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summary

The objective of the paper is to study the properties of Bayes estimates of Reliabil-
ity function and Hazard rate under the symmetric and asymmetric loss functions
when item failure data are available from the Weibull failure model. The Bayes
predictive interval is also determined.
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1 Introduction

The probability density function of the Weibull failure model is given by

f (x; v, θ) =
v

θ
xv−1 exp

{
−x

v

θ

}
; x > 0, v > 0, θ > 0. (1.1)

where the parameters v and θ are referred to as the shape and the scale parameters respec-

tively.

For the special case v = 1, the Weibull failure model is the Exponential distribution. For

v = 2, it is Rayleigh distribution. For the values in the range 3 ≤ v ≤ 4, the shape of the

distribution is close to that of Normal distribution and for a large value of v, say v ≥ 10, is

close to that of smallest extreme value distribution.

The application of the Weibull failure model in life - testing problems and survival

analysis has been widely advocated by several authors. Whittemore and Altschuler (1976)

used it as a model in biomedical applications. It also has been used as model with diverse

types of items such as ball bearing (Lieblein and Zelen, 1956), vacuum tube (Kao, 1959),
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and electrical isolation (Nelson, 1972). Mittnik and Reachev (1993) found that the Weibull

distribution might be adequate statistical model for stock returns. Recently, Hisada and

Arizino (2002) discussed about the Reliability tests for Weibull distribution with varying

shape parameter.

The squared error loss function (SELF) has been considered as equal weightage to the

positive and negative errors for the estimation. Varian (1975) proposed an asymmetric loss

function known as the LINEX (linear - exponential) loss function. The invariant form of

the LINEX loss function (ILLF) for any parameter θ is defined as

L (∆) =
{
ea∆ − a∆ − 1

}
; a 6= 0,∆ =

(
θ̂

θ
− 1

)
, (1.2)

where a is the shape parameter and θ̂ is an estimate of the parameter θ.

The ILLF is convex, and the shape of this loss function is determined by the value of ′a′

(the negative (positive) value of ′a′, gives more weight to overestimation (underestimation))

and its magnitude reflects the degree of asymmetry. It is seen that, for a = 1, the function is

quite asymmetric with overestimation being costly than underestimation. For small values

of |a|, the ILLF is almost symmetric and is not far from the SELF.

The natural family of conjugate prior of θ (when shape parameter v is known) is taken

as the inverted Gamma distribution with probability density function

g1 (θ) =
βα

Γα
θ−α−1 exp

(−β
θ

)
; α, β > 0, θ > 0. (1.3)

Further, in a situation where the researchers have no or very little prior information

about the parameter θ, one may use a family of priors defined as

g2 (θ) = θ−d exp

(
−cd
θ

)
; d, c > 0, θ > 0. (1.4)

If d = 0, we get a diffuse prior and if d = 1, c = 0 a non-informative prior is obtained.

For a set of values of d and c that satisfies the equality Γ(d− 1) = (cd)
d−1

makes g2 (θ) as

a proper prior.

The present article studies the properties of the Bayes estimates of the Reliability func-

tion and the Hazard rate. A number of authors have extensively studied the properties

of the estimates under the Bayesian setup. Few of them are Sinha (1985), Siu and Kelly

(1998), Singh and Saxena (2005), Prakash and Singh (2008) and others.

The present paper also predicts the nature of the future observation when sufficient in-

formation of the past and the present behavior of an event or an observation is available.

A good deal of literature is available on predictive inference for future failure distribution.

Nigm (1989), Dellaportas and Wright (1991) and others have discussed the prediction prob-

lems in the Weibull distribution. Aitchison and Dunsmore (1975), Bain (1978), Howlader

(1985), Raqab (1997), Fernandez (2000), Raqab and Madi (2002), Nigm et al. (2003), Mousa

et al. (2005) and Ahmed et al. (2007) are few of those who have been extensively studied

predictive inference for the future observations.
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2 The Posterior Density

Suppose n items are put to test under model (1.1) without replacement and the test termi-

nates as soon as the rth (r ≤ n) item fails. If x = (x1, x2, ...., xr) be the first r components

of the observed failure items, then the likelihood function is obtained as

L (x1, x2, ...., xr |θ) =
vr

θr

r∏

i=1

xv−1
(i) exp

(
−rTr

θ

)
, (2.1)

where Tr = 1
r

{∑r
i=1 x

v
(i) + (n− r) xv(r)

}
is an UMVU estimator of the parameter θ and

2rTr

θ v χ2
2r.

The posterior density of θ (when shape parameter v is known) under prior g1 (θ) is obtain

as

Z1 (θ) =
(rTr + β)

α+r

Γ (α+ r)
exp

(
−rTr + β

θ

)
θ−(α+r+1). (2.2)

Which is again an inverted Gamma distribution with the parameters (α+ r) and (rTr + β) .

Similarly, the posterior density of θ corresponding to g2 (θ) is given as

Z2 (θ) =
(rTr + cd)

d+r−1

Γ (d+ r − 1)
exp

(
−rTr + cd

θ

)
θ−(r+d). (2.3)

This posterior distribution has the same form as the posterior (2.2). The only change is

in the place of α and β there is d− 1 and cd respectively.

3 The Bayes Estimates of the Reliability Function and
Hazard Rate

The Reliability function and Hazard rate for a specific mission time t (> 0) (with known v)

are obtain as

Ψ (t) = P [x > t] = exp

(
− t

v

θ

)
(3.1)

and

ρ (t) =
f (t; v, θ)

Ψ (t)
=
v tv−1

θ
. (3.2)

The Bayes estimates of Ψ (t) and ρ (t) under the SELF corresponding to the posterior

Z1 (θ) are obtained as

Ψ1 = EP (Ψ (t)) =

(
1 +

tv

rTr + β

)−(α+r)

(3.3)

and

ρ1 = EP (ρ (t)) =
v tv−1 (α+ r)

rTr + β
. (3.4)
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Here suffix P indicates the expectation taken under posterior density.

The Bayes estimates of of Ψ (t) = Ψ2 (say) and ρ (t) = ρ2 (say) under the ILLF do not

exist in the closed form. However, one may obtained them numerically by solving the given

equality for the posterior Z1 (θ)

EP

(
1

Ψ (t)
exp

(
a

Ψ2

Ψ (t)

))
= ea EP

(
1

Ψ (t)

)

⇒ J
(
η1e

−a η1 Ψ2
)

= ea J (η1) (3.5)

and

EP

(
1

ρ (t)
exp

(
a
ρ2

ρ (t)

))
= ea EP

(
1

ρ (t)

)

⇒ J
(
η2e

−a η2 ρ2) = ea J (η2) , (3.6)

where J (q′) =
∫∞
0 q′ exp (− (rTr + β) y) yα+r−1 dy, η1 = exp (tv y) , η2 = 1

v tv−1y , and q′ is

a function of y.

The expressions of the risks for these estimators under the SELF and the ILLF risk

criteria R(S) (Ψi) , R(L) (Ψi) , R(S) (ρi) and R(L) (ρi) ; i = 1, 2, do not exist in the closed

form. However, the following Example presents the numerical findings here. Further, the

suffix S and L indicates respectively the risk considered with respect to the SELF and the

ILLF risk criterion.

4 Illustrative Example

Mann and Fertig (1973) give failure times of airplane components subjected to a life test.

The Weibull distribution has often been found a suitable model in such situations. The data

are item - failure censored: 13 components were place on test and test terminated at time

of 10th failure. The failure times (in hours) of the 10 components that failed were

0.22 0.50 0.88 1.00 1.32 1.33 1.54 1.76 2.50 3.00

The expressions of the Bayes estimates of the Reliability function and Hazard rate and

their respective risks under both risk criteria involve a, α, β, θ, v, t, Tr and r. For the

selected set of values of a = 0.50(0.50)2.00; α = 1.25, 1.50, 2.50, 5.00, 10.00, 20.00; β =

0.50, 2.00, 5.00, 10.00, 20.00; θ = 04; v = 2.00 with t = 2.50 (hours), the numerical findings

have been obtained (Tables 01 - 02) and presented here only for β = 10.00.

Risk of both the Bayes estimates of the reliability function and hazard rate decreases,

when β increases under the SELF and the ILLF criterion for the all considered parametric

values. Further, when α increases the risk increases for R(S) (Ψ1) , R(L) (Ψ1) and R(S) (Ψ2)

and decreases otherwise except R(L) (Ψ2) for the all considered parametric values. Simi-

larly, the risk increases for R(L) (Ψ1) , R(S) (Ψ2) , R(S) (ρ1) and R(L) (ρ2) , and decreases for

R(L) (Ψ2) and R(S) (ρ2) when ′a′ increases.
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Remarks

1. All the results discussed in Section (4) hold for the posterior distribution Z2 (θ) if we

substitute α = (d− 1) and β = cd.

2. One may obtain the results for the complete sample case by replacing only the censored

sample size r with the complete sample size n.

5 Bayes Prediction Limits

Statistical prediction limits have many applications in quality control and in the reliability

problems and the determination of these limits have been extensively investigated. If we

want 100 ε% prediction limits for an additional observation, say Y, given a random sample

X = (x1, x2, ...., xr) from the model (1.1), the problem is equivalent to determining the

region R (X) such that R (X) covers on the average proportion ε of the distribution of Y.

In the context of prediction, we can say that (l, u) is a 100 (1 − ε) % prediction interval

for a future observation Y if

P [l ≤ Y ≤ u] = 1 − ε, (5.1)

where l and u are lower and upper prediction limits for the random variable Y, and 1− ε is

called the confidence prediction coefficient.

Now, the predicative distribution of a future observation Y from the model (1.1) is

obtained by simplifying

h (y|X) =

∫

θ

f (y; v, θ) .Z1 (θ) dθ

⇒ h (y|X) = v yv−1 (r + α)
(rTr + β)

r+α

(rTr + β + yv)
r+α+1 . (5.2)

A 100 (1 − ε) % equal tail prediction interval is obtained by solving

∫ l

0

h (y|X) dy =

∫ ∞

u

h (y|X) dy =
ε

2
. (5.3)

Hence, the Bayes prediction limits and the Bayes predictive interval are

l =

{
(rTr + β)

{(
1 − ε

2

)− 1
α+r − 1

}} 1
v

, (5.4)

u =

{
(rTr + β)

{(ε
2

)− 1
α+r − 1

}} 1
v

(5.5)

and

I = l − u. (5.6)
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6 Numerical Analysis

The expression of the Bayes predictive intervals involves α, β, v, ε, Tr and r. Using the

Example considered in Section 4 with similar set of selected values as considered earlier with

the values of confidence level ε = 99%, 95%, 90%, and the numerical finding are presented

in the Table 03 for r = 03, 05, 10.

The Table 03 shows that the Bayes predictive intervals decrease as confidence level ε

increases when other parametric values are fixed. Further, the intervals increase (decrease)

as β (α) increases for other fixed parametric values. The increasing trend in the intervals

also has been seen when r increases only for β ≤ 2.00 when other parametric values are

fixed.
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Table < < 01 >> Risks of the Bayes Estimator

Ψ (t) = 0.1510 θ = 4 :: v = 2 :: t = 2.50 :: β = 10.00

a α→ 1.25 1.50 2.50 5.00 10.00 20.00

Ψ1 0.1425 0.1365 0.1148 0.0745 0.0313 0.0055

0.50 R(S) (Ψ1) 14.433 14.484 14.672 15.044 15.499 15.855

R(L) (Ψ1) 0.0968 0.0972 0.0983 0.1006 0.1034 0.1056

Ψ1 0.1425 0.1365 0.1148 0.0745 0.0313 0.0055

1.00 R(S) (Ψ1) 14.433 14.484 14.672 15.044 15.499 15.855

R(L) (Ψ1) 0.3366 0.3376 0.3414 0.3489 0.3579 0.3650

Ψ1 0.1425 0.1365 0.1148 0.0745 0.0313 0.0055

1.50 R(S) (Ψ1) 14.433 14.484 14.672 15.044 15.499 15.855

R(L) (Ψ1) 0.6651 0.6671 0.6741 0.6880 0.7048 0.7179

Ψ1 0.1425 0.1365 0.1148 0.0745 0.0313 0.0055

2.00 R(S) (Ψ1) 14.433 14.484 14.672 15.044 15.499 15.855

R(L) (Ψ1) 1.0490 1.0519 1.0624 1.0831 1.1081 1.1275

ρ (t) = 1.3750

ρ1 1.5469 1.5812 1.7188 2.0625 2.7500 4.1250

0.50 R(S) (ρ1) 7.3051 7.1541 6.5683 5.2322 3.1103 1.0676

R(L) (ρ1) 0.0510 0.0500 0.0461 0.0371 0.0224 0.0082

ρ1 1.5469 1.5812 1.7188 2.0625 2.7500 4.1250

1.00 R(S) (ρ1) 7.3051 7.1541 6.5683 5.2322 3.1103 1.0676

R(L) (ρ1) 0.1838 0.1803 0.1668 0.1352 0.0830 0.0321

ρ1 1.5469 1.5812 1.7188 2.0625 2.7500 4.1250

1.50 R(S) (ρ1) 7.3051 7.1541 6.5683 5.2322 3.1103 1.0676

R(L) (ρ1) 0.3744 0.3677 0.3411 0.2787 0.1735 0.0718

ρ1 1.5469 1.5812 1.7188 2.0625 2.7500 4.1250

2.00 R(S) (ρ1) 7.3051 7.1541 6.5683 5.2322 3.1103 1.0676

R(L) (ρ1) 0.6063 0.5957 0.5543 0.4560 0.2875 0.1280
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Table < < 02 >> Risks of the Bayes Estimator

Ψ (t) = 0.1510 θ = 4 :: v = 2 :: t = 2.50 :: β = 10.00

a α→ 1.25 1.50 2.50 5.00 10.00 20.00

Ψ2 0.0655 0.0613 0.0470 0.0242 0.0064 0.0005

0.50 R(S) (Ψ2) 14.442 14.489 14.655 14.924 15.511 15.580

R(L) (Ψ2) 0.0257 0.0242 0.0186 0.0252 0.0751 1.5379

Ψ2 0.0867 0.0812 0.0622 0.0321 0.0085 0.0006

1.00 R(S) (Ψ2) 14.460 14.508 14.680 14.984 15.522 15.703

R(L) (Ψ2) 0.0242 0.0227 0.0176 0.0139 0.0196 0.2441

Ψ2 0.1172 0.1096 0.0841 0.0433 0.0115 0.0008

1.50 R(S) (Ψ2) 14.476 14.524 14.697 15.011 15.531 15.738

R(L) (Ψ2) 0.0236 0.0221 0.0171 0.0115 0.0107 0.097

Ψ2 0.1612 0.1509 0.1157 0.0596 0.0158 0.0011

2.00 R(S) (Ψ2) 14.492 14.539 14.711 15.029 15.552 15.783

R(L) (Ψ2) 0.0230 0.0216 0.0167 0.0106 0.0076 0.0521

ρ (t) = 1.3750

ρ2 1.6502 1.6948 1.8732 2.3192 3.2112 4.9952

0.50 R(S) (ρ2) 15.887 15.884 15.872 15.842 15.781 15.661

R(L) (ρ2) 0.0480 0.0468 0.0419 0.0311 0.0153 0.0109

ρ2 2.1854 2.2445 2.4808 3.0714 4.2527 6.6154

1.00 R(S) (ρ2) 15.851 15.847 15.831 15.791 15.711 15.552

R(L) (ρ2) 0.1248 0.1199 0.1016 0.0642 0.0318 0.2149

ρ2 2.9522 3.0320 3.3511 4.1490 5.7448 8.9363

1.50 R(S) (ρ2) 15.799 15.793 15.772 15.718 15.610 15.396

R(L) (ρ2) 0.1484 0.1393 0.1081 0.0717 0.2630 3.1989

ρ2 4.0630 4.1729 4.6121 5.7102 7.9065 12.298

2.00 R(S) (ρ2) 15.724 15.716 15.687 15.613 15.465 15.172

R(L) (ρ2) 0.1579 0.1567 0.1520 0.1444 0.1345 0.1286



140 Prakash & Singh

Table < < 03 >> Bayes Prediction Limits

v = 2 α

β r ε 1.25 1.50 2.50 5.00 10.00 20.00

99 % 2.7289 2.5964 2.2022 1.6729 1.2221 0.8757

03 95 % 1.9462 1.8638 1.6118 1.2565 0.9368 0.6803

90 % 1.5975 1.5337 1.3363 1.0522 0.7907 0.5772

99 % 3.0025 2.9163 2.6311 2.1675 1.6856 1.2569

0.50 05 95 % 2.2200 2.1624 1.9690 1.6455 1.2975 0.9777

90 % 1.8477 1.8016 1.6464 1.3837 1.0969 0.8299

99 % 4.1667 4.1095 3.9018 3.4936 2.9542 2.3559

10 95 % 3.1782 3.1370 2.9870 2.6891 2.2889 1.8372

90 % 2.6772 2.6435 2.5199 2.2734 1.9401 1.5612

99 % 3.3073 3.1563 2.6770 2.0337 1.4856 1.0646

03 95 % 2.3659 2.2656 1.9594 1.5274 1.1388 0.8269

90 % 1.9419 1.8644 1.6244 1.2789 0.9612 0.7016

99 % 3.3144 3.2096 2.8958 2.3855 1.8552 1.3833

2.00 05 95 % 2.4434 2.3799 2.1670 1.8110 1.4280 1.0760

90 % 2.0335 1.9829 1.8119 1.5229 1.2072 0.9134

99 % 4.2680 4.2094 3.9966 3.5785 3.0259 2.4131

10 95 % 3.2554 3.2132 3.0596 2.7544 2.3446 1.8818

90 % 2.7423 2.7076 2.5811 2.3286 1.9872 1.5991

99 % 7.3277 6.9720 5.9132 4.4922 3.2817 2.3516

03 95 % 5.2260 5.0046 4.3282 3.3740 2.5154 1.8267

90 % 4.2897 4.1182 3.5882 2.8252 2.1230 1.5499

99 % 5.8115 5.6448 5.0927 4.1954 3.2626 2.4329

20.00 05 95 % 4.2971 4.1855 3.8111 3.1851 2.5113 1.8923

90 % 3.5763 3.4872 3.1866 2.6782 2.1230 1.6065

99 % 5.3349 5.2617 4.9958 4.4731 3.7824 3.0164

10 95 % 4.0692 4.0165 3.8245 3.4431 2.9307 2.3523

90 % 3.4278 3.3845 3.2264 2.9108 2.4841 1.9989


