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summary

Motivated by a problem in archaeological data analysis, we examine through
simulation the effect of linear truncation on density estimation in the bivariate
normal distribution. It is shown that the estimation procedure performs poorly
when the truncation line is parallel to the minor axis of the elliptical contours
of the distribution. The estimation also worsens with increasing correlation and
increasing disparity in the values of the variances in the distribution. Recon-
struction of the bivariate normal distribution is best achieved when truncation is
parallel to the major axis and there is only about 10% of the data that is missing.
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1 Introduction

Consider bivariate data denoted by the pair of observations (x, y). The most common form

of truncation of data of this type is when x or y or both are each restricted to an interval of

values of on the real line. This situation and the related estimation problems are described

in detail in Schneider (1986), for example, and elsewhere. Here we consider a less common

form of truncation, that of linear truncation. In this situation the parent distribution is

defined as usual for −∞ < x < ∞ and −∞ < y < ∞, but the truncation restricts the

observable data to the subset of points in which y ≥ a + bx. The line y = a + bx is called

the truncation line.
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Assume that (x, y) are bivariate normal with parameters µ1, µ2, σ1, σ2 and ρ. The

likelihood for linearly truncated data with n independent sets of observations (xi, yi) for

i = 1, . . . , n is given by

−n ln(σ1) − n ln(σ2) −
n

2
ln(1 − ρ2) − n ln(G) − 1

2(1 − ρ2)
×

(
n(x̄ − µ1)

2 + ns21
σ2

1

− 2ρ
n(x̄− µ1)(ȳ − µ2) + nrs1s2

σ1σ2
+
n(ȳ − µ2)

2 + ns22
σ2

2

)
(1.1)

where x̄ and ȳ are sample means, ns21, ns
2
2 and nrs1s2 are sample sums of squares and cross

products, and

G =

∫ ∞

ζ

1√
2π

exp(−t2/2)dt = 1− Φ(ζ). (1.2)

In (1.2), Φ(ζ) is the cumulative distribution function for the standard normal density

φ(ζ), and ζ = (a− µ)/σ is the standardized value with µ = µ2 − bµ1 and

σ2 = b2σ2
1 + σ2

2 − 2bρσ1σ2. (1.3)

Nath (1971) has obtained iterative equations to calculate the maximum likelihood es-

timates in the special case for b = −1. His equations contain some minor errors in them.

Nath (1972) has obtained moment estimates in the general case for linear truncation. These

are equivalent to the maximum likelihood estimates and the minor errors that were in Nath

(1971) have been corrected.

The major question that remains is: how good are these maximum likelihood parameter

estimates for estimation of the bivariate density?

2 Motivation : Reconstruction of a Pit Feature at an
Archaeological Site

The question of the goodness of the maximum likelihood estimates under truncation arose

from a project in archaeological data analysis. One possible feature of archaeological sites

are pits dug into the ground that contain some artifacts. We obtained a datafile for one

such pit from Professor Chris Ellis of the Department of Anthropology at the University

of Western Ontario. The pit, from a ten-thousand-year-old site in Ontario, contained 1339

fragments of heat fractured tool fragments that had been purposely burned. The artifacts

in the pit had been disturbed in two ways: a tree root had grown through the site, and close

to the time of excavation some children had dug a trench through part of the pit.

Figure 1 shows the scatter of artifacts in the pit as seen from above. The empty spot in

the middle of the data cloud shows the trench area dug by the children who removed the

artifacts from this area. Figure 2 shows the scatter of artifacts as seen from one side. The

scatter on the left side of the figure shows the effect of the tree root. In this case there is

more variation in the location of the artifacts and they have settled deeper into the soil.
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The purpose of our initial data analysis was to reconstruct the form of the pit prior to

its disturbance. With this in mind we carried out a simple cluster analysis to differentiate

between the disturbed and undisturbed parts of the pit. The result of the cluster analysis is

shown in Figure 3. The data neatly divided into two parts with an imaginary line separating

the two. As a first step we decided to use the data from the undisturbed section, truncated

data, to try to reconstruct the shape of the entire pit.

Figure 1: Artifact Scatter as Seen from Above

Figure 2: Artifact Scatter as Seen from One Side

From Figure 3 the undisturbed section of the artifact scatter appears to be in the form

of a truncated ellipse. One way to reconstruct the pit, at least as viewed from above, is to
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Figure 3: Artifact Scatter as Seen from Above by Disturbed and Undisturbed Sections

reconstruct the full ellipse from the truncated one. Assuming that the (x, y) position of an

artifact follows a bivariate normal distribution, then the ellipse given by the equation

(x− µ1)
2

σ2
1

− 2ρ
(x− µ1)(y − µ2)

σ1σ2
+

(y − µ2)
2

σ2
2

= −2(1− ρ2) ln(1 − α) (2.1)

contains 100 α% of the distribution; see, for example Kotz, Balakrishnan and Johnson (2000,

p. 254). If we can estimate the parameters, then we can reconstruct the ellipse. A bivariate

normal distribution may be a reasonable assumption as a working model. When artifacts

are thrown or placed in a pit there are typically more artifacts near the center of the pit

and fewer by the edges. The problem with our estimation procedure on this particular set

of data was that the iterative procedure obtained from Nath (1971, 1972) did not converge.

It was then necessary to study the conditions under which the convergence can be obtained.

This issue is the focus of the current study.

3 The Iterative Equations for Maximum Likelihood Es-
timation

On using Nath’s (1971) notation, the likelihood equations for iteration obtained from (1.1)

are given by:

µ̂1 = x̄− (P̂ + ρ̂Q̂)σ̂1

µ̂2 = ȳ − (Q̂+ ρ̂P̂ )σ̂2

σ̂1 = s1[(1 + ξ̂P̂ Ĝ/σ̂) + ρ̂2(Â+ η̂Q̂Ĝ/σ̂) − (P̂ + ρ̂Q̂)2]−1/2 (3.1)

σ̂2 = s2[(1 + η̂Q̂Ĝ/σ̂) + ρ̂2(Â+ ξ̂P̂ Ĝ/σ̂) − (Q̂+ ρ̂P̂ )2]−1/2

ρ̂ = rs1s2(σ̂1σ̂2)
−1[(1 + ξ̂P̂ Ĝ/σ̂ + η̂Q̂Ĝ/σ̂ + Â) − (P̂ + ρ̂Q̂)(Q̂+ ρ̂P̂ )/ρ̂]−1
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where

P = −bσ1φ(ζ)
σG , Q = σ2φ(ζ)

σG , A = −bσ1σ2ζ(1−ρ2),φ(ζ)
σ2ρG

ξ = ζ(ρσ2−bσ1)
G , η = ζ(σ2−bρσ1)

G ,

with G given by (1.2) and σ by (1.3). These equations, in a different form, were obtained

correctly by Nath (1972). From the information matrix for µ1, µ2, σ1, σ2 and ρ, the

variance-covariance matrix for the estimates of these parameters is of the form

1

n


 B C

C D



−1

where B, C and D are 2× 2, 2× 3 and 3× 3 matrices respectively. The forms of C and D

are quite complicated and can be obtained via computer algebra. Moreover, C 6= 0 so that,

unlike the situation in which there is no truncation, µ̂1 and µ̂2 are not independent of σ̂1,

σ̂2 and ρ̂. The matrix B can be easily expressed as

B =




1
(1−ρ2)σ2

1
+ b2α − ρ

(1−ρ2)σ1σ2
− bα

− ρ
(1−ρ2)σ1σ2

− bα 1
(1−ρ2)σ2

2
+ α


 ,

where

α =
φ(ζ)

Gσ2

(
ζ − φ(ζ)

G

)
.

If we treat σ1, σ2 and ρ as known constants, then B−1/n may be used as the variance-

covariance matrix of µ̂1 and µ̂2. Further,

B−1 =
1

1 + ασ2


 σ2

1 + ασ2
1σ

2
2(1 − ρ2) ρσ1σ2 + bασ2

1σ
2
2(1 − ρ2)

ρσ1σ2 + bασ2
1σ

2
2(1 − ρ2) σ2

2 + b2ασ2
1σ

2
2(1 − ρ2)


 .

Note that when the truncation line is removed, i.e. a → −∞, then α → 0. Also, in the

same situation C → 0 so that µ̂1 and µ̂2 are independent of σ̂1, σ̂2 and ρ̂, as expected.

4 Simulation Study

For the purposes of our simulation study, the location of the ellipse is irrelevant. It is

rather the shape of the ellipse that is important. Consequently, without loss of generality

we assume that µ1 = µ2 = 0 in (1.1). A measure of the shape of the ellipse may be obtained

from the ratio of the lengths of the major to the minor axes of the ellipse. The lengths may

be obtained from the eigenvectors of



1
σ2
1

− ρ
σ1σ2

− ρ
σ1σ2

1
σ2
2


 ,
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which are (
σ2

1 − σ2
2 + τ

2ρσ1σ2
, 1

)
and

(
σ2

1 − σ2
2 − τ

2ρσ1σ2
, 1

)
,

where

τ =
√
σ4

1 − 2σ2
1σ

2
2 + 4ρ2σ2

1σ
2
2 + σ4

2 (4.1)

See, for example, Zwillinger (2003, pp. 330 - 331). After some algebra, it may be shown

that the ratio of the lengths of the eigenvectors depend only on ρ2 and the variance ratio

σ2
1/σ

2
2 . We consider three types of truncation lines: (1) lines parallel to major axis, (2) lines

parallel to minor axis (3) and lines at a 45◦ angle to the major and minor axes. We refer to

the latter axis as the median axis. These are shown in Figure 4.

Figure 4: Truncation Types

Since µ1 = µ2 = 0 the major and minor axes of the ellipse, as well as the line between the

two (say the median axis) fall on the lines y = bmax, y = bmix and y = bmex. If σ1/σ2 ≥ 1

and ρ > 0, then

bma =
2ρσ1σ2

σ2
1 − σ2

2 + τ



On the Linearly Truncated Bivariate . . . 27

and

bmi =
2ρσ1σ2

σ2
1 − σ2

2 − τ
.

The slope of the line describing the median axis may be obtained from the formula for

the tangent of the sum of two angles (45◦, and the angle between the x-axis and the major

axis of the ellipse), and is given by

bme =
1 + bma
1 − bma

.

When σ1 = σ2 , then bma = 1 and the truncation type reduce to truncation on x alone.

Consequently, we have not considered this case in the simulation study.

We considered two types of simulation study. In the first, 1000 sets of samples of trun-

cated bivariate normals were used to examine the frequency of convergence of the maximum

likelihood estimates as well as the bias of the estimates when convergence was obtained. In

the second study, 1000 full samples, with truncated subsamples, were to used to assess how

well the full data set is described by the ellipse estimated from the truncated sample.

In the first study truncated samples of size 500 were generated and truncation amounts

of 10%, 30% or 50% were chosen. The coefficients in the truncation line y = a + bx were

obtained from the parameters. The term b is one of bma, bmi or bme, while a depends on

the truncation: for 50%, a = 0; 30%, a = −0.5244σ; and 10% truncation a = −1/28155σ.

The parameter settings were: ρ = 0.1, 0.3, 0.5, 0.7, 0.9; σ2 = 1; and σ1 = 1, 2, 10. Tables 1

through 18 show the results of this study. They are divided into three groups of six tables,

one group for each truncation amount. Within a group the first table shows the likelihood

of convergence and the remaining tables show the absolute biases of the parameters.

Table 1: Percentage of Successes at Convergence for Truncation Parallel to the Major Axis

Amount of ρ

Truncation σ2
1/σ

2
2 0.1 0.3 0.5 0.7 0.9

1 100 100 100 100 100

10% 2 100 100 100 100 100

10 100 100 100 100 100

1 100 100 100 100 100

30% 2 100 100 100 100 100

10 100 100 100 100 100

1 100 100 100 100 100

50% 2 100 100 100 100 100

10 100 100 100 100 100
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Table 2: Absolute Bias of the Estimate of the Mean of x, µ1, for Truncation Parallel to the
Major Axis

Amount of ρ

Truncation σ2
1/σ

2
2 0.1 0.3 0.5 0.7 0.9

1 0.155 0.025 0.020 0.010 0.000

10% 2 0.025 0.020 0.020 0.010 0.003

10 0.010 0.010 0.036 0.000 0.006

1 0.287 0.168 0.134 0.096 0.037

30% 2 0.053 0.100 0.109 0.088 0.040

10 0.017 0.020 0.044 0.042 0.017

1 0.403 0.358 0.298 0.232 0.134

50% 2 0.079 0.187 0.224 0.198 0.123

10 0.014 0.062 0.085 0.096 0.071

Some observations can be made from this study as presented in Tables 1 through 18.

When truncation is parallel to the major axis the iterative solutions to the maximum likeli-

hood estimates almost always converge as shown in Table 1. The few times when convergence

was not attained are in the second study given by Tables 19 through 21. When truncation

is parallel to the minor axis the estimates often fail to converge. The failure to converge

occurred especially at high correlation values and as the amount of truncation increased. In

the intermediate case of truncation at 45◦ to the major axis, the estimates failed to converge

occurs at high values of the correlation.

In the case of truncation parallel to the minor axis there continues to be a problem even

when the estimates converge. In many of the cases in which the estimates converge, the

estimate of ρ converged to 0. This is evident in Table 18 where the absolute bias is often

equal to the value of ρ. The biases of the location parameters tend to increase as the ratio

of the variances increases as shown in Tables 14 and 15.

In the best scenario for convergence, the case of truncation parallel to the major axis,

the location parameters can be badly biased as shown in Tables 2 and 3. The bias tends

to decrease with an increase in the correlation between x and y. With the exception of a

few cases, the biases in the estimates of the variance tend to be better than the location

parameters (Tables 4 and 5). The bias in tends to decrease as the ratio of the variances

increases (Table 6). In the intermediate position, the case of truncation at 45◦ to the major

axis, the estimates can be badly biased in the location parameters. The bias is relatively

good in the estimate of the smaller variance and in the correlation.

A possible reason that truncation along the major axis of the ellipse works best is the

information provided by the curvature of the truncated ellipse. As can be seen in Figure
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Table 3: Absolute Bias of the Estimate of the Mean of y, µ2, for Truncation Parallel to the
Major Axis

Amount of ρ

Truncation σ2
1/σ

2
2 0.1 0.3 0.5 0.7 0.9

1 0.386 0.148 0.114 0.075 0.005

10% 2 0.348 0.190 0.145 0.088 0.014

10 0.095 0.164 0.127 0.093 0.020

1 0.545 0.378 0.313 0.230 0.110

30% 2 0.588 0.457 0.380 0.272 0.122

10 0.409 0.466 0.403 0.308 0.145

1 0.668 0.587 0.498 0.385 0.221

50% 2 0.798 0.723 0.609 0.467 0.267

10 0.796 0.758 0.680 0.549 0.327

4, there is very little change in curvature on the sides of the ellipse that follow the major

axis while there is substantial change in curvature at the two ends of the ellipse. Within

the scenario of truncated data, truncation parallel to the major axis retains data pertinent

to the areas of greatest curvature in the ellipse. Since there is very little variability in the

tangent to the ellipse close to the truncation points when truncation is parallel to the minor

axis, variation in the actual data could lead to poor estimates of the whole ellipse.

This reason may also explain how successful estimation would be when truncation is done

in the x-direction only. Changes in the curvature where the line cuts the ellipse are greatest

when the correlation is low and least when the correlation is high. It would be expected

that estimation under truncation would not work well in this case when the correlation is

high.

The second simulation study addressed the following question. If the estimates do con-

verge, how good is the reconstruction of the ellipse? The answer to this question is relevant

to the reconstruction of the archaeological pit data. Had our estimates converged, would the

reconstruction of the pit been reasonable? The second simulation study proceeded similar

to the first one with a slight twist. In this case the complete sample was generated such that

the total sample size had an expected truncation number of 500. Consequently, comparisons

of ellipse reconstruction would be based on the same expected sample size. For 10%, 30%

and 50% truncation of the sample, the full sample sizes were 556, 715 and 1000 respectively.

After generation of the full sample, it was separated into two parts: the part in the region

that did not satisfy the truncation constraint and the part in the region that did. The latter

sample points were used as the truncated sample for estimation purposes. If convergence

was attained the 95% ellipsoid was calculated using (2.1). Using the data points generated
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Table 4: Absolute Bias of the Estimate of Variance of x, σ2
1 , for Truncation Parallel to the

Major Axis

Amount of ρ

Truncation σ2
1/σ

2
2 0.1 0.3 0.5 0.7 0.9

1 0.105 0.020 0.012 0.007 0.002

10% 2 0.000 0.003 0.003 0.003 0.000

10 0.018 0.031 0.005 0.020 0.001

1 0.156 0.095 0.061 0.036 0.008

30% 2 0.001 0.025 0.041 0.027 0.009

10 0.004 0.032 0.000 0.016 0.016

1 0.200 0.153 0.106 0.063 0.021

50% 2 0.010 0.044 0.056 0.046 0.016

10 0.022 0.023 0.027 0.040 0.006

for the full sample, we calculated the fraction falling in the ellipsoid. After 1000 simulations

of this sampling procedure, we calculated the fraction of times the estimates converges and

conditional on convergence, the average fraction of times the data points from the full sample

fell in the ellipse.

The results are shown in Tables 19, 20 and 21. The main entry in each table is the

average fraction of times the data points fell in the ellipse. If the entry is 0, then none of

the simulated samples had convergent estimates. If a non-zero fraction is followed by be a

bracketed number then less the 100% of the simulated samples had convergent estimates.

The percentage of convergent estimates is shown in the brackets. In the cases of a non-zero

fraction without a bracketed number, all the estimates always converged in the simulations.

In all cases the reconstruction of the ellipse, at least in terms of 95% coverage of the sample

points, worsens as the amount of truncation increases. A phenomenon similar to the first

simulation study was also here. As the truncation line moved away from being parallel to

the major axis of the ellipse, the estimates increasingly tended not to converge.
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Table 5: Absolute Bias of the Estimate of Variance of y, σ2
2 , for Truncation Parallel to the

Major Axis

Amount of ρ

Truncation σ2
1/σ

2
2 0.1 0.3 0.5 0.7 0.9

1 0.104 0.022 0.014 0.007 0.001

10% 2 0.186 0.069 0.039 0.013 0.000

10 0.001 0.073 0.052 0.022 0.002

1 0.159 0.096 0.065 0.040 0.009

30% 2 0.330 0.216 0.138 0.072 0.014

10 0.232 0.251 0.195 0.115 0.032

1 0.197 0.155 0.110 0.065 0.021

50% 2 0.429 0.332 0.224 0.124 0.038

10 0.437 0.394 0.311 0.199 0.069

Table 6: Absolute Bias of the Estimate of Correlation ρ for Truncation Parallel to the Major
Axis

Amount of ρ

Truncation σ2
1/σ

2
2 0.1 0.3 0.5 0.7 0.9

1 0.130 0.030 0.021 0.010 0.000

10% 2 0.030 0.029 0.025 0.012 0.000

10 0.001 0.016 0.016 0.011 0.001

1 0.214 0.133 0.106 0.064 0.017

30% 2 0.064 0.106 0.098 0.063 0.018

10 0.020 0.056 0.068 0.056 0.017

1 0.271 0.237 0.186 0.121 0.043

50% 2 0.084 0.178 0.168 0.117 0.043

10 0.039 0.104 0.122 0.102 0.041
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Table 7: Percentage of Successes at Convergence for Truncation at 45◦ to the Major and
Minor Axes

Amount of ρ

Truncation σ2
1/σ

2
2 0.1 0.3 0.5 0.7 0.9

10% 2 99.8 100 100 100 9.8

10 77.2 100 100 100 14.1

30% 2 98.9 100 100 100 0.7

10 99.6 100 100 100 2.9

50% 2 100 100 100 99.5 0

10 99.8 100 100 99.6 0.4

Table 8: Absolute Bias of the Estimate of the Mean of x, µ1, for Truncation at 45◦ to the
Major and Minor Axes

Amount of ρ

Truncation σ2
1/σ

2
2 0.1 0.3 0.5 0.7 0.9

10% 2 0.112 0.140 0.080 0.106 0.135

10 0.010 0.069 0.078 0.048 0.217

30% 2 0.022 0.385 0.279 0.146 0.363

10 0.698 0.622 0.498 0.353 0.614

50% 2 0.691 0.652 0.517 0.354 NA

10 1.462 1.344 1.181 0.897 1.258

Table 9: Absolute Bias of the Estimate of the Mean of y, µ2, for Truncation at 45◦ to the
Major and Minor Axes

Amount of ρ

Truncation σ2
1/σ

2
2 0.1 0.3 0.5 0.7 0.9

10% 2 0.252 0.233 0.162 0.094 0.170

10 0.090 0.134 0.129 0.082 0.034

30% 2 0.114 0.325 0.217 0.127 0.175

10 0.399 0.307 0.214 0.114 0.113

50% 2 0.560 0.377 0.229 0.096 NA

10 0.513 0.375 0.223 0.082 0.275



On the Linearly Truncated Bivariate . . . 33

Table 10: Absolute Bias of the Estimate of Variance of x, σ2
1 , for Truncation at 45◦ to the

Major and Minor Axes

Amount of ρ

Truncation σ2
1/σ

2
2 0.1 0.3 0.5 0.7 0.9

10% 2 0.157 0.192 0.119 0.046 0.317

10 0.129 0.242 0.312 0.166 1.324

30% 2 0.038 0.428 0.317 0.167 0.559

10 1.846 1.639 1.331 0.925 2.470

50% 2 0.616 0.620 0.497 0.346 NA

10 3.176 2.940 2.604 1.915 3.993

Table 11: Absolute Bias of the Estimate of Variance of y, σ2
2 , for Truncation at 45◦ to the

Major and Minor Axes

Amount of ρ

Truncation σ2
1/σ

2
2 0.1 0.3 0.5 0.7 0.9

10% 2 0.015 0.005 0.006 0.007 0.139

10 0.006 0.000 0.002 0.005 0.116

30% 2 0.005 0.001 0.016 0.028 0.253

10 0.004 0.001 0.014 0.028 0.214

50% 2 0.067 0.003 0.060 0.062 NA

10 0.017 0.000 0.023 0.060 0.329

Table 12: Absolute Bias of the Estimate of Correlation ρ for Truncation at 45◦ to the Major
and Minor Axes

Amount of ρ

Truncation σ2
1/σ

2
2 0.1 0.3 0.5 0.7 0.9

10% 2 0.048 0.021 0.003 0.003 0.022

10 0.018 0.003 0.002 0.004 0.018

30% 2 0.009 0.046 0.007 0.012 0.046

10 0.054 0.019 0.006 0.011 0.035

50% 2 0.202 0.074 0.006 0.026 NA

10 0.101 0.039 0.008 0.024 0.069
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Table 13: Percentage of Successes at Convergence for Truncation Parallel to the Minor Axis

Amount of ρ

Truncation σ2
1/σ

2
2 0.1 0.3 0.5 0.7 0.9

1 100.0 37.2 49.1 17.1 0

10% 2 16.1 88.5 33.3 0 0

10 0.4 100.0 85.9 1.2 0

1 33.9 86.7 0 0 0

30% 2 0.4 5.2 0 0 0

10 0.4 99.8 51.8 1.2 0

1 51.3 99.8 18.2 0 0

50% 2 0 0 0 0 0

10 0.4 0 0 0 0

Table 14: Absolute Bias of the Estimate of the Mean of x, µ1, for Truncation Parallel to
the Minor Axis

Amount of ρ

Truncation σ2
1/σ

2
2 0.1 0.3 0.5 0.7 0.9

1 0.002 0.088 0.008 0.026 NA

10% 2 0.081 0.002 0.002 NA NA

10 0.741 0.008 0.003 0.030 NA

1 0.021 0.220 NA NA NA

30% 2 0.338 0.010 NA NA NA

10 0.639 0.014 0.013 0.126 NA

1 0.106 0.329 0.465 NA NA

50% 2 NA NA NA NA NA

10 0.828 NA NA NA NA
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Table 15: Absolute Bias of the Estimate of the Mean of y, µ2, for Truncation Parallel to
the Minor Axis

Amount of ρ

Truncation σ2
1/σ

2
2 0.1 0.3 0.5 0.7 0.9

1 0.000 0.087 0.006 0.024 NA

10% 2 0.362 0.002 0.025 NA NA

10 0.478 0.000 0.022 0.009 NA

1 0.020 0.220 NA NA NA

30% 2 0.421 0.078 NA NA NA

10 0.495 0.092 0.156 0.070 NA

1 0.119 0.333 0.468 NA NA

50% 2 NA NA NA NA NA

10 0.502 NA NA NA NA

Table 16: Absolute Bias of the Estimate of Variance of x, σ2
1 , for Truncation Parallel to the

Minor Axis

Amount of ρ

Truncation σ2
1/σ

2
2 0.1 0.3 0.5 0.7 0.9

1 0.001 0.351 0.040 0.106 NA

10% 2 0.070 0.002 0.096 NA NA

10 2.452 0.017 0.103 1.516 NA

1 0.032 0.182 NA NA NA

30% 2 0.485 0.108 NA NA NA

10 1.792 0.036 0.228 1.723 NA

1 0.049 0.210 0.341 NA NA

50% 2 NA NA NA NA NA

10 1.793 NA NA NA NA
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Table 17: Absolute Bias of the Estimate of Variance of y, σ2
2 , for Truncation Parallel to the

Minor Axis

Amount of ρ

Truncation σ2
1/σ

2
2 0.1 0.3 0.5 0.7 0.9

1 0.001 0.105 0.043 0.096 NA

10% 2 0.020 0.001 0.048 NA NA

10 0.010 0.003 0.013 0.151 NA

1 0.025 0.177 NA NA NA

30% 2 0.034 0.057 NA NA NA

10 0.006 0.002 0.013 0.165 NA

1 0.093 0.218 0.340 NA NA

50% 2 NA NA NA NA NA

10 0.054 NA NA NA NA

Table 18: Absolute Bias of the Estimate of Correlation ρ for Truncation Parallel to the
Minor Axis

Amount of ρ

Truncation σ2
1/σ

2
2 0.1 0.3 0.5 0.7 0.9

1 0.000 0.297 0.036 0.043 NA

10% 2 0.100 0.007 0.041 NA NA

10 0.100 0.003 0.009 0.053 NA

1 0.100 0.298 NA NA NA

30% 2 0.100 0.088 NA NA NA

10 0.100 0.002 0.033 0.082 NA

1 0.100 0.300 0.500 NA NA

50% 2 NA NA NA NA NA

10 0.100 NA NA NA NA
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Table 19: Percentage of Points within the 95% for Truncation Parallel to the Major Axis

Amount of ρ

Truncation σ2
1/σ

2
2 0.1 0.3 0.5 0.7 0.9

1 93.8 (99.9) 93.7 93.8 93.8 93.8

10% 2 93.8 (99.4) 93.7 93.8 93.9 93.8

10 93.8 93.8 93.9 93.8 93.8

1 88.3 88.4 88.4 88.3 88.5

30% 2 88.2 88.1 88.2 88.3 88.4

10 88.5 (99.4) 88.4 88.4 88.5 88.5

1 78.0 78.0 78.0 78.0 78.0

50% 2 77.8 77.7 77.8 77.9 78.1

10 77.8 (99.8) 77.9 78.1 78.1 78.2

Table 20: Percentage of Points within the 95% for Truncation at 45◦ to the Major and
Minor Axes

Amount of ρ

Truncation σ2
1/σ

2
2 0.1 0.3 0.5 0.7 0.9

10% 2 94.0 (98.9) 94.3 94.6 94.7 94.6 (35.1)

10 94.2 94.4 94.5 94.7 94.2 (25.4)

30% 2 89.5 91.1 92.5 93.6 92.1 (1.9)

10 90.9 91.6 92.5 93.4 0

50% 2 80.5 84.1 87.8 91.0 0

10 83.9 85.5 87.8 90.3 (99.8) 0

5 Discussion and Conclusion

Parameter estimation from, and density reconstruction of, a truncated bivariate normal

distribution is not a simple problem. A feasible solution depends on the amount of truncation

and the position of the truncation line. As the truncation line moves from being parallel to

the major axis to being parallel to the minor axis, the likelihood of a feasible and reasonable

solution diminishes. The same is true as the amount of truncation increases. The best

scenario for estimation from this truncated distribution is when the truncation line is parallel

to the major axis of the elliptical contours describing this distribution and when the amount
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Table 21: Percentage of Points within the 95% for Truncation Parallel to the Minor Axis

Amount of ρ

Truncation σ2
1/σ

2
2 0.1 0.3 0.5 0.7 0.9

1 94.4 (68.4) 93.3 (0.2) 0 0 0

10% 2 94.8 (62.5) 94.7 (9.9) 0 0 0

10 94.7 (96.9) 94.8 (52.4) 0 0 0

1 93.7 (69.8) 90.4 (82.1) 0 0 0

30% 2 93.4 (11.2) 92.52 (2.4) 0 0 0

10 93.3 (37.3) 0 0 0 0

1 93.1 (49.1) 0 0 0 0

50% 2 87.7 (0.001) 0 0 0 0

10 88.4 (0.001) 91.0 (5.5) 91.7 (3.2) 0 0

of truncation is 10% or less. Reconstruction of the bivariate distribution can be badly biased

when the truncation line cuts across the ellipse at the narrower axis. The reconstruction

process is much better if the truncation line cuts the ellipse at the wider axis.

Probability distributions other than the bivariate normal, such as those suggested in

Azzalini and Dalla Valle (1996) as well as Azzalini and Capitanio (1999), could be tried

as an alternate approach. For two reasons, we expect that similar results would occur to

what we have seen in the bivariate normal. The first reason is that the resulting probability

contours from which we obtained an ellipse in the normal case would be of similar, though

not the same, shape. If the truncation line cuts across a region of low curvature in the

contour, then we would have the same problem that we currently see. The second reason

is that some non-normal distributions will come with additional parameters to account for

skewness. Additional parameters may exacerbate rather than help the estimation process,

since additional parameters may lead to further instability in the estimates when the sample

size remains the same.

The use of the multivariate normal to obtain an estimate of the elliptical contour to

describe the archaeological data was unsuccessful, yet it did provide a motivation for exam-

ining the performance of estimation under truncation. We suggest two methods to explore

in the future for the reproduction of the desired ellipse for our archaeological data. One

suggestion is to take the points near the edge of the data scatter in the undisturbed part

of the archaeological site and, using a nonparametric regression technique, fit a smooth line

running through these points. Then rotate the smooth line until the rotated line and the

original line form a closed shape. Finally, fit an ellipse to the smoothed figure. A second

suggestion to explore is to take a page from data sharpening techniques originally studied

by Choi and Hall (1999). In our case, the points in the disturbed part of the archaeological
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site are adjusted towards the major concentration of the scatter and a bivariate normal or

skew normal is fit to the entire data. This variation on data sharpening is continued until

there is a good fit of an elliptical, or other contour, to the undisturbed part of the site.
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