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summary

It is shown that one can obtain a certain kernel density estimate at a given
point x by assuming that the sample points and x are subject to the law of
universal gravitation or some variant thereof. Some distributional properties of
the resulting kernel are discussed, including the asymptotic normality of a certain
rescaled kernel. A two-stage algorithm for the selection of an optimal bandwidth
is described. The proposed density estimation technique is applied to three widely
used data sets.
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1 Introduction

The methodologies for estimating a density function from a given sample can be classified

as parametric or non-parametric. The latter, which include kernel density estimators, are

more flexible than the former, which have fixed functional forms. As will be shown in the

next section, the proposed gravitational approach to density estimation yields kernel density

estimates.

Kernel density estimators smooth out the contribution of each data point over a local

neighbourhood of that point by replacing it with a kernel function. The contribution of the

point xi to the estimate at the point x depends on distance between xi and x, the extent of

this contribution depending on the shape of the kernel function and the bandwidth accorded

to it. If we denote the kernel function by K(·) and its bandwidth by δ, the estimated density

function at any point x is

f̂δ(x) =
1

n

n∑

i=1

1

δ
K
(x− xi

δ

)
.
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Table 1: Some types of kernels

Kernel K(x)

Uniform 1
2 I(|x| ≤ 1)

Triangle (1 − |x|) I(|x| ≤ 1)

Epanechnikov 3
4 (1 − x2) I(|x| ≤ 1)

Biweight 15
16 (1 − x2)2 I(|x| ≤ 1)

Triweight 35
32 (1 − x2)3 I(|x| ≤ 1)

Cosine π
4 cos(

π
2x) I(|x| ≤ 1)

Gaussian 1√
2π
e−

x2

2 I(x ∈ <)

To ensure that the estimates f̂(x) is a bona fide density function, the kernel function K(·) is

usually chosen to be a density function that is symmetric around 0. Several types of kernels

are listed in Table 1 where I(·) denotes the indicator function.

Gravitational approaches have been used in various contexts in the scientific literature.

For instance, Huff (1966) assumed that the probability that a user chooses a given service

point is directly proportional to its attractivity and inversely proportional to the distance

from it. Ottensmann (1995), Sheu (2003), and Stopper and Meyburg (1975) resorted to

gravitational models in connection with certain circulation and transportation problems

while Fotheringham and O’Kelly (1989) studied migratory flow in terms of such models.

Chen and Lee (2001) made use of a gravitation-based algorithm in connection with field

data extraction, while Ravi and Gowda (1999) studied the clustering of symbolic objects

using a gravitational approach.

The gravitational approach to density estimation is described in Section 2 where it is

shown that the resulting estimates are in fact kernel density estimates which are based on

a so-called G-kernel. A two-stage plug-in bandwidth selection algorithm is also provided.

Some properties of the G-kernel and its connection to other distributions are discussed in

Section 3 where a rescaled G-kernel is shown to be asymptotically normally distributed.

The proposed density estimates are applied to the Buffalo snowfall, the length of treatment

spells and the galaxy velocities data sets.

2 The Density Estimate

2.1 Derivation

The proposed gravitational approach to density estimation is related to a well-known law of

physics, namely Newton’s law of universal gravitation, which states that every point mass

attracts every other point mass by a force directed along the line connecting the two, this
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force being proportional to the product of the masses and inversely proportional to the

square of the distance between the two points. Additional considerations on the law of

universal gravitation are discussed for example in Scheurer (1988) and Gregory (2006).
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Figure 1: Vertical component of the force of attraction.

Given a random sample x1, x2, . . . , xn, we wish to obtain a density estimate in terms

of the combined force of attraction of the sample points. It is assumed that the sample

points are lying on a line located at a distance +δ from the abscissa in the real plane,

that is, (xi, δ) ≡ xi, i = 1, . . . , n. Letting the force of attraction between xi and a point

(x, 0) ≡ x on the abscissa be denoted by A(x, xi, δ), its vertical component, AV (x, xi, δ),

clearly satisfies the relationship

AV (x, xi, δ)

A(x, xi, δ)
=

δ√
δ2 + (x− xi)2

, (2.1)

where (x− xi) is the horizontal distance between the points x and xi. This is illustrated in

Figure 1. Thus, the combined vertical components of the force of attraction of the points

x1, . . . , xn ≡ x on a point x is given by

AV (x,x, δ) =

n∑

i=1

AV (x, xi, δ) ,

where according to (2.1)

AV (x, xi, δ) = δ A(x, xi, δ)/
√
δ2 + (x− xi)2 . (2.2)

In particular, when the force of attraction is inversely proportional to a power of the square

of the distance, one has
k

(δ2 + (x− xi)2)w
′
≡ a(x, xi, δ) (2.3)
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where k is a constant. We note that in the physical world, w′ = 1 and k is the universal

gravitational constant. It is assumed that all the points have unit mass. Then, according

to (2.1), the vertical component of a(x, xi, δ) is

aV (x, xi, δ) =
k δ

(δ2 + (x − xi)2)w
′+1/2

(2.4)

and once combined these vertical components of the force of attraction of the points

x1, x2, . . . , xn ≡ x on x add up to

aV (x,x, δ) =
n∑

i=1

aV (x, xi, δ) . (2.5)

Let us determine the constant k such that aV (x,x, δ) be a bona fide density function on

the interval (−∞,+∞). We observe that in order for aV (x, xi, δ) to be defined, one must

have w′ > 0. Now, letting w = w′ + 1/2 and noting that

∫ ∞

−∞

δ

(δ2 + (x− xi)2)w
dx =

√
π Γ(w − 1/2)

Γ(w)
δ2(1−w)

for each xi, i = 1, . . . , n, one has

aV (x,x, δ) =
1

n

n∑

i=1

Γ(w)

δ2−2w
√
π Γ(− 1

2 + w)

δ

(δ2 + (x− xi)2)w
(2.6)

=
1

n

n∑

i=1

Γ(w)√
π Γ(w − 1/2)

1

δ
(
1 +

(
x−xi

δ

)2)w , (2.7)

which will be denoted by f̂δ(x,w). Thus, whenever w > 1/2 and

k = Γ(w)/(n
√
π Γ(w − 1/2)) , (2.8)

aV (x,x, δ) will integrate to one and be positive. Then, on letting

g(x,w) =
Γ(w)√

π Γ(w − 1
2 )

1

(1 + x2)w
, w > 0.5, x ∈ < (2.9)

where g(x,w) will be referred to as a G-kernel (with parameter w), one has the following

representation of the density estimate:

f̂δ(x,w) =
1

n

n∑

i=1

1

δ
g
(x− xi

δ
, w
)

(2.10)

=
1

n

n∑

i=1

gδ((x − xi), w)
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where

gδ(x,w) =
Γ(w)√

πΓ(w − 1
2 )

1

δ(1 + (xδ )
2)w

(2.11)

will be called a G-density (with parameters w and δ). Thus, whenever the force of attraction

is as specified in Equation (2.3) with k as given in Equation (2.8), the gravitational approach

yields a kernel density estimate wherein the kernel g(x,w) is as specified by Equation (2.9)

with w = w′ + 1/2 and δ corresponds to the bandwidth associated with that kernel.

2.2 Optimal Bandwidth Selection

Given n sample points and the kernel g(x,w) as specified by Equation (2.9), one has to

select an appropriate bandwidth δ. The bandwidth in a kernel density estimate should be

such that the integrated mean squared error (IMSE), which is defined as

IMSE =

∫ +∞

−∞
Ef [f̂(x) − f(x)]2dx , (2.12)

be minimized, see for example Izenman (1991). For any given kernel function K(x) and

unknown density function f(x), the optimal value of δ is

δopt = k
−2/5
2

(∫
K(t)2dt

)1/5(∫
f ′′(x)2dx

)−1/5

n−1/5 , (2.13)

where k2 =
∫
t2K(t)dt, see Silverman (1986). It should be noted that the right-hand side of

Equation (2.13) cannot be directly evaluated since it involves the unknown density function.

However, when the data is approximately normally distributed, the optimal bandwidth can

be taken to be

δN = k
−2/5
2

(∫
K(t)2

)1/5(3

8
π−1/2σ−5

)−1/5

n−1/5 , (2.14)

where σ is the standard deviation of f(x). When this is not the case, one has to resort to more

advanced techniques in order to determine the bandwidth, such as plug-in methodologies or

the solution of a bandwidth selector equation, see for instance Sheather and Jones (1991) and

Wand and Jones (1995). A version of the two-stage plug-in bandwidth selector is described

below.

Two-Stage Plug-In Bandwidth Selection Algorithm

Given a sample x1, . . . , xn and a second-order kernel K(x), and letting

ψ̂r(g) =
1

n2

n∑

i=1

n∑

j=1

1

g
K(r)

(xi − xj
g

)

be an estimate of ψr = E(f (r)(X)) where the superscript (r) denotes the r-th derivative,

the bandwidth of the kernel density estimate can be determined as follows:
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1. Assuming that the true density is normal, estimate ψ8 by ψ̂N8 = 105/(32
√
π σ̂9), where

σ̂ is the sample standard deviation.

2. Estimate ψ6 using ψ̂6(g1) with

g1 =
( −2K(6)(0)

µ2(K)ψN8 n

)1/9

where K(6)(0) is the sixth derivative of kernel function K(x) evaluated at x = 0,

µ2(K) =
∫
x2K(x) dx is the second raw moment of the kernel density and n is the size

of the sample.

3. Estimate ψ4 using ψ̂4(g2) with

g2 =
( −2K(6)(0)

µ2(K)ψ6(g1)n

)1/7

.

4. The two-stage plug-in bandwidth is

δ̂PI,2 =
( R(K)

(µ2(K))2 ψ4(g2)n

)1/5

(2.15)

where R(K) =
∫
K2(x) dx.

Note that although the number of stages of functional estimation could be greater than two,

two stages appear to provide reasonable density estimates in most cases.

3 Some Properties of the G-kernel

3.1 Basic Distributional Properties

The characteristic function of the G-kernel, g(x,w), as specified by Equation (2.9), which

can be obtained by making use of the symbolic computing software Mathematica is

φX(t) =
23/2−w |t|w−1/2 BesselK(1/2− w, |t|)

Γ(w − 1/2)
,

where BesselK(n, z) denotes a modified Bessel function of the second kind (see for instance

Gradshteyn and Ryzhik 2000, p. 703, eqn. 6.649.1). When w = 1 (or equivalently w′ = 0.5),

one has

g(x, 1) =
1

π(1 + x2)
, x ∈ < ,

which is the density function of a standard Cauchy distribution whose characteristic function

is

φX (t) = e−|t| .
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Figure 2: G-densities with w = 2.5: δ=1 (short dashes), δ=2 (standard dashes), δ=4 (long
dashes); standard normal density (solid line).
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Figure 3: G-densities with δ = 2.5: w = 1 (short dashes), w = 2 (standard dashes), w = 6
(long dashes); standard normal density (solid line).

When w > 3
2 , the mean and variance of the G-kernel are respectively 0 and 1

2w−3 .

Now, consider the G-density, gδ(x,w) defined in Equation (2.11) which is a scaled G-

kernel. The G-density is plotted in Figure 2 and 3 for various combinations of w and δ to

illustrate its behavior with respect to these parameters.

In Figure 2, w is set equal to 2.5 and δ = 1, 2 and 4. It is seen that for a given w, the
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smaller δ is, the higher the mode. In Figure 3, δ is set equal to 2.5 while w = 1, 2 and 6.

We note that the smaller w is, the lower the modes and the heavier the tails are.

3.2 Asymptotic Normality of a Certain G-density

In this section, we shall prove that as w goes to +∞, the limiting distribution of the G-

kernel, when appropriately rescaled, is that of a standard normal random variable. Let the

G-density gδ(x,w) = g(x/δ, w)/δ be as defined in Equation (2.11). We select δ so that the

mode of gδ(x,w) coincide with that of a standard normal random variable. Thus, on letting

gδN (0, w) = 1/
√

2π, we have

Γ(w)√
πΓ(w − 1

2 )

1

δN
=

1√
2π

, (3.1)

and so,

δN =

√
2Γ(w)

Γ(w − 1
2 )
. (3.2)
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Figure 4: Scaled G-densities: w = 1 (short dashes), w = 2 (standard dashes), w = 4 (long
dashes); standard normal density (solid line).

Thus, substituting δN into Equation (2.11) yields the following rescaled kernel

gδN (x,w) =
Γ(w)√

πΓ(w − 1
2 )

1
√

2Γ(w)

Γ(w− 1
2 )

(1 + ( x
δN

)2)w

=
1√
2π

(
1 +

x2/2
(
Γ(w)/Γ(w − 1

2 )
)2
)−w

. (3.3)
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Using the identity,

Γ(n+ 1
2 )

Γ(n)
=

√
n(1 − 1

8n
+

1

128n2
+ · · · ) ,

it is seen that
Γ(w)

Γ(w − 1
2 )

→
√
w − 1/2 as w → +∞ , (3.4)

so that (
1 +

x2/2

(Γ(w)/Γ(w − 1
2 ))2

)w
→ e

x2

2 as w → +∞ .

Thus

gδN (x,w) → 1√
2π
e−

x2

2 as w → +∞ .

The density function gδN (x,w) is plotted in Figure 4 for w = 1, 2 and 4.

3.3 Connection to the Type-2 Beta Distribution

Consider a type-2 beta random variable whose density function is

f(x) =
1

B(α, β − α)
xα−1(1 + x)−β for x > 0 ,

where α > 0, β−α > 0 and B(α, β) = Γ(α) Γ(β)/Γ(α+β), and apply the mapping y = x1/2

for y > 0, so that the transformation be one-to-one. Then

f(y) =
2

B(α, β − α)
y2α−1(1 + y2)−β , y > 0 ,

which on letting α = 1
2 and symmetrizing yields

g(y) =
1

B( 1
2 , β − 1

2 )

1

(1 + y2)β

=
Γ(β)

Γ( 1
2 )Γ(β − 1

2 )

1

(1 + y2)β
, y ∈ < ,

that is, the kernel g(y, β) as defined in Equation (2.9).

4 Application to Three Data sets

The proposed density estimates f̂δ(x,w), as specified by Equation (2.10), is applied to three

widely used data set in this section. We observe that w acts as a smoothing parameter: the

larger w is, the smoother the resulting density estimate obtained in conjunction with the

previously discussed two-stage plug-in bandwidth selection algorithm.
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Figure 5: Density estimate f̂69.33(x, 25) and 13-bin histogram (Buffalo snowfall)
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Figure 6: Density estimate f̂12.19(x, 2.5) and 13-bin histogram (Buffalo snowfall)

4.1 The Buffalo Snowfall Data Set

Consider the set of 63 values of annual snowfall precipitations in Buffalo, in inches, for the

winters 1910/11 to 1972/73, which is available for instance from the R (or S-Plus) data

base. The histogram in Figure 5 suggests that the density function might be trimodal.

We made use of the direct two-stage plug-in algorithm described in Section 2.2 to select the

optimal bandwidth associated with the G-kernel with parameter w = 25, that is, g(x, 25) and

determined that δ̂PI,2 = 69.33. The resulting density estimate f̂69.33(x, 25) is superimposed

on the histogram in Figure 5. A density estimate was similarly obtained assuming that

w = 2.5. The resulting density function f̂12.19(x, 2.5) is plotted in Figure 6.
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4.2 The Length of Treatment Spells Data Set
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Figure 7: Density estimate f̂207.58(x, 25) and 12-bin histogram (Length of treatment spells)
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Figure 8: Density estimate f̂41.72(x, 2.5) and 12-bin histogram (Length of treatment spells)

Consider the data set consisting of 86 spells (in days) of psychiatric treatments undergone

by a cohort of suicidal patients. This data set has been frequently used to illustrate various

density estimation techniques. It was first analyzed by Copas and Fryer (1980) and then

discussed by Silverman (1986). It can be seen from the histogram shown in Figure 7 that

the distribution has a heavy tail and is strongly right-skewed. Letting w = 25 and w = 2.5,

we used the direct plug-in approach to select the optimal bandwidths which were found to

be 207.58 and 41.72, respectively. The resulting density estimates, that is, f̂207.58(x, 25) and
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f̂41.72(x, 2.5) are respectively plotted in Figures 7 and 8.

4.3 The Galaxy Velocities Data Set
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Figure 9: Density estimate f̂7897.87(x, 25) and 19-bin histogram (Galaxy velocities)
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Figure 10: Density estimate f̂1501.47(x, 2.5) and 19-bin histogram (Galaxy velocities)

Consider the data set consisting of 82 galaxies velocities in km/sec from six well-separated

conic sections of an unfilled survey of the Corona Borealis region. Multimodality in such

surveys is indicative of voids and superclusters in the far universe. This data set which

was originally analyzed by Roeder (1990) has served as a benchmark example in mixture

analysis.
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The histogram clearly indicates that the underlying distribution is multimodal. The

density estimates f̂7897.87(x, 25) and f̂1501.47(x, 2.5) whose associated bandwidths were de-

termined by making use the algorithm described in Section 2.2, are respectively plotted in

Figures 9 and 10.
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