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Callejón de Jalisco s/n, Mineral de Valenciana, 36240 Guanajuato, Guanajuato, México
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Email: farias@cimat.mx

summary
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study is proposed and then applied in a subfamily of the Kotz configuration den-
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Keywords and phrases: Inference in statistical shape theory, elliptical configura-
tion densities, zonal polynomials, Kotz configuration density.

AMS Classification: 62H10, 62E15, 15A09, 15A52.

c© Institute of Statistical Research and Training (ISRT), University of Dhaka, Dhaka 1000, Bangladesh.



2 Caro-Lopera, Dı́az-Garćıa, & González-Faŕıas

1 Introduction

Statistical shape theory based on the Euclidean transformation has been studied exten-

sively, see Dryden and Mardia (1998) and the references therein. Assuming a isotropic

matrix variate Gaussian distribution, Goodall and Mardia (1993) (corrected by Dı́az-Garćıa

et al. (2003) and revised again by Caro-Lopera et al. (2009)) proposed a shape density

based on affine transformations, which they termed configuration density. This constitute

a open distributional problem for elliptical generalisations and inference based on exact

distributions.

Recently, Caro-Lopera et al. (2009), derived the noncentral configuration density under

an elliptical model and, by using partition theory, a number of explicit configuration densi-

ties were obtained; i.e. configuration densities associated with the matrix variate symmetric

Kotz type distributions (including the matrix variate normal distribution), the matrix vari-

ate Pearson type VII distributions (including the matrix variate t and Cauchy distributions),

the matrix variate symmetric Bessel distribution (including the matrix variate Laplace dis-

tribution) and the matrix variate symmetric logistic distribution. The configuration density

of any elliptical model was set in terms of zonal polynomials, which can now be efficiently

following Koev and Edelman (2006), and in consequence, the inference problem can be

studied and solved with the exact densities instead of the usual constraints and asymptotic

distributions, and approximations of the statistical shape theory now function(see Goodall

and Mardia (1993), Dryden and Mardia (1998) and the references therein). The general pro-

cedure becomes very clear and the underlying problem, that of the programming problem,

is simply a question of time.

Thus, two perspectives can be explored; first, the inference based on exact distributions

and second, their applications in shape theory.

The general procedure for performing inference of any elliptical model is proposed and

set out in such a manner that the published efficient numerical algorithms for to compute a

confluent hypergeometric function of a matrix argument in terms of zonal polynomials, can

be used; this is outlined in section 2.

Moreover, a further simplification of the closed computational problem is also proposed,

namely the study of polynomial configuration densities (Section 3); a subfamily of these

densities is derived and as a simple example of their use, exact inferences for testing con-

figuration location differences in certain applied problems are provided in Section 4. These

applications are in the fields of biology (mouse vertebrae, gorilla skulls, girl and boy cran-

iofacial studies), medicine (brain MR scans of schizophrenic patients) and image analysis

(postcode recognition).

2 Inference for Elliptical Configuration Models

First we recall the basic definitions of elliptical distributions and configurations (see Gupta

and Varga (1993) and Goodall and Mardia (1993), respectively).
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We say that X : N × K has a matrix variate elliptically contoured distribution if its

density with respect to the Lebesgue measure is given by:

fX(X) =
1

|Σ|K/2|Θ|N/2
h

{
tr

[
(X − µ)′Σ−1(X − µ)Θ−1

]}
,

where µ : N ×K, Σ : N ×N , Θ : K ×K, Σ positive definite (Σ > 0), Θ > 0. The function

h : ℜ → [0,∞) is termed the generator function, and is such that
∫
∞

0
uNK−1h(u2)du < ∞.

Such a distribution is denoted by X ∼ EN×K(µ,Σ,Θ, h).

Definition 2.1. Two figures X : N × K and X1 : N × K have the same configuration, or

affine shape, if X1 = XE+1Ne
′, for some translation e : K×1 and a nonsingular E : K×K.

The configuration coordinates are constructed in two steps, summarised in the expression

LX = Y = UE. (2.1)

The matrix U : N − 1 × K contains configuration coordinates of X. Let Y1 : K × K

be nonsingular and Y2 : q = N − K − 1 ≥ 1 × K, such that Y = (Y′

1 | Y
′

2)
′. Define also

U = (I | V′)′, then V = Y2Y
−1
1 and E = Y1 where L is an N −1×N Helmert sub-matrix.

Now, from Caro-Lopera (2008) and Caro-Lopera et al. (2009) the configuration density

under a non-isotropic elliptical distribution is given by

Theorem 1. If Y ∼ EN−1×K(µN−1×K ,ΣN−1×N−1 ⊗ IK , h), for Σ > 0, µ 6= 0N−1×K ,

then the configuration density is given by

πK2/2ΓK

(
N−1

2

)

|Σ|
K

2 |U′Σ−1U|
N−1

2 ΓK

(
K
2

)
∞∑

t=0

1

t!Γ
(

K(N−1)
2 + t

)
∞∑

r=0

1

r!

[
tr

(
µ
′
Σ

−1
µ

)]r

×
∑

τ

(
N−1

2

)
τ(

K
2

)
τ

Cτ (U′
Σ

−1
µµ

′
Σ

−1
U(U′

Σ
−1

U)−1)S, (2.2)

where

S =

∫
∞

0

h(2t+r)(y)y
K(N−1)

2 +t−1dy < ∞.

Our proposal is to use the elliptically contoured distribution to model population config-

urations (2.2) for certain particular cases. For this purpose, we consider a random sample

of n independent and identically distributed observations U1, . . . ,Un obtained from

Yi ∼ EN−1×K(µN−1×K , σ2
IN−1 ⊗ IK , h), i = 1, . . . , n,

by means of (2.1).

Now we define the configuration population parameters. Let CD(U; U , σ2) be the ex-

act configuration density, where U is the location parameter matrix of the configuration

population (for the sake of simplicity, the configuration location) and σ2 is the popula-

tion scale parameter. Both the U and the σ2 parameters are to be estimated. More
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exactly, let µ 6= 0N−1×K be the parameter matrix of the elliptical density Y considered

in theorem 1; if we write it as µ = (µ′

1 | µ
′

2)
′, where µ1 : K × K (nonsingular) and

µ2 : q = N − K − 1 ≥ 1 × K, then, according to (2.1), we can define the configuration

location parameter matrix U : N − 1 × K as follows: U = (IK | V
′)′ where V = µ2µ

−1
1 ;

and V : q = N − K − 1 ≥ 1 × K contains q × K configuration location parameters to

estimate. Then, taking into account this remark and using the same notation as in Dryden

and Mardia (1998, pp. 144-145), we have:

log L(U1, . . . ,Un; V, σ2) =
n∑

i=1

log CD(Ui; V, σ2).

Finally, the maximum likelihood estimators for the location and scale parameters are

(Ṽ , σ̃2) = arg sup
V, σ2

log L(U1, . . . ,Un; V, σ2). (2.3)

For the numerical optimisation, we can use a number of routines, which, clearly, are

based on the initial point for estimation. In our case, consider the Helmertised landmark

data Yi ∼ EN−1×K(µN−1×K , σ2
IN−1⊗IK , h) i = 1, . . . , n (see (2.1)) and let µ̃ = (µ̃′

1 | µ̃
′

2)
′

and σ̃2 be the maximum likelihood estimators of the location parameter matrix µN−1×K

and the scale parameter σ2 of the elliptical distribution under consideration. Accordingly,

given that

U
′

iΣ
−1

µµ
′
Σ

−1
Ui(U

′

iΣ
−1

Ui)
−1 = Y

′

iΣ
−1

µµ
′
Σ

−1
Yi(Y

′

iΣ
−1

Yi)
−1,

then an initial point can be x0 = (vec′(V0
′), σ2

0), where V0 = µ̃2µ̃
−1
1 and σ2

0 = σ̃2.

The exact inference procedure is outlined in the following sections.

2.1 Available Distributions: Families of Isotropic Elliptical Config-

uration Densities

As a first step, let us consider a list of configuration densities, as derived in full in Caro-

Lopera et al. (2009). The classical elliptical configuration densities included are the Kotz,

Pearson type VII, Bessel and Logistic types. Note, however, that any elliptical function h(·)

which satisfies Theorem 1 would be appropriate.

Most of the applications in statistical theory of shape are based on the isotropic model

(see Dryden and Mardia (1998)), and thus in the case of the noncentral elliptical configura-

tion density, by taking Σ = σ2
IN−1 in the general configuration density, we obtain a list of

suitable distributions for inference; when these are expanded in terms of zonal polynomials,

they can be computed efficiently following Koev and Edelman (2006). Note that a more

enriched structure can be considered, see for example Σ = diag(σ2
1 , σ2

2 , . . . , σ
2
N−1) (which

assume a different scale parameter in each landmark component), and similar diagonal

structures.
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We shall not write out such densities here, but limit ourselves to drawing an inference

with a special Kotz subfamily; however, it should be noted that the four step inference

procedure can be studied with the densities provided in Caro-Lopera et al. (2009).

The particular Kotz density which shall be studied in the applications is as follows:

Corollary 2.1. If Y ∼ EN−1×K(µN−1×K , σ2
IN−1 ⊗ IK , h) and T = 1, then the Kotz type

isotropic noncentral configuration density simplifies to

ΓK

(
N−1

2

)
etr

(
R
σ2 µ

′
U(U′

U)−1
U

′
µ − R

σ2 µ
′
µ

)

πKq/2|IK + V′V|
N−1

2 ΓK

(
K
2

)

×1F1

(
−

q

2
;
K

2
;−

R

σ2
µ

′
U(U′

U)−1
U

′
µ

)
, (2.4)

and where R = 1
2 , we obtain the normal configuration density.

2.2 Choosing the Elliptical Configuration Density

It is here that we see the main advantage of working with elliptical models, i. e. the possi-

bility of choosing a distribution for the landmark data, recalling that the main assumptions

for inference in the present study are supported by independent and identically elliptically

contoured distributed observations

Yi ∼ EN−1×K(µN−1×K , σ2
IN−1 ⊗ IK , h), i = 1, . . . , n.

According to our assumptions, we can consider Schwarz (1978) as an appropriate tech-

nique for choosing the elliptical model. Explicitly, the procedure is as follows: consider k

elliptical models, then perform the maximisation of the likelihood function separately for

each model j = 1, . . . , k, obtaining say, Mj(Y1, . . . ,Yn); then Schwarz’s criterion for a large

sample is given by

Choose the model for which log Mj(Y1, . . . ,Yn) −
1

2
kj log n is largest ,

where kj is the dimension (number of parameters) of the model j.

Remark 1. The preceding result can be implemented in choosing a shape model, i.e. given an

independent and identically distributed random sample of landmark data and a list of shape

distributions: pre-shape, size and shape, shape, reflection shape, reflection size and shape,

cone, disk (all of these being supported by Euclidean transformations) and configuration

(supported by affine transformations), we can select the best shape-transformation model.

However, given that the shape distributions based on Euclidean transformations are infinite

series of zonal polynomials and that they cannot be computed exactly (see Dryden and

Mardia (1998) and Koev and Edelman (2006)), then in order to compare these models with

the polynomial configuration densities, first we need to solve the computation problems of

the Euclidean models. These comparisons shall be considered in a later study.
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2.3 Configuration Location

Once the elliptical model has been selected, the estimators of location and scale parameters

of configuration can be found by means of (2.3). The crucial point here is the computation

of the configuration density; if the selected model is the Gaussian one, then the Matlab

algorithms for confluent hypergeometric functions of a matrix argument given by Koev and

Edelman (2006) give the solution very efficiently, and in fact this solves the inference problem

described by Goodall and Mardia (1993). We emphasize that the cited computation of the

1F1(a; c;X) series is restricted to its truncation and that is an open question that is addressed

in the last section of Koev and Edelman (2006). Nevertheless, the fast algorithms make it

possible to constitute numerical experiments until a given precision is reached, and thus the

optimisation problem continues to be in terms of truncation and set precision. However,

this obviously occurs it is an intrinsic problem of any numerical optimisation problem.

On the other hand, if the selected model is not Gaussian, it might be considered that

the problem remains an open one; fortunately, the configuration densities can be computed

efficiently by using the method described in Koev and Edelman (2006).

First let us denote the elliptical configuration density of theorem 1 by

A 1P1(f(t) : a; c;X), (2.5)

where

A =
πK2/2ΓK

(
N−1

2

)

|Σ|
K

2 |U′Σ−1U|
N−1

2 ΓK

(
K
2

) , 1P1(f(t) : a; c;X) =

∞∑

t=0

f(t)

t!

∑

τ

(a)τ

(c)τ
Cτ (X),

f(t) =

∞∑

r=0

[
tr

(
µ

′
Σ

−1
µ

)]r

r!Γ
(

K(N−1)
2 + t

)
∫

∞

0

h(2t+r)(y)y
K(N−1)

2 +t−1dy,

X = U
′
Σ

−1
µµ

′
Σ

−1
U(U′

Σ
−1

U)−1, a =
N − 1

2
, c =

K

2
.

Unfortunately, the configuration density A 1P1(f(t) : a; c;X) is an infinite series, given

that a and c are positive (recall that N is the number of landmarks, K is the dimension

and N − K − 1 ≥ 1). Hence a truncation is needed if we want to use it directly by the

computation of zonal polynomials.

Now, expression (2.5) belongs to a general class of series, studied by Koev and Edelman

(2006, eq. (1.6), p. 3), which can be evaluated at the same computational cost as the

efficiently computed hypergeometric function of a matrix argument.

In principle, thus, the configuration densities can be evaluated efficiently using the fast

algorithms proposed by Koev and Edelman (2006) and the corresponding inference problem

can be solved numerically. At this stage, using for example the compatible Matlab routine

fminsearch (unconstrained nonlinear optimisation) with the modified Matlab files of Koev

and Edelman (2006), we have the estimators for the configuration location and the scale

parameter of the “best” elliptical model chosen using Schwarz’s criterion. We arrive then,

at the final step.
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2.4 Hypothesis Testing

Finally, given that the likelihood can be evaluated and optimised, a type of likelihood

ratio test can be performed to examine questions such as a particular configuration for a

population, or the for differences in configuration between two populations, or the one-

dimensional uniform shear of two populations.

In statistical shape analysis, large sample standard likelihood ratio tests are those most

frequently used, see for example Dryden and Mardia (1998), by mean of Wilk’s theorem.

Explicitly, they are used to test whether H0 : U ∈ Ω0 versus Ha : U ∈ Ω1, where Ω0 ⊂

Ω1 ⊆ ℜKq, with dim(Ω0) = p < Kq and dim(Ωa) = r ≤ Kq. Thus, the −2 log-likelihood

ratio is given by

−2 logΛ = 2 sup
Ha

log L(U , σ2) − 2 sup
H0

log L(U , σ2),

and by Wilk’s theorem for large samples, the distribution of the null hypothesis H0 (see

Dryden and Mardia (1998)) follows

−2 logΛ ≈ χ2
r−p.

In a similar way we can test differences in configurations between two populations; assuming

that the latter hypothesis is rejected, then an interesting test can be performed on the one-

dimensional uniform shear of two populations, which determines the amount of deformation

axis by axis. Note that classical statistical shape analysis (pre-shape, size and shape, shape,

reflection shape, reflection size and shape, cone, disk), which is based on Euclidean trans-

formations assumes that any shape is uniformly deformed in any dimension, which certainly

is very idealistic, but the configuration density accepts different degrees of uniform shearing

among the axes.

Explicitly, if we wish to test uniform shear in the i coordinate of two populations,

then the testing procedure lies in H0 : µ1B = µ1B versus H0 : µ1B 6= µ1B, where

B = (0, . . . , i, . . . , 0)′ and the configuration density U becomes UB. Note that the new con-

figuration density is simpler, since it is just a vector density and is thus easier to compute.

Thus, the whole inference procedure of the above four steps can be carried out for

particular landmark data (for example see Dryden and Mardia (1998) and Bookstein (1991)),

and thus far we can consider the inference problem numerically solvable.

3 Further Simplifications: Polynomial Configuration Den-

sities

Indeed, the whole elliptical configuration problem may be overcome, and there are interesting

simplifications which open up promising lines for future work. In this section, we make an

introductory exploration of the problem, before concluding the work with some applications.

Although the zonal polynomials are computed very fast, the problem is now one of the

convergence and truncation of the above series in order to perform the numerical optimisa-

tion. In this respect, Koev and Edelman (2006) state:
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“Several problems remain open, among them automatic detection of convergence . . . and

it is unclear how to tell when convergence sets in. Another open problem is to determine

the best way to truncate the series.”

Thus the numerical difficulties implicit in the truncation of any configuration density

series of type (2.5) motivate two areas of investigation: on the one hand, the continuing the

numerical approach begun by (Koev and Edelman (2006)) with the confluent hypergeometric

functions and extending it to the case of Kotz, Pearson type VII, Bessel or Logistic-type

configuration series, for example; or the other, that of proposing a theoretical approach to

solve the problem analytically.

Let us now set out the second question, while leaving its implications for future study.

First represent the configuration density as in (2.5).

The above series can be polynomials if we use the following basic principle.

Lemma 3.1. Let N − K − 1 ≥ 1 as usual, and consider the infinite configuration density

CD1 = A 1P1

(
f(t) :

N − 1

2
;
K

2
;X

)
.

If the dimension K is even (odd) and the number of landmarks N is odd (even), respectively,

then the equivalent configuration density

CD2 = A 1P1

(
g(t) : −

(
N − 1

2
−

K

2

)
;
K

2
; h(X)

)
,

is a polynomial of degree K
(

N−1
2 − K

2

)
in the latent roots of the matrix X (otherwise the

series is infinite), for suitable f(t), g(t) and h(X).

Proof. Recall that τ = (t1, . . . , tK), t1 ≥ t2 ≥ · · · tK ≥ 0, is a partition of t and

(α)τ =

K∏

i=1

(
α −

1

2
(i − 1)

)

ti

,

where

(α)t = α(α + 1) · · · (α + t − 1), (α)0 = 1.

Now, if K is even (odd) and N is odd (even) then −
(

N−1
2 − K

2

)
= − q

2 is a negative integer

and clearly (− q
2 )τ = 0 for every t ≥ Kq

2 + 1, then CD2 is a polynomial of degree Kq
2 in the

latent roots of X.

Thus, the truncation problem being addressed, that of an infinite configuration density,

can be solved by finding an equivalent polynomial configuration density according to the

preceding lemma and by selecting an appropriate number of landmarks in the figure.

Given an elliptical configuration density CD1 indexed by function f(t), a = N−1
2 > 0,c =

K
2 > 0, the crucial point consist in finding an integral representation valid for c−a = − q

2 < 0

leading to an equivalent elliptical configuration density CD2 indexed by a function g(t).
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Then the series CD2 becomes a polynomial when K is even (odd) and N is odd (even),

respectively.

We have previously seen this type of relation, when f(t) is a constant, i.e. in corollary

2.1; in this case lemma 3.1 is reduced to the Kummer relations and the corresponding

configuration densities (which include Gaussian density) are polynomials when we select an

odd (even) number of landmarks N according to an even (odd) dimension of K, respectively.

The implications of the polynomial distributions for applications avoid the above-mentioned

open problem of truncation, as described in Koev and Edelman (2006).

The above discussion is important for a generalisation of Kummer type relations; for ex-

ample, equalities for non constant f(t), i.e. expressions of g(t) and h(X) for non R-normal

models (2.4). Some advances in this direction are available from the authors, for example,

concerning the generalised Kummer relations for a Kotz type distribution (T positive inte-

ger), while a Pearson type VII model one based on a Beta type integral representation has

ratified that 1P1 (f(t) : a; c;X) =1 P1 (g(t) : c − a; c;−X), for the corresponding f, g, but in

the case of c − a > 0. The next step is to prove the relations for c − a < 0, by a Laplace

representation type, and then lemma 3.1 can be applied to Kotz type and Pearson type VII

configuration densities and the respective series become polynomials.

Meanwhile, fortunately, we can perform inference with the polynomials of Corollary 2.1,

especially with the Gaussian case R = 1
2 .

Corollary 3.1. If Y ∼ NN−1×K(µN−1×K , σ2
IN−1 ⊗ IK), K is even (odd) and N is odd

(even), respectively, then the polynomial isotropic noncentral normal configuration density

is given by

ΓK

(
N−1

2

)

πKq/2|IK + V′V|
N−1

2 ΓK

(
K
2

) etr

(
1

2σ2
µ

′
U(U′

U)−1
U

′
µ −

1

2σ2
µ
′
µ

)

× 1F1

(
−

q

2
;
K

2
;−

1

2σ2
µ
′
U(U′

U)−1
U

′
µ

)
,

and it is a polynomial of degree K
(

N−1
2 − K

2

)
in the latent roots of

1

2σ2
µ
′
U(U′

U)−1
U

′
µ.

4 Applications

In this section we consider a planar classical application in statistical shape analysis. The

following situations are sufficiently studied by shape based on Euclidean transformations

and asymptotic formulae. Here, exact inference is utilised, in the sense that we shall use

the exact densities and compute the likelihood exactly by using zonal polynomial theory.

We shall test configuration differences under the exact gaussian configuration density,

with applications include biology (mouse vertebrae, gorilla skulls, girl and boy craniofacial

studies), medicine (brain MR scans of schizophrenic patients) and image analysis (postcode

recognition).
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First we start with the two dimensional case. Corollary 3.1 then becomes:

Corollary 4.1. If Y ∼ NN−1×2(µN−1×2, σ
2
IN−1 ⊗ I2), and N is odd, then the polynomial

two dimensional isotropic noncentral normal configuration density is given by

Γ2

(
N−1

2

)

πN−3|I2 + V′V|
N−1

2 ΓK (1)
etr

(
1

2σ2
µ

′
U(U′

U)−1
U

′
µ −

1

2σ2
µ

′
µ

)

× 1F1

(
−

N − 3

2
; 1;−

1

2σ2
µ
′
U(U′

U)−1
U

′
µ

)
,

and it is a polynomial of degree N − 3 in the two latent roots of

1

2σ2
µ
′
U(U′

U)−1
U

′
µ.

Then, we apply the confluent hypergeometric given in the appendix to the class of

problems and consider it an area for future study with other elliptical models and situations.

4.1 Biology: Mouse Vertebrae

This problem has been studied in depth by Dryden and Mardia (1998). The data come

from an investigation into the effects of selection for body weight on the shape of mouse

vertebrae, with the experiments considering the second thoracic vertebra T2 of 30 control

(C), 23 large (L) and 23 small (S) bones. The control group contains unselected mice, the

large group contains mice selected at each generation according to large body weight and the

small group was selected for small body weight. In order to apply the polynomial densities

we do not consider the third landmark of the total of 6 proposed (see Dryden and Mardia

(1998, p. 10), and the data given in p. 313-316).

Inference is based on (A.1), a confluent hypergeometric polynomial of degree two; then

after a very simple computation we have the following configuration locations of the three

groups.

Table 1: Mouse vertebra

Group Ṽ11 Ṽ12 Ṽ21 Ṽ22 σ̃2

Control -0.10789 0.15594 0.0005299 -0.97056 0.00165

Large -0.084983 0.12436 0.00049203 -1.0787 0.0021303

Small -0.092342 0.21291 0.00052577 -1.018 0.0019863

Then the likelihood ratios (based on −2 logΛ ≈ χ2
4) for the paired tests H0 : U1 = U2

vs Ha : U1 6= U2, give the p-values: 2.8E − 9 for C-L; 177.769E− 7 for L-S and 3E − 10 for

C-S. Thus, we can say that there is strong evidence for different configuration changes, the

most important of which are between small and large, as expected.
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4.2 Biology: Gorilla Skulls

In this application, Dryden and Mardia (1998) investigate the cranial differences between

29 male and 30 female apes by studying 8 anatomical landmarks. In order to obtain a

polynomial configuration density, we removed landmark o (see Dryden and Mardia (1998,

p. 11), and the data in p. 317-318) and the corresponding confluent hypergeometric is a

polynomial of fourth degree, see (A.2).

The estimators of the configuration location and scale parameters are given below.

Table 2: Gorilla skulls

Group Ṽ11 Ṽ12 Ṽ21 Ṽ22

Female -0.28033 0.31315 -0.42269 -0.59672

Male -0.33313 0.42484 -0.43594 -0.5734

· · · Ṽ31 Ṽ32 Ṽ41 Ṽ42 σ̃2

· · · 0.27398 -1.4695 0.7363 -1.2665 0.0042665

· · · 0.30563 -1.306 0.73169 -1.0594 0.010057

Thus the likelihood ratio (based on −2 logΛ ≈ χ2
8) for H0 : U1 = U2 vs Ha : U1 6= U2 of

the configuration location cranial difference between the sexes of the apes gives a p-value of

12.74E − 13. This clearly ratifies the conclusion of strong evidence for differences between

the female and male configuration locations.

4.3 Biology: The university School Study Subsample

In this experiment, Bookstein (1991) studies sex shape differences between 8 craniofacial

landmarks for 36 normal Ann Arbor boys and 26 girls aged about 8 years. In order to obtain

a polynomial configuration density, we discard the Sella landmark (see Bookstein (1991, pp.

401-405)), and then the hypergeometric functions is a polynomial of fourth degree, see (A.2).

Thus the likelihood ratio (based on −2 logΛ ≈ χ2
8) for H0 : U1 = U2 vs Ha : U1 6= U2

of the configuration location cranialfacial difference between the boys and girls gives a p-

value of 0.7053. The difference between these two configuration locations is insignificant. A

similar overall conclusion was drawn by Bookstein (1991), although a more detailed study of

the landmark subset is required for possible differences to be detected, as Bookstein (1991)

ratifies in a different shape context.

4.4 Medicine: Brain MR Scans of Schizophrenic Patients

Let us return to the applications described in Dryden and Mardia (1998), in their study of

13 landmarks on a near midsagittal two dimensional slice from magnetic resonance (MR)
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Table 3: The university school study subsample

Group Ṽ11 Ṽ12 Ṽ21 Ṽ22

Male -1.2425 2.1948 0.46435 -1.3752

Female -1.2483 2.2331 0.43685 -1.3845

· · · Ṽ31 Ṽ32 Ṽ41 Ṽ42 σ̃2

· · · -0.91487 0.66127 0.15775 -0.069042 0.0032908

· · · -0.92903 0.70439 0.1616 -0.077236 0.0059142

brain scans of 14 schizophrenic patients and 14 normal patients. Given that the number of

two dimensional landmarks is odd, we preserve them and thus obtain a 10 degree confluent

hypergeometric polynomial, which is straightforwardly computed, see (A.5).

Table 4: Brain MR scans of schizophrenic patients

Group Ṽ11 Ṽ12 Ṽ21 Ṽ22 Ṽ31 Ṽ32

Normal -0.64099 2.6942 -1.2744 -2.8323 -0.42155 -1.003

Squizo. -0.68623 2.393 -1.145 -2.8484 -0.37349 -1.0744

Ṽ41 Ṽ42 Ṽ51 Ṽ52 Ṽ61 Ṽ62

-0.31011 -2.3094 -0.30236 -3.5261 0.36 -0.90135

-0.23173 -2.1929 -0.20173 -3.3226 0.38123 -0.84316

Ṽ71 Ṽ72 Ṽ81 Ṽ82 Ṽ91 Ṽ92

0.1597 -2.2205 0.8518 -0.7578 1.8686 0.86501

0.20429 -2.109 0.84683 -0.56588 1.7948 0.88466

Ṽ10,1 Ṽ10,2 σ̃2

-0.14205 0.20718 0.010843

-0.079005 0.1378 0.054064

Dryden and Mardia (1998) given a warning about the small sample size of this ex-

periment; obviously it would be possible to account for the opposite result on the basis

−2 logΛ ≈ χ2
20, which means a p-value of 0.9174. Dryden and Mardia (1998) concluded

that there were mean shape differences, but the configuration difference is definitely in-
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significant. The most important fact here is the geometrical meaning of the data, because

it certainly differs from preceding values, which have an explicit geometrical explanation.

4.5 Image Analysis: Postcode Recognition

This, again, is a 13 landmark problem, which supposes a 10 degree confluent hypergeometric

polynomial. In this case, Dryden and Mardia (1998) studied 30 random samples of the

handwritten digit 3 for the proposes of postcode recognition. The study data are available

in Dryden and Mardia (1998, pp. 318-320).

The Table 5 shows, the configuration location and scale parameter estimates, together

with the configuration coordinates of a template number 3 digit, with two equal sized arcs,

and 13 landmarks (two coincident) lying on two regular octagons (see Dryden and Mardia

(1998, p. 153)).

Table 5: Postcode recognition

Group Ṽ11 Ṽ12 Ṽ21 Ṽ22 Ṽ31 Ṽ32

Digit 3 -0.79087 1.9432 -2.1073 1.5875 -2.713 0.81862

Template -2.0908 2.2071 -4.0409 2.8051 -4.5904 2.2904

Ṽ41 Ṽ42 Ṽ51 Ṽ52 Ṽ61 Ṽ62

-2.8084 -0.066901 -2.5712 0.71315 -2.6934 1.2955

-4.2069 1.3688 -3.3126 1.7582 -3.5881 2.7053

Ṽ71 Ṽ72 Ṽ81 Ṽ82 Ṽ91 Ṽ92

-3.1548 1.6802 -3.8004 1.34 -4.0517 0.33141

-5.4996 4.0629 -7.5557 4.8428 -8.2514 4.4208

Ṽ10,1 Ṽ10,2 σ̃2

-3.7659 -0.6583 0.22904

-6.9108 2.8899

Thus the likelihood ratio based on −2 logΛ ≈ χ2
20, gives an approximately zero p-value.

This result was corroborated with a probability of ≈ 0.0002 by Dryden and Mardia (1998,

p. 153), under a shape model. In any case, there is strong evidence that the configuration

location does not have the configuration of the ideal template for the digit 3.

Finally, let us note that the remaining planar applications in Dryden and Mardia (1998)

and Bookstein (1991), etc. can be studied with the polynomial configuration densities and
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exact formulae for zonal polynomials; in fact, the three dimensional applications available

in the literature (see Goodall and Mardia (1993)) and others in genetics for 3D DNA part,

etc., can be studied in an exact form with the help of corollary 2.1 via lemma 3.1 and exact

formulae for zonal polynomials of third degree in James (1964), avoiding the open truncation

problems implicit in Koev and Edelman (2006). Moreover, some comparisons among the

shape models can be performed via Remark 1 and other tests for uniform deformations

(see Subsection 2.4) can be performed. This shall be considered in a subsequent study. Of

course, the study of polynomial configuration densities associated to Pearson, Bessel, logistic

and the general Kotz distribution shall facilitate exact inference and avoid the truncation

problem addressed here, but this shall depend on developments in integration and series

representation. In fact, potentially, the distribution of the likelihood ratio could be studied

by using low-degree polynomial configuration densities. These questions are currently being

investigated.
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polynomials of the second order. Applicationes Mathematicae, (Warsaw) 34, 113–119.
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A A Finite Series for Planar Applications of Maximum

of 21 Landmarks

Given that most applications in shape theory come from two-dimensional images (see Dry-

den and Mardia (1998)), it is important to give explicit expressions for the polynomials

1F1

(
−(N − 3)/2; 1;−µ

′
U(U′

U)−1
U

′
µ/2σ2

)
involved in corollary 4.1 when N = 5, 7, 9, . . .

is small. Let x, y be the eigenvalues of Ω = µ
′
U(U′

U)−1
U

′
µ/2σ2, then we have for

N = 5, 7, . . . , 21 the following list of polynomials of degree Kq/2 = N −3; these expressions

are useful for exact inference of the corresponding configuration densities. In this case, we

use the exact formulae for zonal polynomials given by James (1968) -see also Caro-Lopera

et al. (2007). In fact, all the applications studied in Dryden and Mardia (1998) have

maximum of 21 landmarks (which implies a polynomial of 18 degrees in the two eigen-

values of the corresponding matrix), and therefore the following confluent hypergeometric

expressions are sufficient for their corresponding configuration analysis. Note that the cited

applications demand formulae for second-order zonal polynomials up to maximum of 18 de-

gree; these expressions have been available since the 1960s, and so the numerical algorithms

of Koev and Edelman (2006), very useful for infinite series, but with the addressed problem

of truncations, are not needed here. It has been possible to study the exact inference on

configuration densities since the configurations were first proposed by Goodall and Mardia

(1993).

Observe that the selection of an odd number of landmarks for planar applications sug-

gests that one of the available remarks usually studied for approximation methods could be

deleted. Clearly, it is also possible to reduce by one any group of preset even landmarks;

however we shall leave the decision to an expert. In view of the number of odd landmarks,
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we suggest examination of some problems studied by Dryden and Mardia (1998) but in the

context of polynomial Gaussian configuration densities (in parentheses the original number

of landmarks studied by Dryden and Mardia (1998)).
Series with up to 15 landmarks are easily computed (the figure in parentheses indicates

the number of landmarks in the original source of Dryden and Mardia (1998)(DM) and
Bookstein (1991)(B), respectively):

• N = 5: Mouse vertebra (6)(DM),

1 + y + x + 2 yx (A.1)

• N = 7: Gorilla skulls (8)(DM), the university school study subsample (8)(B),
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• N = 9:
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• N = 11: Sooty mangabeys (12)(DM).
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• N = 13: Brain MR scans of schizophrenic patients (13)(DM), postcode recognition (13)(DM)
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• N = 15:

1 + 6 x + 80 y
2
x + 6 y +

1445

12
y
2
x

2 +
353

6
y
2
x

3 +
353

6
y
3
x

2 + 80 yx
2

+
75

2
y
3
x +

75

2
yx

3 + 57 yx +
5

8
x

4 +
29

4
yx

4 +
29

4
y
4
x +

71

120
yx

5

+
134

14175
y
5
x

5 +
34

315
y
5
x

4 +
34

315
y
4
x

5 +
1

36
y
6
x

2 +
23

45
y
5
x

3

+
263

210
y
4
x

4 +
23

45
y
3
x

5 +
1

36
y
2
x

6 +
1

60
y
6
x +

35

36
y
5
x

2 +
181

30
y
4
x

3

+
181

30
y
3
x

4 +
35

36
y
2
x

5 +
1

60
yx

6 +
2

135
y
6
x

3 +
2

135
y
3
x

6 +
1

315
y
6
x

4

+
1

315
y
4
x

6 +
4

14175
y
6
x

5 +
4

467775
y
6
x

6 +
4

14175
y
5
x

6 +
1

720
x

6

+
1

720
y
6 +

71

120
y
5
x +

187

16
y
4
x

2 +
5339

180
y
3
x

3 +
187

16
y
2
x

4 +
15

2
y
2

+
15

2
x

2 +
10

3
y
3 +

10

3
x

3 +
5

8
y
4 +

1

20
y
5 +

1

20
x

5 (A.6)

• N = 17:
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• N = 19:
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• N = 21: Microfossils (21)(DM).
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