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summary

The gamma distribution is applicable in situations where intervals between events
are considered as well as where a skewed distribution is appropriate. Estimation
of parameters is revisited in the two-parameter gamma distribution. The method
of quantile estimates is implemented to this distribution. A comparative study
between the method of moments, the maximum likelihood method, the method of
product spacings, and the method of quantile estimates is performed using simu-
lation. For the scale parameter, the maximum likelihood estimate performs better
and for the shape parameter, the product spacings estimate performs better.
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1 Introduction

The random variable X has a gamma distribution with two parameters β and α if it has a

probability density function of the form:

f(x;β, α) =
xα−1e−x/β

Γ(α)βα
; β > 0, α > 0, (1.1)

where α is known as the shape parameter and β as the scale parameter. The distribution

function of the gamma distribution (1.1) can be written as

F (x;β, α) =

∫ x

0

tα−1e−t/β

Γ(α)βα
dt; β > 0, α > 0. (1.2)

The random variables X1:n, X2:n, . . . , Xn:n are defined as an ordered random sample from

the gamma distribution (1.1).

The gamma distribution is widely utilized in practice. For example, it is used in engi-

neering and industry (life-time, flow analysis, and serving time distributions), climatology

(rainfall amounts), and risk management(insurance claims and loan defaults).
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Estimation of parameters in the two-parameter gamma distribution has been investigated

by numerous individuals. The following references provide a basic review of past results:

Harter and Moore (1965), Choi and Wette (1969), Wilks (1990), Lee (1992), Dang and

Weerakkody (2000), Evans et al. (2000), and Rahman et al. (2007). In this paper, the

method of quantile estimates is implemented in estimating parameters in a two-parameter

gamma distribution. The quantile estimates of the parameters are compared with parameter

estimates based on the method of moments, the method of maximum likelihood, and the

method of product spacings using simulation.

The organization of the paper is as follows: Different estimation procedures are presented

in Section 2, In Section 3, a comparison study is conducted using simulation. An application

is presented in Section 4, and a concluding summary is presented in Section 5.

2 Estimation Procedures

2.1 Method of Moment Estimates (MME)

The method of moment estimates for β and α are respectively,

β̂M =
S2

X̄
and α̂M =

(
X̄

S

)2

,

where X̄ = 1
n

∑n
i=1Xi and S2 = 1

n

∑n
i=1(Xi − X̄)2.

2.2 Maximum Likelihood Estimates (MLE)

The maximum likelihood estimates for β and c are respectively,

β̂L =
X̄

α̂L

with α̂L found as the solution of the following non-linear equation

log α̂L − Ψ(α̂L) = log


X̄/

(
n∏

i=1

Xi

) 1
n


 , (2.1)

where Ψ(α) = Γ′(α)
Γ(α) and Γ′(α) is the derivative of Γ(α) with respect to α. Ψ(α) is also

known as the di-gamma function.

The solution of (2.1) can easily be obtained using the Newton-Raphson method with

α̂M as the starting value for α̂L.
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2.3 Method of Product Spacings (MPS)

The method of product spacings (MPS) was concurrently introduced by Cheng and Amin

(1983) and Ranneby (1984). Let

Di =

∫ xi:n

xi−1:n

f(x; θ)dx, i = 1, 2, . . . , n+ 1,

where x0:n is the lower limit and xn+1:n is the upper limit of the domain of the density

function f(x; θ), and θ can be vector-valued. Also, X1:n, X2:n, . . . , Xn:n are defined as an

ordered random sample from f(x; θ). Clearly, the spacings sum to unity, that is
∑
Di = 1.

The MPS method is, quite simply, to choose θ to maximize the geometric mean of the

spacings,

G =

(
n+1∏

i=1

Di

) 1
n+1

or, equivalently, its logarithm

H = lnG.

MPS estimation gives consistent estimators under much more general conditions than MLEs.

MPS estimators are asymptotically normal and are asymptotically as efficient as MLEs

when these exist. For detailed goodness properties of MPS estimators, readers are referred

to Cheng and Amin (1983), Ranneby (1984), Cheng and Iles (1987), Shah and Gokhale

(1993), Rahman and Pearson (2002) and the references therein. Using the density function

(1.1) and the cdf (1.2), H can be written as follows:

H =
1

n+ 1
[lnF (X1:n;β, α) + ln {1 − F (Xn:n;β, α)}]

+
1

n+ 1

[
n−1∑

i=1

ln {F (Xi+1:n;β, α) − F (Xi:n;β, α)}
]

(2.2)

By maximizing (2.2) for different values of β and α, the MPS estimates can be ob-

tained as β̂P and α̂P . The Newton-Raphson method can be used in solving when the two

first derivatives are equal to zero. The MME’s are used as the starting values. The first

derivatives of H with respect to β and α are respectively,

H ′
β =

1

n+ 1

[
F ′
β(X1:n;β, α)

F (X1:n;β, α)
+
n−1∑

i=1

F ′
β(Xi+1:n;β, α) − F ′

b(Xi:n;β, α)

F (Xi+1:n;β, α) − F (Xi:n;β, α)

−
F ′
β(Xn:n;β, α)

1− F (Xn:n;β, α)

]
(2.3)

and

H ′
α =

1

n+ 1

[
F ′
α(X1:n;β, α)

F (X1:n;β, α)
+

n−1∑

i=1

F ′
α(Xi+1:n;β, α) − F ′

α(Xi:n;β, α)

F (Xi+1:n;β, α) − F (Xi:n;β, α)

− F ′
α(Xn:n;β, α)

1− F (Xn:n;β, α)

]
(2.4)
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where

F ′
β(x;β, α) =

α

β
[F (x;β, α + 1) − F (x;β, α)] ,

F ′
α(x;β, α) = Ex(lnx;β, α) − F (x;β, α)(lnβ + Ψ(α)),

Ex(lnx;β, α) =

∫ x

0

lnt
tα−1e−t/β

Γ(α)βα
dt.

The second derivatives of H with respect to β and α are respectively,

H ′′
ββ = 1

n+1

[
F (X1:n;β,α)F ′′

ββ(X1:n;β,α)−{F ′

β(X1:n;β,α)}2

{F (X1:n;β,α)}2

+
∑n−1
i=1

{F (Xi+1:n;β,α)−F (Xi:n;β,α)}{F ′′

ββ(Xi+1:n;β,α)−F ′′

ββ(Xi:n;β,α)}
{F (Xi+1:n;β,α)−F (Xi:n;β,α)}2

−{F ′

β(Xi+1:n;β,α)−F ′

β(Xi:n;β,α)}2

{F (Xi+1:n;β,α)−F (Xi:n;β,α)}2

−{1−F (Xn:n;β,α)}F ′′

ββ(Xn:n;β,α)+{F ′

β(Xn:n;β,α)}2

{1−F (Xn:n;β,α)}2

]
,

(2.5)

H ′′
βα = 1

n+1

[
F (X1:n;β,α)F ′′

βα(X1:n;β,α)−F ′

β(X1:n;β,α)F ′

α(X1:n;β,α)

{F (X1:n;β,α)}2

+
∑n−1
i=1

{F (Xi+1:n;β,α)−F (Xi:n;β,α)}{F ′′

βα(Xi+1:n;β,α)−F ′′

βα(Xi:n;β,α)}
{F (Xi+1:n;β,α)−F (Xi:n;β,α)}2

−{F ′

β(Xi+1:n;β,α)−F ′

β(Xi:n;β,α)}{F ′

α(Xi+1:n;β,α)−F ′

α(Xi:n;β,α)}
{F (Xi+1:n;β,α)−F (Xi:n;β,α)}2

−{1−F (Xn:n;β,α)}F ′′

βα(Xn:n;β,α)+F ′

β(Xn:n;β,α)F ′

α(Xn:n;β,α)

{1−F (Xn:n;β,α)}2

]

(2.6)

and

H ′′
αα = 1

n+1

[
F (X1:n;β,α)F ′′

αα(X1:n;β,α)−{F ′

α(X1:n;β,α)}2

{F (X1:n;β,α)}2

+
∑n−1
i=1

{F (Xi+1:n;β,α)−F (Xi:n;β,α)}{F ′′

αα(Xi+1:n;β,α)−F ′′

αα(Xi:n;β,α)}
{F (Xi+1:n;β,α)−F (Xi:n;β,α)}2

−{F ′

α(Xi+1:n;β,α)−F ′

α(Xi:n;β,α)}2

{F (Xi+1:n;β,α)−F (Xi:n;β,α)}2

−{1−F (Xn:n;β,α)}F ′′

αα(Xn:n;β,α)+{F ′

α(Xn:n;β,α)}2

{1−F (Xn:n;β,α)}2

]
,

(2.7)

where

F ′′
ββ(x;β, α) =

α(α + 1)

β2
[F (x;β, α + 2) − 2F (x;β, α+ 1) + F (x;β, α)] ,

F ′′
βα(x;β, α) = α

β [Ex(lnx;β, α+ 1) −Ex(lnx;β, α)]

−α
βF (x;β, α+ 1)(lnβ + Ψ(α) − 1

βF (x;β, α)(1 − αlnβ − αΨ(α),

F ′′
αα(x;β, α) = Ex((lnx)

2;β, α) − 2Ex(lnx;β, α)(lnβ + Ψ(α))

+F (x;β, α)
[
(lnβ)2 + 2lnβΨ(α) − Ψ′(α) + Ψ(α)

]
,
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with Ψ′(α) being the derivative of Ψ(α), and

Ex((lnx)
2;β, α) =

∫ x

0

(lnt)2
tα−1e−t/β

Γ(α)βα
dt.

Then, the multivariate Newton-Raphson iteration is performed as


 β̂

(l+1)
P

α̂
(l+1)
P


 =


 β̂

(l)
P

α̂
(l)
P


−


 H

′′(l)
ββ H

′′(l)
βα

H
′′(l)
βα H

′′(l)
αα



−1 
 H

′(l)
β

H
′(l)
α


 , (2.8)

where l is the index for the iterations, and α̂P and β̂P are resulting product spacing estimates

for α and β, respectively.

2.4 Quantile Estimates (QE)

Methods of estimation which are based on using the quantiles of the corresponding distribu-

tions are denoted as Quantile Estimates (QE). Recently, Schmid (1997) considered percentile

estimators for the three-parameter weibull distribution and Castillo and Hadi (1995) consid-

ered the quantiles of continuous random variables in estimating their parameters. Readers

are referred to these two references and the references there in for historical background and

for other details. Quantile estimates (QE) in general can be summarized as follows:

Let θ = {θ1, θ2, . . . , θr} be the parameters to be estimated and X1:n ≤ X2:n ≤ . . . ≤
Xn:n be the order statistics obtained from a random sample from F (x; θ), where, for fixed

θ, F (x; θ) is assumed to be strictly increasing on the interior of its support. Also, let

I = {i1, i2, . . . , ir} be a set of r distinct indices, where ij ∈ {1, 2, . . . , n}, j = {1, 2, . . . , r}.
Then, one can write

F (xi:n; θ) ∼= pi:n, i ∈ I

or, equivalently,

xi:n ∼= F−1(pi:n; θ), i ∈ I, (2.9)

where pi:n = (i − a)/(n + b) is an empirical distribution of F (xi:n; θ) or suitable plotting

positions, and a and b are constants. The values of a and b are chosen (either theoretically or

based on simulation) so that the resulting estimators have certain desirable properties (e.g.,

the minimum root mean square error). Replacing the approximation by equality in (2.9),

we get a set of r independent equations in r unknowns, θ1, θ2, . . . , θr. An elemental estimate

of θ can then be obtained by solving (2.9) for θ. Note that these elemental estimates are

based on the percentile method.

The estimates obtained from (2.9) depend on r observations. A subset of size r observa-

tions is known as an elemental subset and the resultant estimate is known as an elemental

estimate of θ. Thus, from a sample of size n, there are nCr elemental estimates. For large

n and r, the number of elemental subsets may be too large for the computations of all ele-

mental estimates to be feasible. In such cases, instead of computing all possible elemental
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estimates, one may select a pre specified number, N , of elemental subsets either systemi-

cally, based on some theoretical considerations, or at random. For each of these subsets,

an elemental estimate of θ is computed and is denoted as θ̂j1, θ̂j2, . . . , θ̂jN , j = 1, 2, . . . , r.

These elemental estimates can then be combined, using some suitable (preferably robust)

functions, to obtain an overall final estimate of θ. A commonly used robust function is the

median (MED). That is,

θ̂ = median(θ̂j1, θ̂j2, . . . , θ̂jN ).

The estimates are unique even when the method of moments (MOM) and the MLE equations

have multiple solutions or when the MOM and the MLE do not exist.

2.4.1 Two-parameter Gamma Distribution

In the two-parameter gamma distribution (1.1), the cdf in (1.2) is F (x;α, β) from which it

follows that the pth quantile is

q(p;α, β) = F−1(p;α, β); 0 < p < 1.

There are two parameters, so two equations are needed. Let I = {i, j} so that (2.9) becomes

xi:n = F−1(pi:n;α, β),

xj:n = F−1(pj:n;α, β),

where i < j, from which the elemental estimates of α and β are obtained and denoted as

α̂ij and β̂ij . Then for pi:n, i = 1, 2, . . . , n, overall estimates for α and β are obtained as

α̂Q = median(α̂ij) and β̂Q = median(β̂ij),

where Q stands for a quantile estimate.

In simulations in Section 5, the empirical quantiles pi:n = i/(n+ 1) are used.

3 Simulation Results

One thousand samples are generated for two different parameter settings

{(β = 0.5, α = 0.5) and (β = 2.0, α = 4.0)}

and for three different sample sizes (n = 10, n = 25, and n = 50). Means (MEAN),

standard deviations (SD), biases (BIAS), mean of the absolute biases (MAB) and mean

squared errors (MSE) are computed and displayed in Table 1.

MATLAB software is used in all computations and the codes are readily available.
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Table 1: Simulation Results

β̂M β̂L β̂P β̂Q α̂M α̂L α̂P α̂Q

β = 0.5 α = 0.5 n = 10

MEAN 0.3836 0.5154 0.6824 0.5794 0.8609 0.6410 0.5193 0.5729

SD 0.2779 1.2250 0.4928 0.3817 0.4899 0.3180 0.2462 0.3312

BIAS -0.1164 0.0154 0.1824 0.0794 0.3609 0.1410 0.0193 0.0729

MAB 0.2562 0.2811 0.3384 0.2726 0.4143 0.2169 0.1756 0.2008

MSE 0.0908 1.5008 0.2761 0.1520 0.3703 0.1210 0.0610 0.1150

β = 0.5 α = 0.5 n = 25

MEAN 0.4477 0.5256 0.6408 0.5500 0.6539 0.5556 0.4734 0.5140

SD 0.2355 1.4681 0.2880 0.2060 0.2476 0.1387 0.1198 0.1357

BIAS -0.0523 0.0256 0.1408 0.0500 0.1539 0.0556 -0.0266 0.0140

MAB 0.1852 0.1848 0.2121 0.1591 0.2151 0.1045 0.0969 0.1009

MSE 0.0582 2.1560 0.1028 0.0449 0.0850 0.0223 0.0151 0.0186

β = 0.5 α = 0.5 n = 50

MEAN 0.4650 0.4708 0.5726 0.5139 0.5880 0.5446 0.4830 0.5134

SD 0.1788 0.1171 0.1867 0.1347 0.1694 0.0826 0.0897 0.0836

BIAS -0.0350 -0.0292 0.0726 0.0139 0.0880 0.0446 -0.0170 0.0134

MAB 0.1410 0.0980 0.1331 0.1059 0.1457 0.0670 0.0701 0.0613

MSE 0.0332 0.0146 0.0401 0.0183 0.0364 0.0088 0.0083 0.0072

β = 2.0 α = 4.0 n = 10

MEAN 1.7047 1.7715 2.8055 2.3296 5.9528 5.6770 3.7181 4.5786

SD 0.8395 0.8307 1.3260 1.2242 3.7543 3.6137 2.3682 3.1575

BIAS -0.2953 -0.2285 0.8055 0.3296 1.9528 1.6770 -0.2819 0.5786

MAB 2.3211 2.2494 1.5337 1.8611 3.9617 3.6819 1.7929 2.6219

MSE 0.7919 0.7423 2.4071 1.6073 17.9087 15.8709 5.6879 10.3046

β = 2.0 α = 4.0 n = 25

MEAN 1.9224 1.9444 2.4629 2.2074 4.6298 4.5109 3.6308 4.0736

SD 0.6284 0.5733 0.7304 0.7150 1.5392 1.4116 1.1224 1.3917

BIAS -0.0776 -0.0556 0.4629 0.2074 0.6298 0.5109 -0.3692 0.0736

MAB 2.0807 2.0557 1.5603 1.8041 2.6308 2.5109 1.6330 2.0752

MSE 0.4009 0.3317 0.7477 0.5543 2.7658 2.2536 1.3960 1.9423

β = 2.0 α = 4.0 n = 50

MEAN 1.9565 1.9728 2.2719 2.1099 4.3215 4.2418 3.7261 4.0163

SD 0.4639 0.4168 0.4824 0.4836 0.9894 0.8740 0.7624 0.9087

BIAS -0.0435 -0.0272 0.2719 0.1099 0.3215 0.2418 -0.2739 0.0163

MAB 2.0437 2.0272 1.7286 1.8904 2.3215 2.2418 1.7261 2.0163

MSE 0.2171 0.1745 0.3066 0.2459 1.0823 0.8223 0.6562 0.8260
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Table 2: Failure Times

620 470 260 89 388 242 103 100 39 460 284

1285 218 393 106 158 152 477 403 103 69 158

818 947 399 1274 32 12 134 660 548 381 203

871 193 531 317 85 1410 250 41 1101 32 421

32 343 376 1512 1792 47 95 76 515 72 1585

253 6 860 89 1055 537 101 385 176 11 565

164 16 1267 352 160 195 1279 356 751 500 803

560 151 24 689 1119 1733 2194 763 555 14 45

776 1

4 Application

The following data in Table 2 represents failure times of machine parts from manufacturer

A and are taken from http://v8doc.sas.com/sashtml/stat/chap29/sect44.htm

For this data, β̂M = 483.22, β̂L = 550.60, β̂P = 604.13, β̂Q = 610.7, α̂M = 0.97,

α̂L = 0.85, α̂P = 0.80, and α̂Q = 0.79.

5 Summary and Concluding Remarks

From Table 1, it is observed that all the estimates appear to be consistent and asymptotically

unbiased. In estimating the scale parameter β, the maximum likelihood estimate is better in

all aspects except in terms of the mean absolute bias (MAB) the product spacings performed

better for larger samples. In estimating the shape parameter α, the method of product

spacings performed better in all aspects except biases are smaller for the quantile estimates.

The standard errors are smaller for larger samples in case of quantile estimates.
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