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summary

Here we introduce a new family of distributions namely the extended conflu-
ent hypergeometric series (ECHS) distribution as a generalization of confluent
hypergeometric series distributions, Crow and Bardwell family of distributions,
displaced Poisson distributions and generalized Hermite distributions. Some im-
portant aspects of the ECHS distributions such as probability mass function,
mean, variance and recursion formulae for probabilities, moments and factorial
moments are obtained.
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1 Introduction

Hall (1956) has obtained some hypergeometric series distributions occurring in the study

of birth and death processes and named it as the confluent hypergeometric series (CHS)

distributions. Bhattacharya (1966) has discussed some of its properties and defined it as

follows:

A random variable X is said to have CHS distribution with parameters ν, λ and η if

f(x) = P (X = x) =
Γ(ν + x)Γ(λ)

Γ(λ+ x)Γ(ν)
× ηx

1F1(ν;λ; η)
, (1.1)

where ν > 0, λ > 0, η > 0; x = 0, 1, 2, . . . and 1F1(ν;λ; η) is the confluent hypergeometric

function (for details see Mathai and Saxena, 1973 or Slater, 1960). Several well-known

discrete distributions such as Poisson distribution, displaced Poisson distribution of Staff

(1964) and Hyper-Poisson distribution of Bardwell and Crow (1964) are special cases of the

CHS distribution. Inference for this family has been attempted by Gurland and Tripathi

(1975) and Tripathi and Gurland (1977, 1979). The probability generating function (p.g.f.)

of the CHS distribution is the following, in which δ = [1F1(ν;λ; η)]
−1

.

H(z) = δ 1F1(ν;λ; ηz) (1.2)
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In this article, we obtain an extended version of the CHS distribution and call it as ’the

extended confluent hypergeometric series distributions’ or in short ’the ECHS distributions’.

In section 2 we establish that the ECHS distributions possess a random sum structure and

have listed its important special cases. In section 3, we present some of its properties by

deriving expressions for its probability mass function, mean and variance. There we also

obtain certain recursion formulae for probabilities, moments and factorial moments. It is

important to note that since the ECHS distributions possess a random sum structure, it

is applicable wherever such a structure arises. The random sum structure arises in several

areas of scientific research such as ecology, biology, genetics, physics, operations research etc.

For details see Johnson et al. (1992). The ECHS distributions can also have applications in

the areas of accident statistics, epidemiological studies and analysis of linguistic data. The

results concerning statistical inference in connection with the ECHS distributions are given

in the sequel.

2 Genesis and Special Cases

Let {Xn, n ≥ 1} be a sequence of independent and identically distributed random variables,

where X1 has the following p.g.f., in which m is a positive integer.

P (z) = αz + (1 − α)zm,

where α = η1/η, η = η1 + η2, η1 > 0 and η2 ≥ 0. Consider a non-negative integer valued

random variable Y having CHS distribution with p.g.f. (1.2). Assume that Y,X1, X2, . . .

are independent and let S0 = 0. Define SY =
∑Y

n=0Xn. Then the p.g.f. of SY is

Q(z) = E(zSY ) = EY {E[zSY |Y ]} = H(P (z))

= δ 1F1(υ;λ; η1z + η2z
m). (2.1)

We define a distribution with p.g.f. (2.1), as the ’the extended confluent hypergeometric

series distribution’ or in short ’the ECHS distribution’. Clearly, the ECHS distribution with

η2 = 0 and/or m = 1 is the CHS distribution. This family of distributions include several

well-known discrete distributions as shown below.

1. When υ = λ and m = 2, from (2.1) we get the p.g.f. of the Hermite distribution, with

parameters η1 > 0 and η2 > 0, of Kemp and Kemp (1965).

2. When υ = λ, from (2.1) we get the p.g.f. of the generalized Hermite distribution, with

parameters m > 0, η1 > 0 and η2 > 0, of Gupta and Jain (1974).

3. When υ = 1, m = 2 and λ is a positive integer, from (2.1) we get the p.g.f. of the

extended displaced Poisson distribution of type I, with parameters λ, η1 > 0 and

η2 > 0.

4. When υ = 1 and λ is a positive integer, from (2.1) we get the p.g.f. of the extended

displaced Poisson distribution of type II, with parameters λ, m, η1 > 0 and η2 > 0.
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5. When υ = 1 and m = 2, from (2.1) we get the p.g.f. of the extended Crow and

Bardwell family of distribution of type I, with parameters λ > 0, η1 > 0 and η2 > 0.

6. When υ = 1, from (2.1) we get the p.g.f. of the extended Crow and Bardwell family

of distribution of type II, with parameters m > 0, λ > 0, η1 > 0 and η2 > 0.

7. When m = 2, from (2.1) we get the p.g.f. of the extended Crow and Bardwell family

of distributions of type III, with parameters υ > 0, λ > 0, η1 > 0 and η2 > 0.

3 Properties

Let V be a random variable distributed as the ECHS distributions with p.g.f.

Q(z) = δ 1F1(υ;λ; η1z + η2z
m)

=

∞∑

r=0

gr(υ, λ)z
r, (3.1)

in which gr(υ, λ) = P (V = r), r = 0, 1, 2, ... and δ = [1F1(ν;λ; η1 + η2)]
−1

. On expanding

(3.1) and equating the coefficients of zr, we obtain the following proposition.

Proposition 3.1. The probability mass function (p.m.f.) gr(υ, λ) of the ECHS distribution

with p.g.f. (3.1) is the following, for r = 0, 1, 2, . . ..

gr(υ, λ) = δ

[r/m]∑

n=0

(υ)r−(m−1)n

(λ)r−(m−1)n

ηr−mn1 ηn2
(r −mn)!n!

, (3.2)

where (a)0 = 1, (a)n = a(a + 1)...(a + n− 1), for n ≥ 1, and [r/m] denote the integer part

of (r/m).

Further we have the following propositions.

Proposition 3.2. The mean and variance of the ECHS distribution with p.g.f. (3.1) are

as follows:

Mean =
υ

λ
Λ1(η1 +mη2), (3.3)

Variance =
υ

λ

(
υ + 1

λ+ 1
Λ2 −

υ

λ
Λ2

1

)
(η1 +mη2)

2 +
υ

λ
Λ1(η1 +m2η2), (3.4)

where

Λj = δ 1F1(υ + j;λ+ j; η1 + η2), j = 1, 2. (3.5)

The proof is simple and hence omitted.
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Proposition 3.3. The following is a simple recursion formula for the probabilities gr(υ, λ)

of the ECHS distribution with p.g.f. (3.1), for r ≥ 1.

gr+1(υ, λ) =
υΛ1

λ(r + 1)
{η1gr(υ + 1, λ+ 1) +mη2gr−m+1(υ + 1, λ+ 1)}, (3.6)

where Λ1 is as defined in (3.5).

Proof. On differentiating (3.1) with respect to z, we have

∞∑

r=0

(r + 1)gr+1(υ, λ)z
r =

υ

λ
δ(η1 +mη2z

m−1) 1F1(υ + 1;λ+ 1; η1z + η2z
m). (3.7)

By replacing υ by υ + 1 and λ by λ+ 1 in (3.1) we get the following.

δ∗ 1F1(υ + 1;λ+ 1; η1z + η2z
m) =

∞∑

r=0

gr(υ + 1, λ+ 1)zr, (3.8)

where δ∗ = [1F1(υ + 1;λ + 1; η1 + η2)]
−1. Relations (3.7) and (3.8) together lead to the

following relationships:

∞∑

r=0

(r+1)gr+1(υ, λ)z
r =

υΛ1

λ

∞∑

r=0

{
η1gr(υ+1, λ+1)zr+mη2gr(υ+1, λ+1)zr+m−1

}
(3.9)

On equating coefficients of zr on both sides of (3.9) we get (3.6).

Proposition 3.4. The following is a recursion formula for the factorial moments µ[n](υ, λ)

of the ECHS distribution for n ≥ 1, in which µ[0](υ, λ) = 1.

µ[n+1](υ, λ) =
υΛ1

λ

[
η1µ[n](υ+1, λ+1)+mη2

m−1∑

r=0

(
m− 1

r

)
n(r)µ[n−r](υ+1, λ+1)

]
, (3.10)

where n(r) = n(n− 1)(n− 2) · · · (n− r + 1), for any positive integer r and n(0) = 1.

Proof. The factorial moment generating function FV (t) of the ECHS distribution with p.g.f.

(3.1) has the following series representation.

FV (t) = Q(1 + t) = δ 1F1[υ;λ; η1(1 + t) + η2(1 + t)m] =

∞∑

n=0

µ[n](υ, λ)
tn

n!
(3.11)

Differentiate (3.11) with respect to t to obtain

υ

λ
δ[η1+mη2(1+t)m−1]1F1[υ+1;λ+1; η1(1+t)+η2(1+t)m] =

∞∑

n=1

µ[n](υ, λ)
tn−1

(n− 1)!
. (3.12)
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By using (3.11) with υ, λ replaced by υ+ 1, λ+ 1 respectively, we obtain the following from

(3.12).

∞∑

n=0

µ[n+1](υ, λ)
tn

n!
=

υ

λ
Λ1[η1 +mη2(1 + t)m−1]

∞∑

n=0

µ[n](υ + 1, λ+ 1)
tn

n!

=
υΛ1

λ

∞∑

n=0

[
η1µ[n](υ + 1, λ+ 1)

tn

n!

+mη2

m−1∑

r=0

(
m− 1

r

)
µ[n](υ + 1, λ+ 1)

tn+r

n!

]
(3.13)

Now, on equating coefficients of tn

n! on both sides of (3.13) we get (3.10).

Proposition 3.5. The following is a recursion formula for the raw moments µn(υ, λ) of

the ECHS distribution, for n ≥ 0.

µn+1(υ, λ) =
υ

λ
Λ1

n∑

r=0

(
n

r

)
(η1 +mr+1η2)µn−r(υ + 1, λ+ 1). (3.14)

Proof. The characteristic function φV (t) of the ECHS distribution with p.g.f. (3.1) has the

following series representation. For tεR,

φV (t) = Q(eit) = δ 1F1(υ;λ; η1e
it + η2e

mit) =

∞∑

n=0

µn(υ, λ)
(it)n

n!
. (3.15)

On differentiating (3.15) with respect to t, we obtain

υ

λ
δ(η1e

it +mη2e
mit)1F1(υ + 1;λ+ 1; η1e

it + η2e
mit) =

∞∑

n=1

µn(υ, λ)
(it)n−1

(n− 1)!
. (3.16)

By using (3.15) with υ, λ replaced by υ + 1, λ + 1 respectively, we get the following from

(3.16).

∞∑

n=0

µn+1(υ, λ)
(it)n

n!
=

υ

λ
Λ1(η1e

it +mη2e
mit)

∞∑

n=0

µn(υ + 1, λ+ 1)
(it)n

n!

=
υΛ1

λ

∞∑

n=0

[ ∞∑

k=0

{
η1(it)

k

k!
+
mη2(mit)

k

k!

}]
µn(υ + 1, λ+ 1)(it)n

n!
.

On equating coefficients of (it)n

n! on both sides we get (3.14).
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