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summary

Sufficient conditions are derived for an incomplete block design to be E-optimal
in a subclass of connected designs when within-block observations are correlated
and generalized least squares estimation method is used. Constructions of the
proposed E-optimal designs are given.
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1 Introduction

Let d be a block design for v treatments having b blocks each with k experimental units

or plots and D(v, b, k) be the class of all competing designs for a given v, b, and k. The

optimality problem considered in this paper is addressed under the following fixed effects

model:

Yd = 1bkµ+ Zβ +Xdτ + ε, cov(ε) = Σ. (1.1)

Here Yd is the bk × 1 vector of observed responses obtained from a design d written in

block major order, 1bk is the bk×1 column vector of ones, τ is the v×1 vector of treatment

effects; Xd is a bk × v plot-treatment design matrix and β is the vector of parameters for

fixed block effects. The plot-block incidence matrix Z is equal to (Ib ⊗ 1k). The error

covariance matrix Σ is assumed to be specified as

Σ = I(b) ⊗ 1

1 − ρ2




1 ρ . . . ρk−1

ρ 1 . . . ρk−2

...
...

. . .
...

ρk−1 ρk−2 . . . 1




which says that the observations within each block are correlated according to autoregres-

sive process of order one and that observations from different blocks are uncorrelated. In
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this paper, we shall only consider nonnegative correlations since negative correlations due

to competition between neighboring plots are unlikely to occur in practice. Generalized

least squares information matrix Cd for the estimation of contrasts involving treatment

parameters in the above model can be written as

Cd = X ′
dΣ

−1Xd −X ′
dΣ

−1Z(Z ′Σ−1Z)−Z ′Σ−1Xd. (1.2)

The information matrix Cd, for any design d, is non-negative definite and has rank v − 1

whenever d is a connected design. For a connected design d, we shall let

0 < µd1 ≤ µd2 ≤ . . . ,≤ µd(v−1)

denote the v − 1 nonzero eigenvalues of Cd. Henceforth, we assume that D(v, b, k) denotes

the class of all connected designs for a given v, b and k. Proposition 1 of Kiefer (1975) gives

two sufficient conditions for a design d∗ to be universally optimal in D(v, b, k). These are

(i) tr(Cd∗) ≥ tr(Cd) for all d ∈ D(v, b, k), and

(ii) Cd∗ is completely symmetric.

The universal optimality includes some other widely used optimality criteria including

E-, A- and D-optimality. The strongly equineighbored designs constructed by Martin and

Eccleston (1991) satisfy the conditions (i) and (ii) within some subclasses of D(v, b, k) for

a general dependence structure and hence solves the universal optimality problem fully for

all error dependence structures. However, these designs require that the number of blocks

b be a multiple of v(v − 1)/2 if v is odd and multiple of v(v − 1) if v is even. Kunert

(1985) and Morgan and Chakravarti (1988) noted that universally optimal designs under

some specified known dependence structures such as the AR(1) process considered in this

paper require the same number of blocks. For other sets of design parameters, literature is

very slow in addressing the optimality and construction problems even for specified known

error dependence structures.

However, several authors have concentrated on designs that are optimal or highly efficient

under generalized least squares method for specified dependence structures, see Gill and

Shukla (1985), Kunert (1987), Russel and Eccleston (1987a, 1987b), Uddin (2007, 2008a,

2008b, 2008c, 2008d), for example. We see that this problem can be simplified to some

extent by restricting the search to some specific optimality criteria such as E- and MV -

optimality within some restricted classes of competing designs. The four recent papers

by Uddin (2008a, 2008b, 2008c, 2008d) deal with E- and MV -optimal designs for three

treatments in blocks of size three whereas Uddin (2007) deals with E-optimal incomplete

block designs in blocks of size k = 3 for all v ≥ 4. The present paper is devoted to the

investigation of E-optimal incomplete block designs in blocks of size k ≥ 3 under model

(1.1) within the class of designs in which each treatment is replicated either r or r+1 times

where

r = int(bk/v) = the largest integer not exceeding bk/v.
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We shall use Dr(v, b, k) to denote this subclass of designs. A design d∗ ∈ Dr(v, b, k) is said

to be E-optimal if it maximizes the smallest nonzero eigenvalue µd1 over all d ∈ Dr(v, b, k).

This is equivalent to saying that the design d∗ is E-optimal if µd∗1 ≥ µd1 for all d ∈
Dr(v, b, k). Following some notations in section 2, we establish lower and upper bounds for

µd1 and identify E-optimal designs within the subclass Dr(v, b, k). These bounds are then

utilized in section 3 to construct infinite series of the proposed E-optimal designs. However,

we restrict all discussions to v ≥ 3 and k ≥ 3 since v = 2 and k ≥ 3 is covered by the work

of Mathews (1987) and since, for k = 2, the generalized least squares estimation problem

reduces to that of ordinary least squares problem in our model.

2 Bounds on the Smallest Nonzero Eigenvalue of Cd and

E-Optimal Designs

In this section, first we establish bounds on the smallest nonzero eigenvalue of Cd for an

arbitrary design d ∈ Dr(v, b, k). For the purpose, we utilize the following result from Jacroux

(1986).

Lemma 2.1. Let C = (cij)v×v be an v × v matrix which satisfies the following conditions:

(a) C is positive semi-definite symmetric matrix with Cd1v = 0, 1′vCd = 0,

(b) cii ≥ 0, for all i = 1, 2, . . . , v, and cij ≤ 0 for i, j = 1, 2, . . . , v, i 6= j.

(c) If µ0 = 0 ≤ µ1 ≤ µ2 · · · ≤ µv−1 are the eigenvalues of C, then µ1 must satisfy the

following inequality:

µ1 ≤ v

v − 1
min(c11, c22, . . . , cvv).

For any design d ∈ D(v, b, k), the information matrix Cd satisfies the conditions (a)

and (b) of Lemma 1. Thus the inequality (c) of Lemma 1 holds for the smallest nonzero

eigenvalue of Cd for all d ∈ Dr(v, b, k). We take advantage of this inequality in our search for

E-optimal designs by maximizing min(cd11, cd22, . . . , cdvv) with respect to all d ∈ Dr(v, b, k).

For this purpose, we first introduce the following notations.

ediu = the number of times treatment i appears in the two end plots of the u-th block.

fdiu = the number of times treatment i appears in the k − 2 interior plots of the u-th block.

ndii′ = the number of times treatments i and i′ occur as neighbors in all b blocks with the

convention that this neighbor count is doubled when i = i′.

and

edi =
∑b

u=1 ediu, fdi =
∑b
u=1 fdiu, λdEii′ =

∑b
u=1(ediuedi′u)

λdIii′ =
∑b
u=1(fdiufdi′u), λdIEii′ =

∑b
u=1(ediufdi′u + edi′ufdiu).
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With these notations, the diagonal elements (cdii, i = 1, 2, . . . , v) and off-diagonal el-

ements (cdii′ , i, i
′ = 1, 2, . . . , v; i 6= i′) of the information matrix Cd can be expressed as

follows:

cdii = rdi + ρ2 fdi − ρ ndii −
1 − ρ

2 + (k − 2)(1 − ρ)

b∑

u=1

(ediu + (1 − ρ)fdiu)
2

cdii′ = −ρ ndii′ −
1 − ρ

2 + (k − 2)(1 − ρ)

b∑

u=1

(ediu + (1 − ρ)fdiu)(edi′u + (1 − ρ)fdi′u)

= −ρndii′ −
1 − ρ

2 + (k − 2)(1 − ρ)
(λdEii′ + (1 − ρ)2λdIii′ + (1 − ρ)λdIEii′ ).

Note here that the trace(Cd∗) =
∑v

i=1 cd∗ii is maximum with respect to all designs in

Dr(v, b, k) if d∗ is binary and if, for the binary design d∗, the quantities nd∗ii′ , ed∗iu, fd∗iu,

λd∗Eii′ , λd∗Iii′ , λd∗IEii′ are all constants, then d∗ is universally optimal. We shall utilize

this fact in our construction of E-optimal designs for other design parameters in section 3.

With r = int( bkv ), we now assume bk = rv +m, 0 ≤ m ≤ v − 1. Note that rdi ≥ r for all

d ∈ Dr(v, b, k). For an arbitrary design d ∈ Dr(v, b, k), we shall use M to denote the set of

all treatments i for which rdi = r, and M c to denote the set of the remaining treatments.

Note that M is a nonempty set with v − m treatment symbols and M c is an empty set

whenever m = 0. With

θ1 = 1 − 1 − ρ

2 + (k − 2)(1 − ρ)
and

θ2 = (1 + ρ2)(1 − 1 − ρ

2 + (k − 2)(1 − ρ)
) +

2ρ(1 − ρ)

2 + (k − 2)(1 − ρ)
,

we state our first result in the following Theorem.

Theorem 1. Consider the class Dr(v, b, k) with bk = rv +m, 0 ≤ m ≤ v− 1. If m ≥ 1, we

further assume that the parameters of a design d ∈ Dr(v, b, k) and the correlation coefficient

ρ satisfy the condition

(i)

[
int

(
b(k − 2)

v

)
−int

(
b(k − 2) − (v −m)(int( b(k−2)

v ) + 1)

m

)]
(θ2−θ1)−θ1 ≥ 0.

Then for all d ∈ Dr(v, b, k), µd1 ≤ v
v−1 (rθ1 + int( b(k−2)

v )(θ2−θ1)) with equality if d is binary

with at least one treatment i ∈M having fdi ≤ int(b(k − 2)/v).
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Proof. For an arbitrary design d ∈ Dr(v, b, k) and for all i = 1, 2, . . . , v, we have

cdii = rdi + ρ2 fdi − ρ ndii −
1 − ρ

2 + (k − 2)(1 − ρ)

b∑

u=1

[ediu + (1 − ρ)fdiu]
2

≤ rdi + ρ2 fdi −
1 − ρ

2 + (k − 2)(1 − ρ)
(edi + (1 − ρ)2fdi) with equality if d is binary.

= rdiθ1 + fdi(θ2 − θ1)

To establish the upper bound for µd1, we now consider the following two cases m = 0 and

m ≥ 1 separately.

Case I. m = 0. In this case, all competing designs are equireplicate and M c is an empty

set. Thus for any design d ∈ Dr(v, b, k), we have rdi = r for all i ∈M and fdi ≤ int( b(k−2)
v )

for at least one i′ ∈ M . Hence cdi′i′ ≤ rθ1 + int( b(k−2)
v )(θ2 − θ1) with equality if d is binary.

Case II. m ≥ 1. In this case, the set M c is a nonempty set. For any design d ∈ Dr(v, b, k),

we have rdi = r for all i ∈ M and fdi′ ≤ int( b(k−2)
v ) for at least one i′ ∈ M ∪M c. If i′ ∈M ,

then cdi′i′ ≤ rθ1 + int( b(k−2)
v )(θ2 − θ1). If the binary design d assigns treatments satisfying

fdi ≥ int( b(k−2)
v ) + 1 for all i ∈ M , then there must be at least one treatment i∗ ∈ M c for

which fdi∗ ≤ int(
b(k−2)−(v−m)(int( b(k−2)

v )+1)

m ). For this treatment i∗, we have

cdi∗i∗ = (r + 1)θ1 + int

(
b(k − 2) − (v −m)(int( b(k−2)

v ) + 1)

m

)
(θ2 − θ1)

≤ rθ1 + int(
b(k − 2)

v
)(θ2 − θ1) by condition(i).

Thus under both cases I and II , min(cd11, cd22, . . . , cdvv) ≤ rθ1 + int( b(k−2)
v )(θ2 − θ1).

The proof is now completed under both cases using Lemma 1.

Remark 1. The upper limit established for µd1 in Theorem 1 above is independent of the

choice of any design d ∈ Dr(v, b, k). This means that if there exists a design d∗ ∈ Dr(v, b, k)

for which µd∗1 = v
v−1 (rθ1 + int( b(k−2)

v )(θ2 − θ1)) then µd∗1 ≥ µd1 for all d ∈ Dr(v, b, k) and

d∗ is optimal in Dr(v, b, k).

The search for such a design d∗ is simplified by establishing a lower bound for µd1 in the

following theorem.

Theorem 2. Suppose d ∈ D(v, b, k). If wd is the smallest off-diagonal element of −Cd,
then µd1 ≥ wdv for all d ∈ D(v, b, k).
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Proof. For an arbitrary design d ∈ Dr(v, b, k), define

Tdx = Cd −
xv

v − 1
(Iv −

1

v
1v1

′
v)

where x is any real number. Then the eigenvalues of Tdx are 0, µdi− xv
v−1 , i = 1, 2, . . . , v− 1.

Let tdxii′ be the (i, i′)-th element of Tdx. Then tdxii = cdii − x and tdxii′ = cdii′ + x
v−1 .

With x = (v − 1)w, we have tdxii = cdii − (v − 1)w ≥ cdii +
∑v

i′=1(i′ 6=i)(cdii′) = 0 for all

i = 1, 2, . . . , v. Thus with x = (v−1)w, we have tdxii ≥ 0 for all i = 1, 2, . . . , v. Furthermore,

with x = (v − 1)w, tdxii′ = cdii′ + w ≤ 0 for all i 6= i′. This implies that the matrix Tdx
with x = (v − 1)w is a positive-semidefinite matrix and hence µd1 − xv

v−1 = µd1 − vw ≥ 0,

completing the proof.

The lower bound obtained for µd1 in Theorem 2 above depends on the design d. That is

to say that this lower bound changes as the design d ∈ Dr(v, b, k) changes. The trick here

is to find a design d for which the lower bound for µd1 is equal to its upper bound given by

Theorem 1. This is summarized in the following theorem.

Theorem 3. Consider the class Dr(v, b, k) with bk = rv +m for some positive m ≤ v − 1.

Assume that the parameters satisfy condition (i) of Theorem 1. If there exists a design

d∗ ∈ Dr(v, b, k) for which wd∗ = 1
v−1 (rθ1 + int( b(k−2)

v )(θ2 − θ1)) then µd∗1 = vwd∗ and d∗

is E-optimal in Dr(v, b, k).

The proof of Theorem 3 follows from the inequalities established in Theorems 1 and 2,

and Remark 1 stated above following Theorem 1. Since the lower bound of µd1 depends on

the largest off-diagonal element of Cd, one may take advantage of this fact in constructing

the proposed E-optimal designs.

Example 2.1. The smallest nontrivial example of an E-optimal design of Theorem 3 is a

complete block design for v = 3, b = 2, k = 3 for which the two blocks may be chosen as

(3, 1, 2) and (1, 2, 3). The C-matrix for this design is

C =
1

3 − ρ




4 + 2ρ −2− 2ρ −2

−2− 2ρ 4 + 2ρ −2

−2 −2 4




with eigenvalues µ0 = 0, µ1 = 6/(3 − ρ), and µ2 = (6 + 4ρ)/(3 − ρ). Note that, for this

design, rdi = 2, i = 1, 2, 3, fd1 = 1, fd2 = 1, fd3 = 0,. Thus cd33 ≤ rθ1 = 4/(3 − ρ) and

wd = 2/(3− ρ) = 1
v−1 (rθ1 + int( b(k−2)

v )(θ2 − θ1)) satisfying the conditions of Theorem 3.

3 Construction of E-Optimal Designs

Under model (1.1) with uncorrelated errors (i.e. when Σ = I), E-optimal designs are con-

structed in the literature using an augmentation process in which blocks of certain types
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are added to the blocks of previously known optimal designs, see Jacroux (1980) and Con-

stantine (1981), for example. For our correlated error model, we offer a similar construction

technique that augments a class of neighbor balanced incomplete block designs by additional

blocks to give E-optimal designs in Dr(v, b, k). We only consider constructions of designs

for v ≥ 4, k ≥ 3 since optimal designs for v = 3, k = 3 are covered by the work of Uddin

(2008a, 2008b, 2008c, 2008d).

For unequally replicated (bk/v is not an integer) E-optimal incomplete block designs, our

construction technique utilizes the method of differences (see Raghavarao, 1971). For the

purpose of our construction, we shall let Fv(x) denote the finite field of order v with primitive

root x and denote the v treatments by the v elements of Fv(x) = {0, x0, x1, . . . , xv−1}. We

now state a series of unequally replicated E-optimal designs in the following Theorem.

Theorem 4. Let v = 2t + 1 be an odd prime or prime power number. Let x1, x2, . . . , xk
be k distinct elements of Fv(x). Let d1 be the design obtained by developing t initial blocks

(x1, x2, . . . , xk)x
(i−1), i = 1, 2, . . . , t, over Fv(x). Let d∗ be a design obtained by augmenting

d1 by b2 disjoint binary blocks of size k each such that

(i′) int

(
2b2 + v

b2k

)
− δ ≥

{
ρ2 +

2ρ(1− ρ)(1 + ρ2)

2 + (k − 3)(1 − ρ)

}−1

where

δ =





2 if

(
2b2 + v/b2k

)
is an integer

1 otherwise,

then the design d∗ is E-optimal in Dr(v, b = b1 + b2, k).

Proof. We first note that the design d1 is universally optimal over the class D(v, b, k) (see

Martin and Eccleston, 1991) with the following properties: b1 = v(v−1)/2, rd1i = k(v−1)/2,

fd1i = (k−2)(v−1)/2, nd1ii = 0, for all i, nd1ii′ = k−1, λd1Eii′ = 1, λd1Iii′ = (k−2)(k−3)/2,

λd1IEii′ = 2(k − 2) for all i 6= i′.
By construction, the design d∗ is binary and it has at least one treatment s ∈ Fv(x) for

which replications and concurrence numbers are same as those under the design d1. That

is, for this treatment s, the following properties hold:

rd∗s = k(v− 1)/2 ≤ rd∗i , fd∗s = (k− 2)(v− 1)/2 ≤ fd∗i, nd∗ss = 0 ≤ nd∗ii, for all i, and

nd∗si′ = k − 1 ≤ nd∗ii′ , λd∗Esi′ = 1 ≤ λd∗Eii′ , λd∗Isi′ = (k − 2)(k − 3)/2 ≤ λd∗Iii′ ,

λd∗IEsi′ = 2(k − 2) ≤ λd∗IEii′ for some i′ 6= s, and for all i′ 6= i.

This implies that the smallest off-diagonal element of −Cd∗∗ is

wd∗ =
(1 − ρ+ ρ2 − ρ3)k2 − (1 − 5ρ+ 5ρ2 − 5ρ3)k − 2ρ(2 − 3ρ+ 3ρ2)

2(2 + (k − 2)(1 − ρ))
.

With r = k(v − 1)/2, int(b(k − 2)/v) = (k − 2)(v − 1)/2, and θ1 and θ2 as defined above,

it can be shown that the expression 1
v−1 (rθ1 +int( b(k−2)

v )(θ2−θ1)) simplifies to wd∗ . The E-

optimality of d∗ now follows from Theorem 3 by noting that int( b(k−2)
v )−int(

b(k−2)−(v−m)(int( b(k−2)
v )+1)

m )

for the design d∗ simplifies to int( 2b2+v
b2k

) - δ and θ1/(θ2 − θ1) = {ρ2 + 2ρ(1−ρ)(1+ρ2)
2+(k−3)(1−ρ) }−1.
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One may take n ≥ 1 copies of b1 blocks of the design d1 and augment it by the above

b2 blocks to obtain an E-optimal design in Dr(v, b = nb1 + b2, k). The E-optimal designs

constructed above in Theorem 4 require that the correlation coefficient ρ and design param-

eters v, b2, and k satisfy the condition (i′). We see that this condition is generally satisfied

for large positive ρ whenever m = b2k is small compared to v, see Table 1 where we have

evaluated the condition (i′) for all odd prime and prime power number v, 9 ≤ v ≤ 29. For

given v, all possible b2 and k for which ρ ∈ (0, 1) are listed in Table 1.

Finally, we like to note that this paper addresses the E-optimality problem within the

class of those designs for which r ∈ {int(bk/v), int(bk/v) + 1}. If bk/v is an integer, the

competing designs are restricted to equireplicate designs which are often used in practice. In

addition, complete block designs are often preferred in practice whenever k = v. However,

with no restriction on the class of competing designs, E-optimal designs may be nonbinary

and may lie outside the class of equireplicate designs especially when ρ is large, see Uddin

(2008a, 2008b).
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Table 1: Correlation coefficient ρ satisfying the inequality (i′) for some v, b2, and k.

v b2 k ρ

9 1 3 [.45, 1)

11 1 3 [.32, 1)

11 1 4 [.50, 1)

13 1 3 [.32, 1)

13 1 4 [.50, 1)

17 1 3 [.20, 1)

17 2 3 [.45, 1)

17 1 4 [.37, 1)

17 1 5 [.54, 1)

17 1 6 [.56, 1)

19 1 3 [.20, 1)

19 2 3 [.45, 1)

19 1 4 [.30, 1)

19 1 5 [.40, 1)

19 1 6 [.56, 1)

23 1 3 [.15, 1)

23 2 3 [.32, 1)

23 3 3 [.45, 1)

23 1 4 [.25, 1)

23 2 4 [.50, 1)

23 1 5 [.40, 1)

23 1 6 [.43, 1)

23 1 7 [.58, 1)

23 1 8 [.59, 1)

25 1 3 [.15, 1)

25 2 3 [.32, 1)

25 3 3 [.45, 1)

25 1 4 [.25, 1)

25 2 4 [.50, 1)

v b2 k ρ

25 1 5 [.33, 1)

25 1 6 [.43, 1)

25 1 7 [.58, 1)

25 1 8 [.59, 1)

27 1 3 [.13, 1)

27 2 3 [.24, 1)

27 3 3 [.45, 1)

27 1 4 [.21, 1)

27 2 4 [.50, 1)

27 1 5 [.33, 1)

27 2 5 [.54, 1)

27 1 6 [.43, 1)

27 1 7 [.45, 1)

27 1 8 [.59, 1)

27 1 9 [.60, 1)

29 1 3 [.11, 1)

29 2 3 [.24, 1)

29 3 3 [.45, 1)

29 4 3 [.45, 1)

29 1 4 [.21, 1)

29 2 4 [.37, 1)

29 1 5 [.28, 1)

29 2 5 [.54, 1)

29 1 6 [.35, 1)

29 1 7 [.45, 1)

29 1 8 [.59, 1)

29 1 9 [.60, 1)

29 1 10 [.61, 1)


