592.01 0.5534 650.35 0.6833 842.23

0.5 0.5114 480.97 0.5534 535.62 0.6833 726.46

1.0 0.1 0.5118 169.91 0.5556 185.29 0.6964 235.80

0.3 0.5118 148.13 0.5556 163.33 0.6964 215.69

0.5 0.5118 120.36 0.5556 134.61 0.6964 186.99

2.0 0.1 0.5114 105.11 0.5537 114.29 0.6846 143.32

0.3 0.5114 ∗ 0.5537 100.70 0.6846 130.68

0.5 0.5114 ∗ 0.5537 ∗ 0.6846 112.78

2.0 0.0 0.1 0.5104 677.72 0.5481 730.60 0.6540 881.64

0.3 0.5104 590.66 0.5481 642.78 0.6540 797.30

0.5 0.5104 479.73 0.5481 528.45 0.6540 680.17

1.0 0.1 0.5114 169.79 0.5537 184.63 0.6846 231.51

0.3 0.5114 148.02 0.5537 162.67 0.6846 211.09

0.5 0.5114 120.26 0.5537 133.98 0.6846 182.17

2.0 0.1 0.5118 105.18 0.5556 114.70 0.6964 145.97

0.3 0.5118 ∗ 0.5556 101.11 0.6964 133.52

0.5 0.5118 ∗ 0.5556 ∗ 0.6964 115.75

Note: “∗” indicates no gain
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Table 4: Optimum values of µ and percent relative efficiencies of the estimator T over the
estimator ȳ2n for (δ1 = 10, δ2 = 30, θ = 8.0, β2 = 2.5)

ρe1e2 0.3 0.6 0.9

g1 g2 f µ0 E µ0 E µ0 E

0.0 0.0 0.1 0.5118 1715.3 0.5556 1870.6 0.6964 2380.4

0.3 0.5118 1495.4 0.5556 1648.9 0.6964 2177.4

0.5 0.5118 1215.1 0.5556 1359.0 0.6964 1887.7

1.0 0.1 0.5114 299.13 0.5534 325.15 0.6833 407.02

0.3 0.5114 260.76 0.5534 286.46 0.6833 370.99

0.5 0.5114 211.86 0.5534 235.93 0.6833 319.99

2.0 0.1 0.5104 119.23 0.5481 128.53 0.6540 155.10

0.3 0.5104 103.91 0.5481 113.08 0.6540 140.27

0.5 0.5104 ∗ 0.5481 ∗ 0.6540 119.66

1.0 0.0 0.1 0.5114 1713.9 0.5534 1863.0 0.6833 2332.1

0.3 0.5114 1494.1 0.5534 1641.4 0.6833 2125.6

0.5 0.5114 1213.9 0.5534 1351.8 0.6833 1833.4

1.0 0.1 0.5118 299.36 0.5556 326.47 0.6964 415.45

0.3 0.5118 260.99 0.5556 287.78 0.6964 380.02

0.5 0.5118 212.07 0.5536 237.18 0.6964 329.45

2.0 0.1 0.5114 119.48 0.5537 129.92 0.6846 162.91

0.3 0.5114 104.16 0.5537 114.47 0.6846 148.5

0.5 0.5114 ∗ 0.5537 ∗ 0.6846 128.19

2.0 0.0 0.1 0.5104 1710.4 0.5481 1843.9 0.6540 2225.1

0.3 0.5104 1490.7 0.5481 1622.3 0.6540 2012.2

0.5 0.5104 1210.7 0.5481 1333.7 0.6540 1716.6

1.0 0.1 0.5114 299.15 0.5537 325.30 0.6846 407.90

0.3 0.5114 260.79 0.5537 286.61 0.6846 371.92

0.5 0.5114 211.88 0.5537 236.07 0.6846 320.97

2.0 0.1 0.5118 119.56 0.5556 130.39 0.6964 165.93

0.3 0.5118 104.24 0.5556 114.94 0.6964 151.78

0.5 0.5118 ∗ 0.5556 ∗ 0.6964 131.58

Note: “∗” indicates no gain
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7 Conclusion

The following conclusions can be made from Tables 1-4:

(i) It is apparent from the values of E in the tables that the estimator T is far better

than the sample mean estimator ȳ2n for smaller values of g1 and g2.

(ii) The percent relative efficiencies E is maximum in all the tables when we deal with

constant variance model (i.e., g1 or g2 = 0.0).

(iii) If other parameters are same, the value of E increases with the increasing values of

β2. However, µ0 is unaffected with the change in β2.

(iv) The percent relative efficiency and the optimum value of µ, is unaffected by any

choice of β1.

Thus, it is clear that the use of auxiliary variate through a super-population linear model

is highly rewarding in terms of the proposed estimator. The proposed estimator may be

recommended for its practical use by survey statisticians.
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