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summary

The role and construction of Stein-rule estimators in multivariate ultrastructural
model is discussed when some prior information about the regression coefficients
is available in the form of exact linear restrictions. The additional information
in the forms of covariance matrix of measurement errors and reliability matrix
of explanatory variables is used for the construction of consistent estimators.
Two families of Stein-rule estimators are proposed using each type of additional
information which are consistent as well as satisfy the exact linear restrictions.
The distribution of measurement errors is assumed to be not necessarily normally
distributed. The asymptotic distribution of the proposed families of Stein-rule
estimators are derived and studied. The finite sample properties of the estimators
are studied through a Monte-Carlo simulation experiment.
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1 Introduction

A fundamental assumption in all statistical analysis is that the recorded observations on

variables are free from any error. Such an assumption is often violated in many practical

situations and measurement error enters into the data. The presence of measurement error

in the data agitates the optimal statistical properties of the estimators and tools. In the

context of linear regression model, the ordinary least squares estimator (OLSE) is the best

linear unbiased estimator of regression coefficients in the absence of measurement error in

the data. When measurement errors enter into the data, the same OLSE becomes biased
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as well as inconsistent. An important issue in a linear measurement error model is how to

obtain the consistent estimators of regression coefficients. Such consistent estimators can

be obtained when some additional information can be incorporated in the model. The ad-

ditional information can be available in various forms, see Cheng and Van Ness (1999) and

Fuller (1987) for more details. In the context of multivariate measurement error models,

the additional information in the form of covariance matrix of measurement errors associ-

ated with explanatory variables or reliability matrix of explanatory variable are generally

employed to obtain the consistent estimators of regression coefficients. In both cases, the

arising estimators can be viewed as if OLSE is adjusted in a particular way. When covariance

matrix of measurement errors associated with explanatory variables is used, then the arising

consistent estimator has been termed as “adjusted least squares estimator” by Schneeweiss

(1976). The interpretation of “adjusted” arises because the estimator looks like as if an

OLSE is adjusted for its inconsistency by the known covariance matrix of measurement

errors. The reliability matrix is a multivariate generalization of reliability ratio in a scalar

case, see Gleser (1992) for more details on reliability matrix. When additional information

on reliability matrix of explanatory variables is used to obtain a consistent estimator of

regression coefficient, the resulting estimator again looks like as if OLSE is adjusted for its

inconsistency by multiplication of inverse of reliability matrix.

Often, it is found that the biased estimators may be superior in mean squared error terms

when compared to the unbiased least squares rule. One example of such biased estimators in

the context of linear model arises by shrinkage estimation. A popular family of estimators

arising from the shrinkage estimation is characterized by Stein-rule estimators which are

more efficient than OLSE under a simple rider that the number of explanatory variables are

not less than three, see Judge and Bock (1978) and Saleh (2006) for more details on Stein-

rule estimation. The use of Stein-rule family of estimators in multivariate measurement

error models is analyzed by Shalabh (1998, 2000).

In many situations, some prior information about the regression coefficients is avail-

able which improves upon the efficiency of OLSE. Such prior information can be available

from different types of sources, e.g., from some extraneous sources, similar kind of exper-

iments conducted in the past, long association of experimenter with the experiment, etc.

For example, the Cobb-Douglas production function in economics has a linear constraint

of constant returns to scale. When such prior information is expressible in the form of

exact linear restrictions binding the regression coefficients, the theory of restricted least

squares estimation can be employed to estimate the regression coefficients. When there are

no measurement errors in data then the resulting restricted least squares estimator (RLSE)

is unbiased, consistent, satisfies the given exact linear restrictions on regression coefficients

and has smaller variability around mean than the OLSE, see Toutenburg (1982) and Rao

et al. (2008). However, the RLSE becomes inconsistent and biased when observations are

contaminated with measurement errors. The problem of finding the estimators which are

consistent as well as satisfy the exact linear restrictions in presence of measurement errors

in data by using the adjusted forms of OLSE and additional information in the form of co-
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variance matrix of the measurement errors or reliability matrix associated with explanatory

variables is considered by Shalabh et al. (2007). What is the role of Stein-rule estimation in

obtaining the consistent estimators of regression coefficients in measurement error models

when some prior information about the regression coefficients is available in the form of

exact linear restrictions is addressed in this paper.

Another popular assumption in measurement error models is that the distribution of

measurement errors is assumed to be normal. When this assumption is violated, the results

obtained on the assumption of normality may not remain valid. The effect of non-normally

distributed measurement errors has been analyzed by Srivastava and Shalabh (1997a, 1997b)

and Shalabh (2003) in univariate measurement error models. What is the effect of non-

normally distributed measurement errors on the properties of Stein-rule estimation under

exact linear restriction is another issue explored in this article.

The plan of the paper is as follows. The multivariate ultrastructural model, exact linear

restrictions on regression coefficients and various statistical assumptions are described in

Section 2 . In Section 3, the construction of consistent Stein-rule families of estimators is

presented which satisfy the given restrictions. The asymptotic distributions and properties

of the estimators are given in Section 4. The findings about the finite sample properties

of the estimators from a Monte-Carlo simulation experiment are presented in Section 5.

Section 6 contains the concluding remarks followed by some useful lemmas in Appendix.

2 Model Specification

Suppose the true values of study variable are linearly related with the true values of p

independent explanatory variables. The true values of study variable and explanatory vari-

ables are unobservable due to the presence of measurement errors and only measurement

ridden observations are available. Such a set up can be presented by a multivariate linear

ultrastructural measurement error (MLUME) model due to Dolby (1976) which is given by

η = Tβ

y = η + ε

X = T + ∆




, (2.1)

where η is a n×1 vector of n true values on the study variable, T = (ξij , i = 1, 2, . . . , n; j =

1, 2, . . . , p) is a n × p matrix of n true values on each of the p explanatory variables, and

β is a p × 1 vector of regression coefficients. The true values η are observed as a n × 1

vector y with measurement error vector ε = (ε1, ε2, . . . , εn)
′ of order n× 1 and T is observed

with n × p matrix of measurement errors ∆ = (δij , i = 1, 2, . . . , n; j = 1, 2, . . . , p). For

i = 1, 2, . . . , n; j = 1, 2, . . . , p, we assume that ξij = µij + φij , where µij are fixed constant

as mean of ξij and φij are associated random errors. Thus, in matrix notations

T = M + Φ, (2.2)
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whereM = (µij ; i = 1, 2, . . . , n; j = 1, 2, . . . , p) and Φ = (φij , i = 1, 2, . . . , n; j = 1, 2, . . . , p)

are n× p matrices of means µij and random error components φij , respectively.

Further we make the following assumptions about the distributions of measurement

errors and random error component:

(i) εi, (i = 1, 2, . . . , n) are independent and identically distributed with mean 0, variance

σ2
ε , third moment γ1εσ

3
ε and fourth moment (γ2ε+3)σ4

ε . Here, for a random variable Z,

γ1Z and γ2Z denote the Pearson’s coefficients of skewness and kurtosis of the random

variable Z.

(ii) δij , (i = 1, 2, . . . , n; j = 1, 2, . . . , p) are independent and identically distributed with

mean 0, variance σ2
δ , third moment γ1δσ

3
δ and fourth moment (γ2δ + 3)σ4

δ .

(iii) φij , (i = 1, 2, . . . , n; j = 1, 2, . . . , p) are independent and identically distributed with

first four finite moments given by 0, σ2
φ, γ1φσ

3
φ and (γ2φ + 3)σ4

φ, respectively.

(iv) ε,∆ and Φ are statistically jointly independent.

(v) The nth row of matrix M converges to σ
′
µ.

The last assumption implies that limn→∞ n−1M ′M = σµσ
′
µ and limn→∞ n−1M ′en = σµ,

where en is a n×1 vector of elements unity. Such an assumption is needed for the application

of asymptotic theory to obtain the asymptotic distribution of the estimators and to avoid

the presence of any trend in the observations, see Schneeweiss (1982, 1991).

The equations (2.1)-(2.2) describe the set up of an ultrastructural model. The structural

and functional forms of measurement error model as well as the classical regression model

can be obtained as its particular cases. When all the row vectors of M are assumed to be

identical, implying that rows of X are random and independent, having some multivariate

distribution, we get the specification of a structural model. When Φ is taken identically equal

to a null matrix implying that σ2
φ = 0 and consequently that the matrix X is fixed but is

measured with error, we obtain the specification of a functional model. When both ∆ and

Φ are identically equal to a null matrix, implying that σ2
φ = σ2

δ = 0 and consequently that

X is fixed and is measured without any measurement error, we get the classical regression

model. Thus the ultrastructural model provides a general framework for the study of three

interesting models in a unified manner.

We also assume that some prior information on the regression coefficient is available in

terms of J(< p) exact linear restrictions as

r = Rβ, (2.3)

where r is a J × 1 known vector and R is a J × p known matrix of full row rank.
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3 Restricted Stein-Rule Estimation of Regression Co-

efficients

The OLSE of β in the linear regression model without measurement errors is

b = S−1X ′y , (3.1)

where S = X ′X and it’s probability in limit (plim
n→∞

) under the MLUME model (2.1)-(2.2) is

plim
n→∞

b = (Ip − σ2
δΣ

−1)β, (3.2)

which is not equal to β, in general, where Σ = σµσ
′
µ+σ2

φIp+σ
2
δ Ip, see Shalabh (2007). Thus

the OLSE is inconsistent for estimating β under measurement error ridden observations.

Also, Rb 6= r, i.e., the OLSE does not satisfy the given restrictions (2.3).

When the regression coefficients are subjected to the restrictions (2.3) and there are no

measurement errors in the data, the restricted least squares estimator (RLSE) is used which

is given by

bR = b+ S−1R′(RS−1R′)−1(r −Rb)

= b− {Ip − fR(S)}(b− β), (3.3)

where the function fR : Rp×p → Rp×p is defined as

fR(U) = Ip − U−1R′(RU−1R′)−1R, U ∈ Rp×p, (3.4)

and RbR = r, i.e., bR satisfy the exact linear restrictions. Now, under the MLUME model

(2.1)-(2.2), we observe that plim
n→∞

n−1S = Σ, plim
n→∞

fR(S) = fR(Σ) and plim
n→∞

fR(S−nσ2
δ Ip) =

fR(Σ − σ2
δIp) which establishes that

plim
n→∞

bR = {Ip − σ2
δfR(Σ)Σ−1}β ,

which is not equal to β, in general. Thus the RLSE becomes inconsistent estimator of β in

the presence of measurement errors in the data.

In the classical linear regression model when measurement errors are absent, the family

of Stein-rule estimators of β is given by

β̂S =

[
1 − k

n− p+ 2

(y −Xb)′(y −Xb)

b′X ′Xb

]
b, (3.5)

where b is the OLSE of β and k is a positive characterizing scalar, see Vinod and Srivastava

(1995). Such a family (3.5) does not satisfy the restrictions, i.e., r 6= Rβ̂S . When regression

coefficients are subjected to exact linear restrictions r = Rβ, Srivastava and Srivastava

(1984) provided two improved families of Stein-rule estimators given by

β̂RS = bR − k

n− p+ 2

(y −Xb)′(y −Xb)

b′X ′Xb
ΩX ′Xb (3.6)
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and

β̂SR = bR − k

n− p+ 2

(y −XbR)′(y −XbR)

b′RX
′XbR

ΩX ′XbR , (3.7)

where Ω = (X ′X)−1 − (X ′X)−1R′{R(X ′X)−1R′}−1R(X ′X)−1. Both the families of esti-

mators (3.6) and (3.7) are consistent for β as well as satisfy the restrictions in the sense

that r = Rβ̂RS and r = Rβ̂SR.

However under the MLUME model (2.1)-(2.2), plim
n→∞

β̂RS 6= β and plim
n→∞

β̂SR 6= β, in

general, i.e., both β̂RS and β̂SR becomes inconsistent. Therefore, we attempt to obtain such

families of Stein-rule estimators which are consistent as well as satisfy the restrictions (2.3)

under the MLUME model (2.1)-(2.2).

It is well known that some additional information is needed to obtain the consistent

estimators of regression coefficients under the MLUME model (2.1)-(2.2). Here we propose

to use the following forms of additional knowledge separately to obtain the consistent esti-

mators:

(i) covariance matrix of measurement errors associated with explanatory variables and

(ii) reliability matrix of explanatory variables.

3.1 When Covariance Matrix of Measurement Errors is Known

The covariance matrix of measurement errors δij associated with the explanatory variables

is any positive definite matrix Σδ which is assumed to be of the form σ2
δIp for simplicity in

exposition. When Σδ = σ2
δ Ip, or equivalently σ2

δ is known, a consistent estimator of β is

given by

b
(1)
δ = (Ip − nσ2

δS
−1)−1b. (3.8)

Schneeweiss (1976) has termed b
(1)
δ as an “adjusted least squares estimator”, see also Shalabh

et al. (2007). Although, the estimator b
(1)
δ is consistent for estimating β, it does not satisfy

the given linear restrictions (2.3), i.e., Rb
(1)
δ 6= r.

Now using the philosophy proposed by Srivastava and Srivastava (1984) to construct

the families of Stein-rule estimators under (2.3) and additional information σ2
δIp, we obtain

two different families of Stein-rule estimators of β which are consistent as well as satisfy the

given restrictions (2.3).

First approach consists of obtaining an estimator by replacing the inconsistent OLSE by

the consistent b
(1)
δ in the estimator β̂RS given in (3.6). The resulting estimator is

β̂RSδ = b
(2)
δ − k

n− p+ 2

(y −Xb
(1)
δ )′(y −Xb

(1)
δ )

b
(1)
δ

′
X ′Xb(1)δ

ΩX ′Xb(1)δ , (3.9)

where

b
(2)
δ = b

(1)
δ + S−1R′(RS−1R′)−1(r −Rb

(1)
δ )

= b
(1)
δ − {Ip − fR(S)}(b(1)δ − β). (3.10)
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In the second approach to find estimator, we propose to replace b by b
(1)
δ in the estimator

β̂SR given in (3.7). The resulting estimator is given by

β̂SRδ = b
(2)
δ − k

n− p+ 2

(y −Xb
(2)
δ )′(y −Xb

(2)
δ )

b
(2)
δ

′
X ′Xb(2)δ

ΩX ′Xb(2)δ . (3.11)

Since RfR(S) = 0, this implies that Rb
(2)
δ = r. Also, since RΩ = 0, therefore we have

Rβ̂RSδ = r and Rβ̂SRδ = r. Thus, both of the estimators β̂RSδ and β̂SRδ satisfy the given

restrictions (2.3). It can also be proved using the results plim
n→∞

n−1S = Σ, plim
n→∞

fR(S) =

fR(Σ) and plim
n→∞

fR(S − nσ2
δIp) = fR(Σ − σ2

δ Ip) that plim
n→∞

β̂RSδ = β and plim
n→∞

β̂SRδ = β,

i.e., both β̂RSδ and β̂SRδ are consistent for estimating β.

3.2 When Reliability Matrix is Known

The reliability matrix associated with the explanatory variables is defined as

Kx = Σ−1
x ΣT , (3.12)

where Σx = n−1M ′M + σ2
φIp + σ2

δIp and ΣT = n−1M ′M + σ2
φIp are considered as the

measures of variances of observed and true values, respectively of explanatory variables. The

reliability matrix is a multivariate generalization of reliability ratios of explanatory variables

in univariate case. It is more popular in psychometric literature and can be estimated

through psychological tests, see Gruijter and Kamp (2008). Gleser (1992) has suggested

the approaches through which the reliability matrix can be estimated. We assume that the

reliability matrix of explanatory variables Kx is known. Since plim
n→∞

b = (Ip − σ2
δΣ

−1)β and

limn→∞Kx = (Ip − σ2
δΣ

−1), a consistent estimator of β is

b
(1)
K = K−1

x b, (3.13)

see, Gleser (1992, 1993). The estimator can also be viewed as an adjustment in OLSE by

the pre-multiplication of inverse of reliability matrix. It is clear that the estimator b
(1)
K does

not satisfy the restrictions (2.3), i.e., Rb
(1)
K 6= r.

Now, using Kx, we again obtain the two families of Stein-rule estimators of β which are

consistent as well as satisfy the given restrictions (2.3).

First estimator is obtained by replacing the inconsistent b by the consistent b
(1)
K in the

estimator β̂RS given in (3.6). The resulting estimator is

β̂RSK = b
(2)
K − k

n− p+ 2

(y −Xb
(1)
K )′(y −Xb

(1)
K )

b
(1)
K

′
X ′Xb(1)K

ΩX ′Xb
(1)
K , (3.14)

where

b
(2)
K = b

(1)
K + S−1R′(RS−1R′)−1(r −Rb

(1)
K )

= b
(1)
K − {Ip − fR(S)}(b(1)K − β). (3.15)
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In order to obtain the second estimator, we propose to replace b by b
(1)
K in β̂SR given in

(3.7). The resulting estimator is given by

β̂SRK = b
(2)
K − k

n− p+ 2

(y −Xb
(2)
K )′(y −Xb

(2)
K )

b
(2)
K

′
X ′Xb(2)K

ΩX ′Xb(2)K . (3.16)

Since RfR(S) = 0, this implies that Rb
(2)
K = r. Also, since RΩ = 0, therefore we have

Rβ̂RSK = r and Rβ̂SRK = r. Thus, both of the estimators β̂RSK and β̂SRK satisfy the given

restrictions (2.3). It can also be proved using the results plim
n→∞

n−1S = Σ, plim
n→∞

fR(S) =

fR(Σ) and plim
n→∞

fR(S − nσ2
δ Ip) = fR(Σ − σ2

δ Ip) that β̂RSK and β̂SRK are consistent for

estimating β in the sense that their probability in limits are equal to β.

4 Asymptotic Properties

The exact distribution and finite sample properties of the estimators β̂SRδ , β̂RSδ, β̂RSK and

β̂SRK are difficult to derive. Even if derived, the expressions will turn out to be complicated

and it may not be possible to draw any clear inference from them. Moreover, the mean of

b
(1)
δ does not exist under the normal distribution of measurement errors, see, Cheng and

Van Ness (1999, page 58) and Cheng and Kukush (2006). So we propose to employ the

large sample asymptotic approximation theory to study the asymptotic distribution of the

estimators.

Theorem 1. The asymptotic distributions of
√
n
(
β̂RSδ − β

)
and

√
n
(
β̂SRδ − β

)
are p-

variate normal with common mean vector 0 and common covariance matrix fR(Σ)(Σ −
σ2
δ Ip)

−1Ωh(Σ − σ2
δIp)

−1f ′
R(Σ), where

Ωh = (σ2
ε + σ2

δ (β
′β))Σ + σ4

δββ
′ + γ1δσ

3
δ{f(σµe

′
p, ββ

′)

+
(
f(σµe

′
p, ββ

′)
)′} + γ2δσ

4
δf(Ip, ββ

′). (4.1)

Here f ′
R(Σ) indicates the transpose of matrix fR(Σ).

Proof. From (3.9), we have

√
n
(
β̂RSδ − β

)
=

√
n
(
b
(2)
δ − β

)
− k

√
n

n− p+ 2

(y −Xb
(1)
δ )′(y −Xb

(1)
δ )

b
(1)
δ

′
X ′Xb(1)δ

ΩX ′Xb(1)δ .

Since plim
n→∞

b
(1)
δ = β and plim

n→∞
n−1S = Σ, so

plim
n→∞

k
√
n

n− p+ 2

(y −Xb
(1)
δ )′(y −Xb

(1)
δ )

b
(1)
δ

′
X ′Xb(1)δ

ΩX ′Xb(1)δ = 0. (4.2)
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Using (4.2) and Lemma A.4 given in Appendix and Slutzky’s Lemma (see Arnold, 1990, p.

451)), we obtain

√
n
(
β̂RSδ − β

)
d−→ Np

(
0, fR(Σ)(Σ − σ2

δ Ip)
−1Ωh(Σ − σ2

δIp)
−1f ′

R(Σ)
)
,

as n→ ∞.

Now, from (3.11), we have

√
n
(
β̂SRδ − β

)
=

√
n
(
b
(2)
δ − β

)
− k

√
n

n− p+ 2

(y −Xb
(2)
δ )′(y −Xb

(2)
δ )

b
(2)
δ

′
X ′Xb(2)δ

ΩX ′Xb(2)δ .

Since plim
n→∞

b
(2)
δ = β, so

plim
n→∞

k
√
n

n− p+ 2

(y −Xb
(2)
δ )′(y −Xb

(2)
δ )

b
(2)
δ

′
X ′Xb(2)δ

ΩX ′Xb(2)δ = 0. (4.3)

Using (4.3) and Lemma A.4 given in Appendix and Slutzky’s Lemma (see Arnold 1990, p.

451), we obtain, as n→ ∞,

√
n
(
β̂SRδ − β

)
d−→ Np

(
0, fR(Σ)(Σ − σ2

δ Ip)
−1Ωh(Σ − σ2

δIp)
−1f ′

R(Σ)
)
.

From the expression of Ωh, given in (4.1), it is clear that the asymptotic distributions

of β̂RSδ and β̂SRδ depend on the skewness and kurtosis of the distributions of measurement

errors δij ’s. These effects can be considered as the non-normality effects. It is also clear that

the asymptotic distributions of these estimators are not affected by the non-normality effects

of the distributions of φij ’s and εi’s. Note that under the normally distributed measurement

errors in explanatory variables, the coefficients of skewness and kurtosis disappear. The

degree of departure from non-normality depends on the magnitude of coefficients of skewness

and kurtosis.

Next theorem presents the asymptotic distributions of β̂RSK and β̂SRK .

Theorem 2. The asymptotic distributions of
√
n
(
β̂RSK − β

)
and

√
n
(
β̂SRK − β

)
are

p-variate normal with common mean vector 0 and common covariance matrix fR(Σ)(Σ −
σ2
δ Ip)

−1ΩK(Σ − σ2
δIp)

−1f ′
R(Σ), where

ΩK = Ωh + ΩhH(σ2
δΣ

−1β) + Ω′
hH(σ2

δΣ
−1β) + ΩH(σ2

δΣ
−1β),

Ωh is given in (4.1),

ΩhH(d) = −σ2
δ [Σ(dβ′ + (d′β)Ip) + γ1δσδ{f(σµe

′
p, βd

′)

+f(Ip, βd
′
σµep) + (f(σµe

′
p, dβ

′))′} + γ2δσ
2
δf(Ip, βd

′)], (4.4)
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and

ΩH(d) = (σ2
δ + σ2

φ)[Σ{dd′ + (d′d)Ip} + dd′σµσ
′
µ + (d′σµσ

′
µd)Ip]

+(γ1φσ
3
φ + γ1δσ

3
δ )[f(σµe

′
p, dd

′) + {f(σµe
′
p, dd

′)}′

+2f(Ip, epσµdd
′)] + (γ2φσ

4
φ + γ2δσ

4
δ )f(Ip, dd

′) (4.5)

for any sequence {dn} of p× 1 non-stochastic vectors such that limn→∞ dn = d.

Proof. From (3.14), we have

√
n
(
β̂RSK − β

)
=

√
n
(
b
(2)
K − β

)
− k

√
n

n− p+ 2

(y −Xb
(1)
K )′(y −Xb

(1)
K )

b
(1)
K

′
X ′Xb(1)K

ΩX ′Xb(1)K .

Since plim
n→∞

b
(1)
K = β, so

plim
n→∞

k
√
n

n− p+ 2

(y −Xb
(1)
K )′(y −Xb

(1)
K )

b
(1)
K

′
X ′Xb(1)K

ΩX ′Xb(1)K = 0. (4.6)

Using (4.6) and Lemma A.6 given in Appendix and Slutzky’s Lemma (see Arnold, 1990, p.

451), we obtain

√
n
(
β̂RSK − β

)
d−→ Np

(
0, fR(Σ)(Σ − σ2

δIp)
−1Ωh(Σ − σ2

δ Ip)
−1f ′

R(Σ)
)
,

as n→ ∞.

Now, from (3.16), we have

√
n
(
β̂SRK − β

)
=

√
n
(
b
(2)
K − β

)
− k

√
n

n− p+ 2

(y −Xb
(2)
K )′(y −Xb

(2)
K )

b
(2)
K

′
X ′Xb(2)K

ΩX ′Xb(2)K .

Since plim
n→∞

b
(2)
K = β, so

plim
n→∞

k
√
n

n− p+ 2

(y −Xb
(2)
K )′(y −Xb

(2)
K )

b
(2)
K

′
X ′Xb(2)K

ΩX ′Xb
(2)
K = 0. (4.7)

Using (4.7) and Lemma A.6 given in Appendix and Slutzky’s Lemma (see Arnold, 1990, p.

451), we obtain, as n→ ∞,

√
n
(
β̂SRK − β

)
d−→ Np

(
0, fR(Σ)(Σ − σ2

δIp)
−1Ωh(Σ − σ2

δ Ip)
−1f ′

R(Σ)
)
.
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From the expressions of Ωh, ΩH(·) and ΩhH(·), it is clear that the asymptotic distri-

butions of the estimators β̂RSK and β̂SRK are affected by the non-normality effects of the

distributions of δij ’s and φij ’s. However, the non-normality of the distribution of εi’s does

not have any effect on the asymptotic properties of these estimators. Note that under the

normally distributed measurement errors in explanatory variables and random error com-

ponents, the corresponding coefficients of skewness and kurtosis disappear. The degree of

departure from non-normality depends on the degree of such coefficients of skewness and

kurtosis.

It may be noted that the asymptotic distributions of β̂RSδ and β̂RSK are same as that

of β̂SRδ and β̂SRK , respectively. This is due to the large sample size. The difference in their

properties may precipitate in their finite sample properties, if they exist and found. We

have tried to have some insight on this issue through a Monte-Carlo simulation experiment

whose findings are reported in the next section.

5 Simulation Study

For simulation study, we adapted the following values and parameters:

n ∈ {22, 48, 100, 500, 1000}, p = 5, β ∈
{




2.2

1.1

3

4.2

2.5




,




5

5

5

5

5




,




2

12

23

5

9




,




2

7

−12

5

−9




}
,

R =




−6 −2.5 1 −3 −3.7

4.2 −1.8 2.4 −3.5 −1.7

6.8 0.1 −1.5 −3.6 1.4

15.8 −9.4 −5.2 1.2 −5




,

(σ2
ε , σ

2
φ, σ

2
δ ) ∈

{
(0.5, 0.5, 0.5), (0.5, 0.5, 1.25), (1.25, 0.5, 0.5), (0.5, 1.25, 0.5)

(1.25, 1.25, 0.5), (1.25, 0.5, 1.25), (0.5, 1.25, 1.25), (1.25, 1.25, 1.25)
}
.

The chosen matrix of means M is kept fixed for 50, 000 repetitions of the simulation experi-

ments. We adapt the following distributions to study the effect of departure from normality

of the distribution of measurement errors:

(i) normal distributions which is symmetric and mesokurtic and

(ii) gamma distribution which has nonzero coefficients of skewness and kurtosis.

The generated random variables from different distributions are suitably scaled to have mean

zero and same variances. So the difference in the results may be viewed as contribution due
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to departure from non-normality. In order to study the properties of the estimators β̂RSδ ,

β̂SRδ , β̂RSK and β̂SRK , we have obtained the bias vectors and mean squared error matrices

empirically.

Cheng and Kukush (2006) proved that the moments of the estimator b
(1)
δ does not exist

under the normality of measurement errors. The estimators β̂RSδ and β̂SRδ also depend

on b
(1)
δ . Therefore, the existence of the moments of these estimators is also doubtful. The

outcomes of simulation study also support this doubt. Therefore, in order to study the

properties of these estimators, we adapted the criteria of median bias vector and median

squared error matrices. In order to save space, we only present a few outcomes of the

simulation in the Tables 1-4. The conclusions of the simulation study are as follows.

First we study the bias vectors of the estimators around their median (in case of β̂RSK
and β̂SRK) and mean (in case of β̂RSδ and β̂SRδ). It is observed that the absolute bias of

all the estimators reduces as sample size increases under normal as well as gamma distribu-

tions of measurement errors under all parametric settings. This also supports the theoretical

finding about the means of the asymptotic distributions of all estimators obtained in Sec-

tion 3. No clear pattern of dominance in the absolute median bias (or absolute bias) of the

estimators over each other can be seen. Their magnitudes are small.

Now we analyze the empirical median squared error matrices (MdSEM) (in case of β̂RSδ
and β̂SRδ) and mean squared error matrices (MSEM) (in case of β̂RSK and β̂SRK) of the

estimators. The variability of all the estimators reduces as sample size increases for all

different combinations of variances (σ2
ε , σ

2
φ, σ

2
δ ) and different distributions of measurement

errors. This verifies the result that the estimators are consistent. The difference in the

variabilities of the estimators under each type of used additional information is small in

magnitude but no clear dominance is seen. We also investigated the dominance under a

weaker criterion which is the trace of MdSEM but no clear dominance between the estimators

β̂RSδ and β̂SRδ as well as β̂RSK and β̂SRK over each other is observed. This is due to the

fact that the dominance depends on the parametric values. We observe that the variability

of all the estimators is more affected by σ2
δ then other variances. As σ2

δ increases, the

variability of all the estimators increases. On the other hand, there is no significant effect of

σ2
ε and σ2

φ on the variability of the estimators. Moreover, the variability of the estimators

is higher under gamma distribution of measurement errors than under normal distribution.

This also confirms the effect of non-normality of the distributions of measurement errors on

the efficiency properties of the estimators.

6 Conclusion

We have developed the families of Stein-rule estimators of regression coefficients in a mul-

tivariate linear ultrastructural measurement error model, where regression coefficients are

subjected to some exact linear restrictions. Using the philosophy of Stein-rule estimators

in restricted regression model without measurement errors, obtained by Srivastava and Sri-

vastava (1984), we obtained two Stein-rule estimators in each case by using the covariance
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Table 1: Absolute median bias of β̂RSδ and β̂SRδ
when (δij , φij , εi) have normal distribution

(σ2
δ , σ2

φ, σ2
ε ) n = 22 n = 48

MdB’(β̂RSδ) (0.5, 0.5, 0.5) 0.001 0.008 -0.002 0.000 -0.008 0.005 0.028 -0.007 0.001 -0.029

MdB’(β̂SRδ) (1.25, 1.25, 1.25) 0.005 0.026 -0.006 0.001 -0.028 0.006 0.034 -0.008 0.002 -0.036

MdB’(β̂RSδ) (0.5, 0.5, 0.5) -0.013 -0.075 0.018 -0.003 0.080 -0.002 -0.011 0.003 0.000 0.011

MdB’(β̂SRδ) (1.25, 1.25, 1.25) -0.022 -0.124 0.030 -0.006 0.132 -0.001 -0.006 0.002 0.000 0.007

when (δij , φij , εi) have gamma distribution

(σ2
δ , σ2

φ, σ2
ε ) n = 22 n = 48

MdB’(β̂RSδ) (0.5, 0.5, 0.5) -0.004 -0.024 0.006 -0.001 0.026 0.004 0.024 -0.006 0.001 -0.025

MdB’(β̂SRδ) (1.25, 1.25, 1.25) -0.001 -0.007 0.002 0.000 0.008 0.005 0.029 -0.007 0.001 -0.031

MdB’(β̂RSδ) (0.5, 0.5, 0.5) -0.029 -0.166 0.040 -0.008 0.177 -0.009 -0.053 0.013 -0.002 0.056

MdB’(β̂SRδ) (1.25, 1.25, 1.25) -0.039 -0.221 0.054 -0.010 0.235 -0.008 -0.048 0.012 -0.002 0.051

Table 2: Absolute bias of β̂RSK and β̂SRK
when (δij , φij , εi) have normal distribution

(σ2
δ , σ2

φ, σ2
ε ) n = 22 n = 48

B’(β̂RSK ) (0.5, 0.5, 0.5) 0.025 0.141 -0.034 0.007 -0.150 0.014 0.081 -0.020 0.004 -0.086

B’(β̂SRK ) (0.5, 0.5, 0.5) 0.030 0.172 -0.042 0.008 -0.183 0.015 0.088 -0.021 0.004 -0.094

B’(β̂RSK ) (1.25, 1.25, 1.25) 0.051 0.290 -0.070 0.013 -0.308 0.025 0.144 -0.035 0.007 -0.153

B’(β̂SRK ) (1.25, 1.25, 1.25) 0.060 0.339 -0.082 0.016 -0.361 0.028 0.157 -0.038 0.007 -0.167

when (δij , φij , εi) have gamma distribution

(σ2
δ , σ2

φ, σ2
ε ) n = 22 n = 48

B’(β̂RSK ) (0.5, 0.5, 0.5) 0.019 0.110 -0.027 0.005 -0.117 0.012 0.066 -0.016 0.003 -0.070

B’(β̂SRK ) (0.5, 0.5, 0.5) 0.025 0.143 -0.035 0.007 -0.152 0.013 0.074 -0.018 0.003 -0.079

B’(β̂RSK ) (1.25, 1.25, 1.25) 0.043 0.248 -0.060 0.011 -0.263 0.024 0.138 -0.033 0.006 -0.147

B’(β̂SRK ) (1.25, 1.25, 1.25) 0.054 0.307 -0.074 0.014 -0.326 0.027 0.152 -0.037 0.007 -0.161

matrix of measurement error and reliability matrix as additional information under the

MLUME model. The proposed estimators are consistent as well as satisfy the exact lin-

ear restrictions. We established the asymptotic normality of the obtained estimators in

terms of coefficients of skewness and kurtosis of the distribution of measurement errors and

random term in the model. The skewness and kurtosis can be considered as the effect of

non-normality of the distribution. We observed that the asymptotic distributions of the two

families of Stein-rule estimators under each type of additional information are same which is

due to large sample size. Simulation study shows minor differences in their efficiency prop-

erties but does not give any clear dominance of any estimator over the other. However, the

non-normality effects of the distribution of measurement errors is clear from the simulation

study.
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Table 3: Median squared error matrices of β̂RSδ and β̂SRδ
when (δij , φij , εi) have normal distribution

(σ2
δ , σ2

φ, σ2
ε ) n = 22 n = 48

0.026 0.146 -0.035 0.007 -0.155 0.011 0.064 -0.015 0.003 -0.068

0.146 0.833 -0.202 0.039 -0.886 0.064 0.365 -0.088 0.017 -0.388

MdSEM(β̂RSδ ) (0.5, 0.5, 0.5) -0.035 -0.202 0.049 -0.009 0.215 -0.015 -0.088 0.021 -0.004 0.094

0.007 0.039 -0.009 0.002 -0.041 0.003 0.017 -0.004 0.001 -0.018

-0.155 -0.886 0.215 -0.041 0.942 -0.068 -0.388 0.094 -0.018 0.412

0.026 0.149 -0.036 0.007 -0.159 0.011 0.064 -0.016 0.003 -0.068

0.149 0.852 -0.206 0.040 -0.906 0.064 0.366 -0.089 0.017 -0.389

MdSEM(β̂SRδ ) (0.5, 0.5, 0.5) -0.036 -0.206 0.050 -0.010 0.219 -0.016 -0.089 0.021 -0.004 0.094

0.007 0.040 -0.010 0.002 -0.042 0.003 0.017 -0.004 0.001 -0.018

-0.159 -0.906 0.219 -0.042 0.963 -0.068 -0.389 0.094 -0.018 0.413

0.079 0.453 -0.110 0.021 -0.481 0.029 0.163 -0.039 0.008 -0.173

0.453 2.582 -0.625 0.120 -2.745 0.163 0.931 -0.225 0.043 -0.989

MdSEM(β̂RSδ ) (1.25, 1.25, 1.25) -0.110 -0.625 0.151 -0.029 0.665 -0.039 -0.225 0.055 -0.010 0.239

0.021 0.120 -0.029 0.006 -0.127 0.008 0.043 -0.010 0.002 -0.046

-0.481 -2.745 0.665 -0.127 2.918 -0.173 -0.989 0.239 -0.046 1.052

0.083 0.474 -0.115 0.022 -0.504 0.029 0.164 -0.040 0.008 -0.175

0.474 2.705 -0.655 0.126 -2.875 0.164 0.938 -0.227 0.044 -0.997

MdSEM(β̂SRδ ) (1.25, 1.25, 1.25) -0.115 -0.655 0.159 -0.030 0.696 -0.040 -0.227 0.055 -0.011 0.241

0.022 0.126 -0.030 0.006 -0.133 0.008 0.044 -0.011 0.002 -0.046

-0.504 -2.875 0.696 -0.133 3.056 -0.175 -0.997 0.241 -0.046 1.060

when (δij , φij , εi) have gamma distribution

(σ2
δ , σ2

φ, σ2
ε ) n = 22 n = 48

0.028 0.161 -0.039 0.007 -0.171 0.012 0.069 -0.017 0.003 -0.073

0.161 0.918 -0.222 0.043 -0.976 0.069 0.391 -0.095 0.018 -0.416

MdSEM(β̂RSδ ) (0.5, 0.5, 0.5) -0.039 -0.222 0.054 -0.010 0.236 -0.017 -0.095 0.023 -0.004 0.101

0.007 0.043 -0.010 0.002 -0.045 0.003 0.018 -0.004 0.001 -0.019

-0.171 -0.976 0.236 -0.045 1.038 -0.073 -0.416 0.101 -0.019 0.442

0.029 0.164 -0.040 0.008 -0.174 0.012 0.069 -0.017 0.003 -0.073

0.164 0.935 -0.226 0.043 -0.994 0.069 0.392 -0.095 0.018 -0.417

MdSEM(β̂SRδ ) (0.5, 0.5, 0.5) -0.040 -0.226 0.055 -0.011 0.241 -0.017 -0.095 0.023 -0.004 0.101

0.008 0.043 -0.011 0.002 -0.046 0.003 0.018 -0.004 0.001 -0.019

-0.174 -0.994 0.241 -0.046 1.057 -0.073 -0.417 0.101 -0.019 0.443

0.090 0.513 -0.124 0.024 -0.545 0.031 0.179 -0.043 0.008 -0.190

0.513 2.926 -0.708 0.136 -3.110 0.179 1.020 -0.247 0.047 -1.085

MdSEM(β̂RSδ ) (1.25, 1.25, 1.25) -0.124 -0.708 0.172 -0.033 0.753 -0.043 -0.247 0.060 -0.011 0.263

0.024 0.136 -0.033 0.006 -0.144 0.008 0.047 -0.011 0.002 -0.050

-0.545 -3.110 0.753 -0.144 3.306 -0.190 -1.085 0.263 -0.050 1.153

0.094 0.536 -0.130 0.025 -0.569 0.032 0.180 -0.044 0.008 -0.191

0.536 3.055 -0.740 0.142 -3.247 0.180 1.025 -0.248 0.048 -1.090

MdSEM(β̂SRδ ) (1.25, 1.25, 1.25) -0.130 -0.740 0.179 -0.034 0.786 -0.044 -0.248 0.060 -0.012 0.264

0.025 0.142 -0.034 0.007 -0.151 0.008 0.048 -0.012 0.002 -0.051

-0.569 -3.247 0.786 -0.151 3.452 -0.191 -1.090 0.264 -0.051 1.159
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Table 4: Mean squared error matrices of β̂RSK and β̂SRK
when (δij , φij , εi) have normal distribution

(σ2
δ , σ2

φ, σ2
ε ) n = 22 n = 48

0.016 0.090 -0.022 0.004 -0.096 0.007 0.041 -0.010 0.002 -0.044

0.090 0.516 -0.125 0.024 -0.549 0.041 0.235 -0.057 0.011 -0.250

MSEM(β̂RSK ) (0.5, 0.5, 0.5) -0.022 -0.125 0.030 -0.006 0.133 -0.010 -0.057 0.014 -0.003 0.060

0.004 0.024 -0.006 0.001 -0.025 0.002 0.011 -0.003 0.001 -0.012

-0.096 -0.549 0.133 -0.025 0.583 -0.044 -0.250 0.060 -0.012 0.265

0.016 0.092 -0.022 0.004 -0.098 0.007 0.041 -0.010 0.002 -0.044

0.092 0.525 -0.127 0.024 -0.559 0.041 0.236 -0.057 0.011 -0.251

MSEM(β̂SRK ) (0.5, 0.5, 0.5) -0.022 -0.127 0.031 -0.006 0.135 -0.010 -0.057 0.014 -0.003 0.061

0.004 0.024 -0.006 0.001 -0.026 0.002 0.011 -0.003 0.001 -0.012

-0.098 -0.559 0.135 -0.026 0.594 -0.044 -0.251 0.061 -0.012 0.267

0.033 0.188 -0.046 0.009 -0.200 0.015 0.083 -0.020 0.004 -0.088

0.188 1.072 -0.260 0.050 -1.140 0.083 0.474 -0.115 0.022 -0.503

MSEM(β̂RSK ) (1.25, 1.25, 1.25) -0.046 -0.260 0.063 -0.012 0.276 -0.020 -0.115 0.028 -0.005 0.122

0.009 0.050 -0.012 0.002 -0.053 0.004 0.022 -0.005 0.001 -0.023

-0.200 -1.140 0.276 -0.053 1.212 -0.088 -0.503 0.122 -0.023 0.535

0.034 0.193 -0.047 0.009 -0.205 0.015 0.084 -0.020 0.004 -0.089

0.193 1.100 -0.266 0.051 -1.169 0.084 0.477 -0.115 0.022 -0.507

MSEM(β̂SRK ) (1.25, 1.25, 1.25) -0.047 -0.266 0.064 -0.012 0.283 -0.020 -0.115 0.028 -0.005 0.123

0.009 0.051 -0.012 0.002 -0.054 0.004 0.022 -0.005 0.001 -0.024

-0.205 -1.169 0.283 -0.054 1.243 -0.089 -0.507 0.123 -0.024 0.539

when (δij , φij , εi) have gamma distribution

(σ2
δ , σ2

φ, σ2
ε ) n = 22 n = 48

0.017 0.098 -0.024 0.005 -0.104 0.008 0.045 -0.011 0.002 -0.048

0.098 0.559 -0.135 0.026 -0.594 0.045 0.257 -0.062 0.012 -0.273

MSEM(β̂RSK ) (0.5, 0.5, 0.5) -0.024 -0.135 0.033 -0.006 0.144 -0.011 -0.062 0.015 -0.003 0.066

0.005 0.026 -0.006 0.001 -0.028 0.002 0.012 -0.003 0.001 -0.013

-0.104 -0.594 0.144 -0.028 0.631 -0.048 -0.273 0.066 -0.013 0.291

0.017 0.099 -0.024 0.005 -0.106 0.008 0.045 -0.011 0.002 -0.048

0.099 0.566 -0.137 0.026 -0.602 0.045 0.258 -0.062 0.012 -0.274

MSEM(β̂SRK ) (0.5, 0.5, 0.5) -0.024 -0.137 0.033 -0.006 0.146 -0.011 -0.062 0.015 -0.003 0.066

0.005 0.026 -0.006 0.001 -0.028 0.002 0.012 -0.003 0.001 -0.013

-0.106 -0.602 0.146 -0.028 0.640 -0.048 -0.274 0.066 -0.013 0.291

0.037 0.208 -0.050 0.010 -0.221 0.016 0.093 -0.022 0.004 -0.099

0.208 1.188 -0.288 0.055 -1.263 0.093 0.529 -0.128 0.025 -0.562

MSEM(β̂RSK ) (1.25, 1.25, 1.25) -0.050 -0.288 0.070 -0.013 0.306 -0.022 -0.128 0.031 -0.006 0.136

0.010 0.055 -0.013 0.003 -0.059 0.004 0.025 -0.006 0.001 -0.026

-0.221 -1.263 0.306 -0.059 1.342 -0.099 -0.562 0.136 -0.026 0.597

0.037 0.212 -0.051 0.010 -0.226 0.016 0.093 -0.023 0.004 -0.099

0.212 1.211 -0.293 0.056 -1.287 0.093 0.532 -0.129 0.025 -0.566

MSEM(β̂SRK ) (1.25, 1.25, 1.25) -0.051 -0.293 0.071 -0.014 0.312 -0.023 -0.129 0.031 -0.006 0.137

0.010 0.056 -0.014 0.003 -0.060 0.004 0.025 -0.006 0.001 -0.026

-0.226 -1.287 0.312 -0.060 1.368 -0.099 -0.566 0.137 -0.026 0.601
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Appendix A.

Define
Σx := n−1M ′M + σ2

φIp + σ2
δ Ip

H :=
√
n(n−1S − Σx)

and h :=
√
n{n−1X ′(ε− ∆β) + σ2

δβ}




. (A.1)

We now present some lemmas which are useful in proving main results of this section.

Lemma A.1. As n→ ∞,

(i) limn→∞ Σx = Σ, limn→∞ fR(Σx) = fR(Σ),

(ii) Σx = O(1), fR(Σx) = O(1),

(iii) H = OP (1), h = OP (1).

Proof. This lemma can be proved using the assumptions described in Section 2.

Define function f : Rp×p × Rp×p → Rp×p as

f(Z1, Z2) = Z1(Z2 ∗ Ip), Z1, Z2 ∈ Rp×p. (A.2)

Lemma A.2. Let d be a p× 1 non-stochastic vector. Then

(i) E(h) = 0 ,

(ii) E(H) = 0 ,

(iii) E(Hdd′H) = (σ2
φ + σ2

δ )[Σx{dd′ + (d′d)Ip}
+dd′(n−1M ′M) + (n−1d′M ′Md)Ip]

+(γ1φσ
3
φ + γ1δσ

3
δ ){f(n−1M ′ene′p, dd

′) + (f(n−1M ′ene′p, dd
′))′

+2f(Ip, n
−1dd′M ′ene′p)} + (γ2φσ

4
φ + γ2δσ

4
δ )f(Ip, dd

′),

(iv) E(hd′H) = −σ2
δ [Σx(dβ

′ + (d′β)Ip) + γ1δσδ{f(n−1Mene
′
p, βd

′)

+f(Ip, n
−1βd′M ′enep) + (f(n−1M ′ene′p, dβ

′))′}
+γ2δσ

2
δf(Ip, βd

′)],

(v) E(hh′) = (σ2
ε + σ2

δ (β
′β))Σx + σ4

δββ
′ + γ1δσ

3
δ{f(M ′ene′p, ββ

′)

+(f(M ′ene′p, ββ
′))′} + γ2δσ

4
δf(Ip, ββ

′).

Proof. This lemma can be proved using the assumptions described in Section 2.

Lemma A.3. Let {dn} be a sequence of p×1 non-stochastic vectors such that limn→∞ dn =

d. Then, as n→ ∞,

 h

Hdn


 d−→ N2p

(
0,


 Ωh ΩhH(d)

Ω′
hH(d) ΩH(d)



)
,
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where

Ωh = (σ2
ε + σ2

δ (β
′β))Σ + σ4

δββ
′ + γ1δσ

3
δ{f(σµe

′
p, ββ

′)

+
(
f(σµe

′
p, ββ

′)
)′} + γ2δσ

4
δf(Ip, ββ

′), (A.3)

ΩhH(d) = −σ2
δ [Σ(dβ′ + (d′β)Ip) + γ1δσδ{f(σµe

′
p, βd

′)

+f(Ip, βd
′
σµep) + (f(σµe

′
p, dβ

′))′} + γ2δσ
2
δf(Ip, βd

′)], (A.4)

and

ΩH(d) = (σ2
δ + σ2

φ)[Σ{dd′ + (d′d)Ip} + dd′σµσ
′
µ + (d′σµσ

′
µd)Ip]

+(γ1φσ
3
φ + γ1δσ

3
δ )[f(σµe

′
p, dd

′) + {f(σµe
′
p, dd

′)}′

+2f(Ip, epσµdd
′)] + (γ2φσ

4
φ + γ2δσ

4
δ )f(Ip, dd

′). (A.5)

Proof. Let x′i, δ
′
i, φ

′
i and µ′

i be the ith rows of the matrices X,∆,Φ and M respectively.

From (A.1), (2.1), and (2.2), we have

h =
1√
n
X ′ε− 1√

n
(X ′∆ − nσ2

δIp)β

=
1√
n

n∑

i=1

{xiεi − (xiδ
′
i − σ2

δ Ip)β}

=
1√
n

n∑

i=1

{µiεi + δiεi + φiεi − µiδ
′
iβ − φiδ

′
iβ − (δiδ

′
i − σ2

δ Ip)β}.

Using the vec operator and Hadamard product of matrices, we can write

µiδ
′
iβ = (β′ ⊗ Ip)vec(µiδ

′
i) = (β′ ⊗ Ip)(Ip ⊗ µi)δi,

φiδ
′
iβ = (β′ ⊗ Ip)vec(φiδ

′
i),

(δiδ
′
i − σ2

δ Ip)β = (β′ ⊗ Ip)vec(δiδ
′
i − σ2

δIp).

Therefore

h =
1√
n

n∑

i=1

{µiεi + δiεi + φiεi − (β′ ⊗ Ip)(Ip ⊗ µi)δi − (β′ ⊗ Ip)vec(φiδ
′
i)

−(β′ ⊗ Ip)vec(δiδ
′
i − σ2

δ Ip)}

=

n∑

i=1

Finwi, (A.6)

where, for i = 1, 2, . . . , n,

Fin = 1√
n

(
µi, Ip, Ip, −(β′ ⊗ Ip)(Ip ⊗ µi), −(β′ ⊗ Ip), −(β′ ⊗ Ip)

)
are p × (1 +
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3p + 2p2) non-stochastic matrices and wi =




εi

δiεi

φiεi

δi

vec(φiδ
′
i)

vec(δiδ
′
i − σ2

δIp)




are (1 + 3p + 2p2) × 1

independent and identically distributed vectors.

Now, using vec operator and Hadamard product, we can write

Hdn = (d′n ⊗ Ip)vec(H)

=

n∑

i=1

Ginui, (A.7)

where, for i = 1, 2, . . . , n, Gin = n− 1
2 (d′n ⊗ Ip)

(
(Ip ⊗ µi), (µ′

i ⊗ Ip2 ), Ip2 , Ip2 , Ip2

)

are p× (p + 3p2 + p3) non-stochastic matrices and ui =




(φi + δi)

vec
(
Ip ⊗ (φi + δi)

)

vec(φiδ
′
i + δiφ

′
i)

vec(φiφ
′
i − σ2

φIp)

vec(δiδ
′
i − σ2

δ Ip)




are (p+

3p2 + p3) × 1 independent and identically distributed vectors.

From (A.6) and (A.7), we get


 h

Hdn


 =

n∑

i=1


 Fin 0

0 Gin




 wi

ui


 , (A.8)

where, for i = 1, 2, . . . , n,


 Fin 0

0 Gin


 are 2p×(1+4p+5p2+p3) non-stochastic matrices

and


 wi

ui


 are (1 + 4p+ 5p2 + p3) × 1 random vectors. From assumption (v), described

in Section 2, we note that the elements of
√
n


 Fin 0

0 Gin


 are bounded. Also note

that,


 w1

u1


 ,


 w2

u2


 , . . . ,


 wn

un


 independent and identically distributed and from
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Lemma A.2

E


 h

Hdn


 = 0,

lim
n→∞

E(hh′) = (σ2
ε + σ2

δ (β
′β))Σ + σ4

δββ
′ + γ1δσ

3
δ{f(σµe

′
p, ββ

′)

+
(
f(σµe

′
p, ββ

′)
)′}+ γ2δσ

4
δf(Ip, ββ

′) = Ωh,

lim
n→∞

E(Hdnd
′
nH) = (σ2

δ + σ2
φ)[Σ{dd′ + (d′d)Ip} + dd′σµσ

′
µ + (d′σµσ

′
µd)Ip]

+(γ1φσ
3
φ + γ1δσ

3
δ )[f(σµe

′
p, dd

′) + {f(σµe
′
p, dd

′)}′

+2f(Ip, epσµdd
′)] + (γ2φσ

4
φ + γ2δσ

4
δ )f(Ip, dd

′) = ΩH(d),

and

lim
n→∞

E(hd′nH) = −σ2
δ [Σ(dβ′ + (d′β)Ip) + γ1δσδ{f(σµe

′
p, βd

′)

+f(Ip, βd
′
σµep) + (f(σµe

′
p, dβ

′))′} + γ2δσ
2
δf(Ip, βd

′)]

= ΩhH(d).

Therefore, on applying central limit theorem (see Malinvaud, 1966, p. 212), for the choice

of function ϕ(n) =
√
n, we conclude that


 h

Hdn


 has a 2p−variate limiting normal

distribution with mean vector 0 and covariance matrix


 Ωh ΩhH(d)

Ω′
hH(d) ΩH(d)


.

The following corollary is an immediate consequence of Lemma A.3.

Corollary A.1. Under the assumptions of Lemma A.3, as n→ ∞,

h+Hdn
d−→ Np

(
0,Ωh + ΩhH(d) + Ω′

hH(d) + ΩH(d)
)
,

where Ωh, ΩhH(d), and ΩH(d) are defined in Lemma A.3.

Lemma A.4. As n→ ∞,

(i)
√
n(b

(1)
δ − β)

d−→ Np
(
0, (Σ − σ2

δ Ip)
−1Ωh(Σ − σ2

δIp)
−1
)
,

(ii)
√
n(b

(2)
δ − β)

d−→ Np
(
0, fR(Σ)(Σ − σ2

δIp)
−1Ωh(Σ − σ2

δ Ip)
−1f ′

R(Σ)
)
.

Here where f ′
R(Σ) denotes the transpose of the matrix fR(Σ).

Proof. We have, from (3.8),

√
n(b

(1)
δ − β) = (n−1S − σ2

δIp)
−1h. (A.9)
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Since plim
n→∞

(n−1S − σ2
δ Ip) = (Σ − σ2

δIp), therefore from (A.9), Lemma A.3 and Slutzky’s

Lemma (see Arnold, 1990, p. 451) we obtain the first assertion.

Now from (3.10), we have

√
n(b

(2)
δ − β) = fR(S){√n(b

(1)
δ − β)}, (A.10)

since r = Rβ. Using the fact that plim
n→∞

fR(S) = fR(Σ), (A.10) and assertion (i), we prove

the second assertion.

Lemma A.5. As n→ ∞,

√
n
(
b− (Ip − σ2

δΣ
−1
x )β

) d−→ Np(0,Ωb),

where

Ωb = Σ−1{Ωh + ΩhH(σ2
δΣ

−1β) + Ω′
hH(σ2

δΣ
−1β) + ΩH(σ2

δΣ
−1β)}Σ−1.

Proof. From (2.1) and (A.1), we have

b = S−1X ′y

= (Ip − nσ2
δS

−1)β + (nS−1)(n− 1
2h). (A.11)

Therefore

√
n
(
b− (Ip − σ2

δΣ
−1
x )β

)
= (nS−1)h+

√
n{(Ip − nσ2

δS
−1) − (Ip − σ2

δΣ
−1
x )}β

= (nS−1)(h+ σ2
δHΣ−1

x β). (A.12)

Since limn→∞ Σx = Σ, we have, from Corollary A.1,

h+ σ2
δHΣ−1

x β
d−→ Np

(
0,Ωh + ΩhH(σ2

δΣ
−1β) + Ω′

hH(σ2
δΣ

−1β) + ΩH(σ2
δΣ

−1β)
)
, (A.13)

as n → ∞. Now using (A.12), plim
n→∞

n−1S = Σ, plim
n→∞

fR(S) = fR(Σ) and plim
n→∞

fR(S −
nσ2

δIp) = fR(Σ − σ2
δ Ip), and (A.13), we obtain the required result.

Lemma A.6. As n→ ∞,

(i)
√
n(b

(1)
K − β)

d−→ Np
(
0, (Σ − σ2

δ Ip)
−1ΩK(Σ − σ2

δIp)
−1
)
,

(ii)
√
n(b

(2)
K − β)

d−→ Np
(
0, fR(Σ)(Σ − σ2

δIp)
−1ΩK(Σ − σ2

δ Ip)
−1f ′

R(Σ)
)
,

where ΩK = Ωh + ΩhH(σ2
δΣ

−1β) + Ω′
hH(σ2

δΣ
−1β) + ΩH(σ2

δΣ
−1β); Ωh, ΩhH(·), and ΩH(·)

are given in Lemma A.3.

Proof. We have, from (3.13),

√
n(b

(1)
K − β) =

√
n(K−1

x b− β)

= K−1
x [

√
n{b− (Ip − σ2

δΣ
−1
x )β}]. (A.14)
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Since limn→∞Kx = Ip − σ2
δΣ

−1, therefore from (A.14) and Lemma A.5, we obtain the first

assertion.

Now we have, from (3.15),

√
n(b

(2)
K − β) = fR(S){√n(b

(1)
K − β)}. (A.15)

Using the fact that plim
n→∞

fR(S) = fR(Σ), (A.15), assertion (i) and Slutzky’s Lemma (see

Arnold, 1990, p. 451), we prove the second assertion.
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