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SUMMARY

Consider the location model Y = 61, + € where € is distributed n-dimensional
Student’s t-distribution. We study the properties of the estimators of # and vari-
ance o2 and compare them with normal theory estimators. In addition, we present
some results which help to obtain risks of preliminary test related estimators.
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1 Introduction

In the wake of increasing criticism on the inappropriate use of the normal distribution to
model the errors, there is a growing trend to use, often more appropriate, Student-t model.
Fisher (1956, p. 133) warned against the consequences of inappropriate use of the traditional
normal model. He (1960, p. 46) also analyzed Darwin’s data (cf. Box and Taio, 1992, p. 133)
by using a non-normal model. Later, Fraser and Fick (1975) analyzed the same data by the
Student-t model and Zellner (1976) provided both Bayesian and frequentist analyses of the
multiple regression model with Student-t errors. Fraser (1979) illustrated the robustness
of the Student-t model. Prucha and Kelegian (1984) proposed an estimating equation
for the simultaneous equation model with the Student-t errors. Ullah and Walsh (1984)
investigated the optimality of different types of tests used in econometric studies for the
multivariate Student-t model. The interested readers may refer to the more recent work
of Singh (1988), Lange et al. (1989), Giles (1990, 1991), Anderson (1993), Spanos (1994)
and Lucus (1997) for different applications of the Student-t models. For a wide range of
applications of the Student-t models refer to Lange et al. (1989).

There have been many studies in the area of the ‘improved’ estimation following the
seminal work of Bancroft (1944) and later Han and Bancroft (1968). They developed the
preliminary test estimator that uses uncertain non-sample prior information (not in the
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form of prior distributions), in addition to the sample information. Stein (1956) dominates
the usual maximum likelihood estimators under the squared error loss function. In a series
of papers Saleh and Sen (1978, 1985) explored the preliminary test approach to Stein-rule
estimation. Many authors have contributed to this area, notably Sclove et al. (1972), Judge
and Bock (1978), Stein (1981), Maatta and Casella (1990) and Khan and Saleh (1995, 1997).
The recent book of Saleh (2006) presents a comprehensive discussion of this area.

The object of this paper is to present a review of the developments with some new
materials in the estimation of the variance of the error distribution in a location model.

Consider the response vector Y = (Y1,...,Y, )" such that it satisfies the model

Y =01,+e€ 1,=(1,...,1), a vector n-tuples of 1’s, (1.1)

where € is distributed as n-dimensional Student’s ¢-variable with pdf

I L e
fn(€) (wyo)”/2l“(”7°)0"|vn|1/2 < =+ V0(72€ e) (1.2)

having the positive-definite matrix V,,. The mean and covariance matrix of € are 0 and 062 V.,

where 02 = ;’3322, vp > 2. This distribution may be obtained as a mixture of N'(0,72V,,)
and the inverse gamma distribution, IG(72,v90?) given by

vo
1 vpo?\ * Voo
2\ _ 0 0 -2
UJ(T ) = F(%) <W> exp <_W) T ", (13)

The n-dimensional Student’s ¢-distribution will be denoted by ME")(O, 0%V, vp). It is easy
to show that

2

B(r?) = 22 = o? 1.4
(%) = 205 = o (say) (1)
and
2\"I(% —h
2ny _ [ V0O (2 ) .
E(r )—( 5 ) ey for h=0,1,2,.... (1.5)

We discuss the estimation § and o2 and test of hypothesis problem in the next section.

2 Estimation of § and ¢? and Test of Hypothesis
To obtain the unbiased estimators of # and o2 we use the LS method and minimize

(Y —01,) V' (Y — 61,) (2.1)
w.r.t. 6 to obtain the unrestricted estimators

On = (1,V,'1,) 7' (1,V,Y) (2.2)
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and
(Y —0,1,), m=n—1 (2.3)

as the unbiased estimators of § and o2 respectively. Further, the variances of 6,, and S2
are given by

~ 2
Var(d,) = 2=, K; = (1,V;'1,) (2.4)
K
and
204 (m + v — 2)
2 €
= " 4 2.
Var(S;) o4 vy > (2.5)
respectively.

For the test of the null hypothesis Hy : 8 = 0y vs. Ha : 0 # 6y, we use the LR test and
obtain

L 21% Y — 0,1, VY — 0,1,
SR { [V SE L AL SLER 29
LA 062 (Y - 00171)/Vn (Y - 00171)
n 5 (ntwvo)
with a = (727) % (2552)" . Now, we have
(Y —001,) Vi (Y —6o1,) = (Y —0,1,)V;H(Y —0,1,) + K1(6, — 0))>
= mS’i + Kl(én — 00)2. (27)
Hence (2.6) reduces to
A—a —2 here £ _Kw (2.8)
it i) " nT s '
giving the LR-test as
0 — 6p)?
L, = Kl%. (2.9)

The following theorem gives the distributions of 6,, S2 and L,,.

Theorem 1. Ife ~ Mtn)(O, 0%V, 1) and Y = 01,, + €, then the distribution of (a) 6,
18

F(HTVO) (1+ K,

—1/2(14wv0)
(7v0)2T(%) )

(0, — 6)? : (2.10)

l/()O'2
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Hence, E(6,) = 0 and Var(8,,) = o Similarly, the distribution of (b) S2 is

Ky°
2\ Lm—1 2\ 3(m+wo)
(5,)® (142 (2.11)
B (%, %) (vpo?)=2 voo?

and of (c) Ly, is given by the pdf

(L)%(Hzr)ﬁ;—%

g1,m Ln;A27V = Kf(p) A? 2.12
1 ( 0) %;J ( )B(l—;QT, %)(1 + %ﬁn)%(l+2r+uo) ( )
where
a2 \"
F vo+2r .
KO(A?) = (=) (0 21) (2.13)
T+ DF(3) (), ae )20
(1+75)
and
K1(0 —6p)?
2 1 0
A* = p (2.14)
The cdf of L., is then given by
1 m c
CAZY — (0)( A2 L .m _ o
Grm(ca; A%) =Y KO (A?)I, (2(1+2r), 2), T (2.15)

r>0

Proof. For (a) we first find the distribution of 6, assuming € to have N, (0,72V,,) so that
(0,, — ) follows the distribution A(0, %) Taking expectation w.r.t. the IG(72, v902), we
obtain the pdf given at (2.10).

For (b) again we find the distribution of "ﬁi under A/ (0, 72) which follows the chi-square
distribution with m d.f. Taking expectation w.r.t. IG(72,90?) we obtain (2.11).

For (c), we note that under normal theory as in (b) above,

K1 (0, — 60)?

L, = 52

(2.16)

follows the non-central F-distribution with (1,m) d.f. and non-centrality parameter A2, =
%200)2. Integrating 72 w.r.t. IG(72,v90?) we obtain (2.12). Similarly we obtain (2.15)

for the c.d.f. of L,.

In addition to 6, and S2, we present a few more estimators of § and ¢2. First, we
consider the case when it is apriori suspected that § may be equal to #y. In this case,
following Bancroft and Han (1968) and Saleh (2006), we define the estimators given below:
(i) restricted estimator (RE) of 6 is 62F = 6, — ko(8, — 6p), 0 < ko < 1.
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(ii) preliminary test estimator (PTE) of 8 is given by
0P =0, — ko(B, — 00)I(Ln < ca). (2.17)
(iii) shrinkage type estimator (SE) of € is given by

gg:(;n_w >0, 0<ky <1 (2.18)

\/K1|én - 00| ’
where I(A) is the indicator function of the set A and ¢, is the a-level critical value of the
F-distribution with (1,m) d.f.
For the estimation of o2, we consider the following:
(i) the unrestricted estimator of o2 is S2
(ii) restricted estimator of o2 is defined by (m +1)S% = mS2 + K1 (0, — 6p)?. Further, the
best invariant estimators of o2 are given by
mS2 (m+1)S%

~2 . ~2
(i) &7 = o (iv) 6= i3 (2.19)

Let ¢, be the a-level critical value of the F-distribution with (1,m) d.f. then we define
three more preliminary test estimators of o2

) 2y = i(Lo)m 82 (2.20)
(vi) Shri = Ya(Ln)mS, (2.21)
and
(vii) Sty = Ws(Ly)mS;, (2.22)
where
1+ XL,
= — > L m ] .
Ui(Ln) = —T(Ln 2 ca) + T (Ly < ca), (2.23)
1 (1+-2L1c,)
— > m .
Uo(Ln) = e I(Ln > o) + = B0 (L < o), (2.24)
and
= — > m _ .
Vs(Ln) m+21(£"*m+2)Jr m+3 I(£”<m+2)’ (2.25)
respectively. O

In the next section we obtain some theorems needed to obtain the bias and MSE expres-
sions of these estimators.
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3 Some Theorems for Bias and MSE Calculations.

This section contains some lemmas and theorems for the calculation of bias and MSE ex-
pressions for the estimators. We begin with the following theorem:

Theorem 2. If Z follows Mt(l)(H,az,Vo) and ¢ is a measurable function of Z?2, then
(i) the distribution of Z? is given by

h((A?) = > KO(AYhia(x%0),
r>1
and (3.1)
H(z;A%) = Y KO(A*)Hyipor(2;0), ¢>0
r>1

where h,(x%;0) and H,(z;0) are the pdf and cdf of a central chi-square distribution with v
d.f.

(if) Elp(Z%)] = Y KV (AY)En[o(xi 12,(0)] = B0 (A))]
>0
(iif) E[Z¢(2%)] = 0EV[¢(x3(A%))]
(iv) E[Z°¢(2°)] = a2 BV [s(x3(A%)] + 0*E@[(x3(A%))]
where
EMo(x(A%)] = D KM (A% Ex[6(xir42.(0)], (3.2)
>0
KM (A?) = <V0—2)h I‘(VO—i—r—h) ( A2)O — with AQ:ﬁ, (3.3)
2 L(r+1)r (% ( + A2 )7 - o?
and
E[r*"¢(x;(A2))] = o2 EM[o(x(A?))] (3.4)
for integer values of h.
Proof. Under N(6,72), Z? is distributed as x1(AZ,) with pdf + Y hiyar (X2 0).

r>0
Integrating w.r.t. IG(7%,v90?) we have the result given by hi(x? AQ) (ii) is already given.

(iii)  E[Z¢(Z2%)] = 0E=Ex[6(x3(A%:))] = 0EO[o(x3(A%))], (3.5)
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and
(iv) E[Z%¢(Z%)] = Br2 {T*En[o(x5(A2:))] + 0*Elo(x3(A%:))]} -
Using the formula (3.2)-(3.4) we have the R.H.S. equal to
= EV[o(x3(A%)] + 0B [(x3(A%))]. (3.6)
O

Theorem 3. If Z ~ Mt(l)(ﬁ, o2, v9) and U is an independently distributed central chi-square
variable with m d.f., then the distribution of F = (mZ?)U~! is given by the pdf/cdf

gl m Z K(O) gl+2r,m(F; 0) (37)
>0
and
GO (@ 0%) = 3 KO(A)Grizrm(230), vo > 2, (3.8)
r>0

respectively where gy, 1, (-) and Gy, v, (+) are pdf and cdf of central F-distribution with (v1,v2)
d.f.

Thus, one may obtain the formulae

o B[o(B)] - BORERm) 39)
@ B Z<z>(mZ )] = oE0106rR,.32)
) ]2 (ML )] = 2B R (A)] + B (5 (A7)
where
B0t ()] = SO o (ST )] 10

with Kr(h)(AQ) defined by (3.3).
If Ggm(ca; A2;) denotes the non-central F-distribution with (q,m) d.f. with noncentrality
parameter AT2, then

ET2[(72)th7m (ca; A72-2 )= UghG (L Az)

where

G ) (Lo; A%) = ZK(h) (A)I, (%(q—i—%);%) (3.11)
r>0

with £, = #;ca and A? = %.
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4 Bias and MSE Expressions of the Estimators of Lo-
cations

First we present the bias expressions of the estimators of 6:

where

bi(0,) = (4.1)
bg(eo) = —k0(9 — 90) = —koocA, A= (9 — 90)0';1

A ca
b3 (087 = koo AGY), (La; A?), £, = —

A kocno. (0 —6o)
by(05) = S80I b DA L) —1], A =
4( n) \/71 [ ( ) ]7 .

2 r %)
n=1/ d E —1-20(—A 4.2

~ o
i) Mq(0,) = = 4.3
@) M) = (43)
R 2
(i) Mo(fn) = —E{(1—ko)?+k2A%}
K,
2
(i) My(07) = 2={1 = ko(2 — koGS, (la: A7)
1
+ Ko A2GE), (Cai A2) = (2 = ko) G (Lo AY)]}
2
: sy — %) _ 2|2
(1V) M4(9n) - Kl {1 ﬂ_cn (1+ %722)”0/2 1‘| } .

Proof. (i) Since 6, is distributed as M (6), }‘{—21, ), and E(6,) = 0, hence M (6,) = =

(i) Ma(6,)

(iii) Ms(05")

2

= E(0,—0)*=E[(1 —ko)(0, — 0) — ko(0 — )]
= E[(1—ko)* (6, — )% + k26 — 60)* — 2ko(1 — ko) (0, — 6)(6 — )]

2 2
= (1- kO)Q;—Z + k202A2 = %[(1 — ko) + k2A] (4.4)

= E[(6, —0) — ko(0, — 00)I(L, < co)?
= E[(0n —0)% —2ko(0 — 0) (0, — 00)I (L < co + k2 (0 — 00)*I(Ly, < co)]

o? @ (1 2
= E{l_k0(2_k0)G3,m(§ca7A )

1 1
T koA2? {wg?}n(gca;ﬁ) - Gé?,{l(gca; A?)} } (4.5)
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using (3.10) - (3.13).

(iv)  Ma(67) = E[b; -6
< 2
~ B, -0 - cokoSu(0n — bo)
" VK16 — 6|
_ Bli_ers Bk3S2  2cokoSu(fn — 0)(6n — o)
Kl \/K1|én—00|

02 ko2 2cokgcno? \/5 _ A%

B Ry e el LR RV . (4.6)

Choosing koco as kocfy to minimize My(65) given by

b \/? 1
cg=cp\| ———————.
0¢0 7.‘.(1_~_%_22)1/0/2

The optimum value of My(#5) reduces to

A o? 2
95 —_c 1z 2
M,y(0;,) X { —Cn

2
B S .

by choosing kocf = cn\/g to make kocfy independent of AZ. O

5 Bias and MSE Expressions of the Estimators of o2

In this section we obtain the bias and MSE expressions for the estimators of the variance,
o2. They may be classified as follows

(a) Unrestricted estimators (i) S2 and (ii) &2
(b) Restricted estimators (i) S% and (ii) 62
(c) Preliminary test estimators when 6 is suspected to be 6g:

(0)Sprpy, (i)Sprpy and (iii)SE

The bias and MSE expressions are given in the following theorems
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Theorem 4. [fY ~ Mt(n)(QJQVmVO), then the bias expressions of S&, S%, 62, 62,
SIQDT[l]: SIQ’T[2} and S[QS] are given by

. 2 . ~92 20'62
0 bi(s?) =0, (i) ba(52) = ——= 6.1)
o2 A? . . o?
(iii) b3(S%) = 1 (iv) ba(67) = m—+3(A2 -2)
2
O.E
() bs(SErp) = — 2 {1 (a1 A7) — GEL (61 A7) — A%GE), (€3 A7) |
0'2 0'2

(vi) bG(SIZDT[z]) ==

— - ¢ ) o
T T TR [ D0 (e A)

+ G (a3 A7) = A2GO (1, Aﬂ and
0'2 0'2
m+2 (m+2)(m+3)

G (03 A7) = AL (ta; A7)

(i) br(SE) = - [m(m+ 2G50 A7)

Proof. (i) - (iv) are simple. For (v) we consider

b5(S}2’T[1] = e[SIQ’T[l] —a?]
= Sﬁ — (Sﬁ - S}%)I(ﬁn < Cq) — 062
= —E[(S% — SZ)I(L, < ca). (5.2)
Now .
(m + 1)5123 = mSIQJ + K1(0n — 00)2.
Then
2 m Q_Kl(én_eo)Q_ 1 2 i 02
Str m+1SU o = m—i—l(SU K1(0,, — 60)7) (5.3)
so that
E(S3I(Ln < ca)] = 02G\) 4o (La; A?), (5.4)
and
E[K1(0, — 00)21(Ly, < ca)] = 2GS, (6n; A) + K1 (8 — 00)2GY ), (£a; A?), (5.5)
so that
2
O¢ 1 1) 0
ba(Shr) = ~ g { Gl 2l A7) = G (65 A%) = A%G0) (L )} (5.6)

by (3.2)-(3.3) and £,

m+c
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For (vi) we have

bﬁ(SI%T[Q]) = (SPT[Q] o)
mSE mSE 9
B {m+2 (m—|—2 m+3>I<En<Ca)_UE]
2 2 i p2
_ mS mSU _ Kl(ﬂn 90) I(En < Ca)
+ m+2 (m+2)(m+3) (m+2)(m+3)
o? o?
T T m+2 m+3
1 1 0
|G s %) = s {60 (003 8% + 42610 (103 29}
Oc o?

T m+2  (m+2)(m+3)

i+ DG 003 47) 4 G (03 87) = A6 (0.

Similarly,
2 2
2 o O O¢
b(Sty) = m+2 m+3
[ 1
x| mG, a6 %) = —— {640 (63: %) + 2268, (65 AQ)}}
h +2173 7
0.2 0.2
- _m—|—2 T (m+2)(m+3)
x[mlm +2)G{), 1565 %) + GO (04;.4%) = A2GL), (0;.4%)]
with 07, = 1. O

The next theorem gives the MSE expressions of the estimators.

Theorem 5. If Y ~ Mt(”)(9,02Vn,1/0), then the MSE expressions of S3, S%, 2, 62

€’
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SIQDTm; SIQ’TM and SIQDT[S)} are given by

2(m+vy—2) 4

(i)  Mi(SE) = oo, >4

m(vy — 4)
.. oy 208 (m4wy—1)  AXA?+4)
() MaSk) = Gy, —04) (m+ 1)

oy 208 (m4vy —4)
(i)  Ms(67) = T+ =)

) o 200 (m—w+5) | olAZ(A%+4)
W) MO)=T38 D (i 1 37

4 4
() M(Spry) = r(5) - T EDCRENGE a4

(m+1)?
x [{BGE?LL%; A2) 4 (G5, 5 (b A%) + 2(m +1) (61, 15 (o A7) = GE1, (0 A7) }

vy >4

+A2{6GL), (Las A7) + MG, (00 A2) = 2m + )G, (€03 A7) } + A2G), (Ca; AQ)] :

2 = 2y _mm+5) 42 A2 30 @) () . A2
MG(SPT[2]) = M3(Ue) (m+2)(m+3)UEG1,m+4(ZO¢7A )+ mg(m+3)2G5,m(2a7A )
20¢ (2) 2 @) )
+ (m+ 3)2{G37m+2(€0‘7A )_ (m+3)G3,m(€aaA )}
A2U4
T m+3)

{268 abai A7) + 6(m + 2)GL), (0 A7)

7,m
4 4
Ao

+ 2(m + 3)GS), (La; A2)} o 37

G (La; A?)

m(2m + 5)

M7 (S)) = M3(52)—m

€

4
4 2) * 2 30.6 (2) . )
O G1,7n+4(€a7 A ) + me),m(éa’ A )
2(72l .
e (60 a?) — 4316,
A254

+(m +2)(m + 3)2

(26, ,(65:8%) + 6(m +2)G41), (¢2:4%)

7,m

A4O'é G(O)
2

+ 2(m + 3)G§ffn(52; AQ)} + 2 (m+3)2

(05 A%)

9,m

with 07, = 2.
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Proof.

(i)  Mi(SZ) = E(SE —o02)? = Var(Sy) = E,»Vary(S7|7?) + Var,2 Ex(SZ |72
U U

2 4
= FE. ( ) + Var,» (7‘2)
m

204<1/0—2) ot (v —2) 4

- E € 1/0—4 (1/0—4) ~ e
_ U?V()—Z(m—i—Z)_U;1
Vg — 4 m
202 -2
—06(m+1/0 ), vy > 4.
m(l/()—4)

(ii) Var(S%)
= Var,2 {EN [512_3|7'2]} + E.» {VarN[S%|T2]}

2 4

- Var72{ﬁE 201 (A2 )]}+Ez{m\/arzv[xfn+1(ﬁ32]}

— # 2 2 ’7'4 2
= (m+1)2VarT2[(m+1)T + K1(0 —b6o) ]+ET2{(m+1)22((m+1)+2A72)
1 1 4K, (0 — 6o)?
— 12V 2 ) 4 1 , 2
(m+1)2{(m+ ) aI’(T )}+ (m+1)E‘I’ (T )+ (m+1)2 E, (T )
2
= E(r*) —0o? E (%) +do*———
72(7%) e () + e
_ 2
_ m+3021 vg— 2 o1 4A .
m+1 vy —4 € (m+1)2
Hence
S WY R G Y
My(Sg) = m1 €(y0—4) ol + CESE
 20im vy —1) | A*(4+ A%)o!
o (m+1) (o —4) (m+1)2
2] = e By (25 |2 mSh | s
(i) Var[g;] = Var, {EN( +2‘T)}+ET2{VaI'N[m+2‘T}
mr? 1 2,
- ) o))
_ 2m 4
_ m+2 B }+(m+2)2ET2(T)

0_2 24

m+2 E(1/0— )_ m—|—2)

59
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m04

—2 m 404
M. 52 = € (VO )_ 4 €
3(05) m+ 2 (m+2)205 + (m+2)2
4

_ mo. vy — 2 (m — 2)0’;L
B (m+2)(V0—4)_ (m+2)
20¢(m +vo —4)
(m+2)(vo —4)

2

V0—4

m—+1
I
m+3

s3] = (2—1;)2\731“(5%)

m+1,/v9—2\ 4 4 4A?
= —( )06—06 1—-— .
m+3\vg —4 (m + 3)2

. +1/v9—2 4NA2 04(A2—2)2
Mus2) = ™ 44 s
0 = =) ot )

_ A0AL _ AN2
_ (m—i—l )(Vo 2)04_04 or(A* —4A% + 4)
(m+3)/\yg—4/ "¢ ¢ (m + 3)2
204 (m +vy—5) A4+ A?)o?
(m+3)(ro —4) (m +3)2

(v) Ms(Sprm))
= E[SI%T[l] - 052]2

= BISE 0% =~ e B[ (5% — o218 — Ka(B — 00 HI(Ls < c0)}]

+ mE[(SIQJ - Kl(én - 90)2)I(£n < Ca)]Q

= My(S%) —

1 ) -
+ mE[Kl (B — 00) (L < ca)]
- ﬁE[szl(én C00)2T(Ln < ca)]

2062
m+1

(2m+1)

m+ 1)2 E[(SILLJI(EH < Ca)]

2
€

m+1

2 2(A2
E, {T_EN [X?nl (Xl(zﬂ) < iw)]}
m X, m

= E7'2 [’7’2G1)m+2(£a; Azg)] = O—EQGg.}'r)n+2(€a7 AQ)

+

E[SEI(L, < ca)] — E[K1(0 — 00)%1(L, < ca)).
Now

E[SEI(Ly < ca)]
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by (3.13) where ¢, =

m+ca

E[SHI(L, < ¢a)]

Next we have,

E[K1(0n — 00)*I(Ln < c4)]

and

T2 4
ET2 WEN XmI

E, {T—
m

4

2 AQQ
1))
Xm m

{m(m + 2)C1msa(Co; Azz)]

m—|—2
ol (s A7) by (3.13).

B[E}(0, — 00)*1(Ly < ca)]

2 AQ ) 1
E 2 4E 2 A22 2I Xl( a — Lo
T {T N [(Xl( )] 2 mt
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Mz (Sprp)
= E[(SJQDT[z]] - 20.62E[S}23T[2]]

.
= ET2{(mf2)2EN(W:'S ) | 2}

g {8 [ - £ () e <))

e 7 | (5 (i~ e < ol

2 [/ mS? m
. — ) ) UV —— = L)I(Ln Q)| Y — ol
+m(m—|—3)2 T{T N-( = )(m—i—? L)I(L <c)|7’}} Iops

2

m 1 m 2 2m
— EE— ) N 4 — _F 4E n 2
(m+2) T(T)+m2(m+3)2 T{T N[<m+2) +2£ +L

mSE\ 2 9 2
X( T2 ) H(fn < callr }_ m(m+2)(m+3)ET2
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2 4 m mS?] mSU .
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= B e [ () (8 < e}

T [Py (A B (88 < )
+ miﬂ [P Ex X (Fran(A2:)* T(Fy n (A72) < ca)}]
— mE [T En I I (F1m(A2Z:) < ca)}]
- mlﬂ 2 [T*En {xp (FLm(A2) [(FLm (A2 < ca)}]
Ml 2)?m+3)2ET2 [T En { X8I (Fim < ca)}]

2

~ el By DB m (AT (Fim(A%:) < ca)}] ot

Simplification leads to M7(S}2,T[2]). Similarly, Mg(S[QS }) may be obtained by replacing co by

m
pres O

6 Analysis of the Estimators

In this section, we provide the analysis of the various estimators. In section 6.1 we consider
the estimators of the location parameter, 6, and section 6.2 contains the analysis of MSE
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expressions for the estimators of the variance, o2.

6.1 Location Parameter

We considered four estimators of 6, namely,
(a) Unrestricted estimator, 0,
(

b) Restricted estimator, éSE

Preliminary Test estimator, éET

(c

(d) Shrinkage type estimator,

)
)
)
) 0.

The bias and mse expressions are given by (i)-(iv) of equations (4.1) and by (i)-(iv) of
equation (4.3) respectively.

Comparison of éf‘E and én

The bias of 6, is zero and the bias of éfE is —kooe. At A =0, both are unbiased but as A
moves away from the origin, bias 0¥ is unbounded. As regards the mse of the estimators,
we have the mse-difference given by

M (6,) — Ma(ARF) = {1— (1 — ko)? kéAQ}%O (6.1)
whenever
Aﬂé(zko—l —1), 0<k<1.
Thus, if A? < (2k;* — 1), then ORF is better than Gn and if A% > (2k;* — 1), then 0,

dominates 0 The relative efficiency of the estimator 0, is

RE(B, : 0,) = [(1 — ko)? + k2AY L. (6.2)

Comparison of 67 and 6,

Here the bias of HAET is —koocA G (lo; A?). If A% = 0, then both 0,, and 95T are unbiased.
Otherwise |b3(657)| > 0V A% > 0. As regards mse for the estimators, we have

Mi(0,) — Ms(65T)
0.2

= 2= {ko(2 — koGS (bai A7) — KoA? [2G), (£ai A2) = (2= ko) GE) (a3 A7) }
K1 ’
Thus, mse-difference is %O whenever

2 < (2k— )Gglm(&l; AQ)
(6.3)
> [2G) (0a; A2) — (2 — ko) G, (La; A2)]
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The relative efficiency of 827 w.r.t. 6, is given by
E(a,A?) = RE(BET50,) = |1 —ko(2 — ko)GS'), (0a; A?)
T oA2GO (1, A%) — (2 - ko) GO (€as A} . (6.4)
Note that
(i) If A% =0, then it reduces to [1 — ko(2 — ko)Gé},)n(éa; 0)]~! > 1.
(i) If A2 — oo, then, RE(§F7:6,) — 1.
(iii) The RE(OF7;6,) crosses the 1-line in the interval (1 — 3ko, k—lo - %)

(iv) Re(8P7:0,,) equals [1 — k(2 — ko)Gg,)n (£4;0)]7! at A% = 0, then drops monotonically
crossing the 1-line in the interval (1—3 ko, kio —1) keeping to a minimum, then increases
towards the 1-line. Thus, an optimum a-level mse is obtained by solving the equation
for « € A= {a|RE(a, A?) > Ep}

min RE(a,A?) = E(a, A2()) = Ey (6.5)
where FEj is a prefixed or guaranteed relative efficiency.

Comparison of 0,, and 65

The bias expression is given by by(65) = {—cokoﬁ} E2[20(A,2) — 1], As AZ — 0,
b4(65)| — 0 and as Al, — oo, b4(65)| = Cokoﬁ The absolute bias is a non-decreasing
function of A,2. Thus, near the origin the bias is smallest and becomes largest when
ATz — OQ.

As regards mse comparison, the relative efficiency RE(62;6,,) is given by

{1 — %ci } : (6.6)

RE(65:0,) = (1 - %Ci)fl >1

and (6.1.6) decreases to (1 + 2c2)~!(< 1) as A? — oo. The relative loss of efficiency of 65
relative to ,, is 1 — (14 2¢2) ", while the gain in efficiency is (1 — 2¢2)~!. The efficiency is
1 when A% = 1y—2. If A2 < 1p—2, é;f performs better than én, otherwise 6,, is better. Note
that 9;3 does not depend on the level of significance while é,}; T does. As A? the efficiency of
PTE w.r.t. 6, tends to 1 while that of #5 w.r.t. 6, tends to (1 + 2¢2)7! < 1. Thus, 05 is
better near the null hypothesis than that of 95 T,

2

JE
V0/2
(1+5%)

Under A% =0,
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6.2 Analysis of the Estimators of Scale Parameter

In section 2, we have defined seven estimators of o2. The bias and mse expressions of
these estimators are given in section 4. In this section, we present the analysis of the mse
expressions.

First we note that the mse expression for S is constant while the restricted estimate, S%
depends on the departure parameter, A%. Under Hy, i.e. for A? = 0, M5(S%) = %
so that M5(S%) < M1(S%). The mse’s are equal when A? equals

Az:_2+2\/1+%, I/0>4. (61)

Hence, the range of A? for which S% dominates S is given by [0, AZ] otherwise S7 dominate

S%. Note that the mse of S% is unbounded as A% — oco.
4
Similarly, under Hy, My(62) = % so that My(62) < M3(c2). Hence, the range
of A? for which 62 dominate 52 is given by [0, A2,] where AZ_ is defined by the solution of

the equation

2(2m+vy —2)(m +3)

A*(A% +4) = m t D00 1) (6.2)
==

otherwise, 2 dominates 62.

Now, we show the uniform dominance of S7; over 67 under the quadratic loss function

2 (02—02)%. For this, we consider the risk of S [25] with respect to the quadratic loss-function.

Then, we have

! E[mSlzij(/:n) - 0'52]2

)
GE

- {3 (22
—21/)S(£,L)EK0_1262) (mT—Sff) Ln] +2}. (6.4)

Now, consider the term inside the curly bracket of (6.2.4). For fixed A? and for each
L, this is a quadratic form in ¢g(L,,) with the minimum at

2 (mSt
V(L) = E[(v)( i )‘C”] (6.5)

2[(5) (32)]e.]
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which is a function of £,, and AZ.
The optimum (L) is given by

(1+ mLn)(vo —4)
(m + 3)(1/0 — 2)

Yo(Ln) = Hi%x Vs(Ln) =

1
If L, < ml-i-2’ then 1';’1'??" < ﬁ which implies also that

1

Y(Ly) < Po(Ly) < m——|-2

for all A2 that is 1o(L,) is closer to the minimizing value than ﬁ So it is obvious that
for each A? and £,

1 mS? 2
" < __E u 2
L}_U4 {{m+2 Ue]

€

1
U—gE{[wg(Ln)mS?] —o??

/:n} (6.7)

2
so that myg(L,)S% dominates Zi’é = &2 uniformly in A% € (0, 00).

Similarly, we consider the SI%T[” with the mean square error M5(5123T[1]) which is opti-
mum at the critical value 1 for all (1, m) under Hy. Then,

S2rp = S (Lo > 1)+ SR (L, <1).
Using Stein’s method, we have optimum psi-function as

1+L1c2, 1
Vio(Ln) = ——mEm o L

m-+1 m

for all A%, This means that 119(L,) is closer to the minimum value than 1/m. Hence,

2
Eftsen - 17]e.] < £[(2; - ) e
1 2 2
< mE[{%(ﬁn)Xm = (m+2)}7|L,]
< B (L, - m L) (65)

Thus the estimator mis(L,)S% dominates the PTE(1) of o2 with critical value 1.

Further, mis(L,) S5 < mapa(L,,)SF and equality holds when the critical value is (m/m+
2). Thus, Stein type estimator mys(L,,)S% is superior to S as well as PTE(1) and PTE(2)
uniformly in AZ.

7 Conclusion

We have studied the properties of four estimators of location and seven estimators of the
scale-parameter of the t-distribution. In the case of location parameter estimators, the
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biased estimators do better than the unbiased estimators. Also, the shrinkage estimators do
better than the PTE under H or near it. In the case of variance estimation, the Stein-type
estimator which is a PT-type estimator with given critical value, does better than any other
though the improvement may not be significant.
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