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summary

The autocorrelation parameter of AR(1) model is estimated very often by the
ordinary least squares estimator (OLSE) due to its simplicity. The present in-
vestigation aims at deriving the algebraic expression of the covariance between
two OLSE’s obtainable from two overlapping (OS) or non-overlapping (NOS) or
gapping (GS) series whatsoever choosing from the given whole series. Such ex-
pression is used to obtain the expressions of bias, mean square error and variance
of Quenouille’s estimator (1956). Based on OS splitting, a Quenouille-type fam-
ily and another competent family of estimators are suggested. Their comparative
performances are discussed in respect of bias and mean square error.
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1 Introduction

Let us consider an AR(1) model arising from a Markovian stochastic process

ut = ρut−1 + et, (1.1)

where t = 1, 2, . . ., et ∼ N1(0, σ2
e) and u0 ∼ N1(0, σ2

e/θ). et’s are independently distributed

and also independent of u0. θ = 1 − ξ, ξ = ρ2, |ρ| < 1. Clearly, E(ut) = 0, Cov(ut−k, ut) =

ρk(σ2
e/θ), but Cov(ut−k, et) = 0 for k > 0. The parameter ρ is customarily called autocor-

relation parameter. Given a series of observations, ρ is usually estimated by the ordinary

least squares estimator (OLSE) having the simplest expression (viz. Koutsoyiannis, 1996,

§10.1). Expression of OLSE is also a good approximation to maximum likelihood estimate

based on approximated likelihood function under normal set-up as assumed in (1.1) (Kendall

and Stuart, 1968, §50.4). Quite competently first order serial correlation coefficient is also
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an well known estimator where 1st order bias may be eliminated by Quenouille’s method

(Kendall and Stuart, 1968, §48.4).

The present investigation aims at obtaining the covariance between two OLSE’s of ρ

(say, R1 and R2) based on two series originated from (1.1), e.g.

1stseries : {u1, u2, . . . , um; um+1, um+2, . . . , um+n} ≡ {ut}m+n
1

2ndseries : {um+1, um+2, . . . , um+n; um+n+1, um+n+2, . . . , um+n+p} ≡ {ut}m+n+p
m+1

which comprise (m + n) and (n + p) observations respectively. We define

R1 =

∑m+n−1
1 utut+1
∑m+n−1

1 u2
t

, R2 =

∑m+n+p−1
m+1 utut+1
∑m+n+p−1

m+1 u2
t

. (1.2)

Clearly, the two series as stated above would be overlapping (OS) or non-overlapping (NOS)

according as n > 0 or n = 0. Additionally, there may arise another situation when the two

series are quite separated e.g. {u1, u2, . . . , um} and {um+n+1, um+n+2, . . . , um+n+p}. In the

case of such gapping series (GS), R1 and R2 in (1.2) would have (m + n − 1) and (m + 1)

to be replaced by (m − 1) and (m + n + 1) respectively.

Covering the algebraic derivation of Cov(R1, R2) for OS, NOS and GS series in §2, we

show its application in §3 to obtain the bias, mean square error and variance of Quenouille’s

estimator (R′) (1956) for ρ which is actually aimed at reducing the bias in estimating ρ.

Since two subseries on which R1 and R2 are based are clearly correlated due to their

generation from AR(1) model, R1 and R2 must have some statistical association which could

be measured by usual correlation coefficient between R1 and R2. One alternative measure

of association based on their MSE’s and Mean Product Error (MPE) has been suggested in

§4.

Recalling Quenouille’s estimator (Quenouille, 1956), we, next, demarcate a family of

estimators for ρ, named Quenouille-type family (or simply Q-family) based on OS splitting

series. Trivially, Quenouille’s estimator is the leading member of these family having min-

imum second order bias. Members of this family are adjudged in view of their biasedness

and mean square error (MSE) in §5. In §6 one new family of OS splitting estimators (called

M-family) is suggested, with an intuition to reduce the influence of superimposing part com-

mon to two sub-series. Relevant comparison between Q-family and M-family is also shown

in respect of bias and MSE criteria. In §7, the findings of a Monte Carlo experiment are

recorded in a brief form. Finally, some concluding remarks over the present investigation

are placed in §8.

2 Derivation of Cov(R1, R2)

Let us denote

A1 =

m+n−1
∑

1

utut+1, A2 =

m+n+p−1
∑

m+1

utut+1. (2.1)
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A1 and A2 may be conveniently split into six components each under model (1.1).

A1 = ρ

m−1
∑

1

u2
t +

m−1
∑

1

utet+1 + ρu2
m + umem+1 + ρ

m+n−1
∑

m+1

u2
t +

m+n−1
∑

m+1

utet+1.

A2 = ρ

m+n−1
∑

m+1

u2
t +

m+n−1
∑

m+1

utet+1 + ρu2
m+n + um+nem+n+1

+ρ

m+n+p−1
∑

m+n+1

u2
t +

m+n+p−1
∑

m+n+1

utet+1.

Clearly,

E(A1) =
(m + n − 1)ρ

θ
σ2

e , E(A2) =
(n + p − 1)ρ

θ
σ2

e . (2.2)

In order to derive the expression of E(A1A2), we are to make an algebraic sum of the

expectations of as many as 36 terms where typically kth term (Tk) is the product of rth

component of A1 and sth component A2, k = 6(r−1)+s. We have derived E(Tk), k = 1(1)36;

r, s = 1(1)6. Two accessories often used for such purpose are presented here in the form of

a lemma.

Lemma 2.1. Under (1.1)

(i) E(u2
ju

2
i ) = (σ4

e/θ2)(1 + 2ξj−i), j ≥ i.

(ii) E(u2
juiei+1) = 2(σ4

e/θ)(ξj−i/ρ), j > i. Q .E .D .

We furnish here the expressions of E(Tk) excluding their common multiplier (ξ/θ2)σ4
e .

E(T1) = (m − 1)(n − 1) +
2ξ2(1 − ξm−1)(1 − ξn−1)

θ2
E(T3) = (m − 1) +

2ξn+1(1 − ξm−1)

θ
.

E(T5) = (m − 1)(p − 1) +
2ξn+2(1 − ξm−1)(1 − ξp−1)

θ2
. E(T7) =

2ξ

θ
(1 − ξm−1)(1 − ξn−1).

E(T9) = 2ξn(1 − ξm−1). E(T11) =
2ξn+1(1 − ξm−1)(1 − ξp−1)

θ
.

E(T13) = E(T27) = (n − 1) +
2ξ

θ
(1 − ξn−1). E(T15) = 1 + 2ξn.

E(T17) = (p − 1) +
2ξn+1(1 − ξp−1)

θ
. E(T19) = E(T33) = 2(1 − ξn−1).

E(T21) = 2(1 − ξn−1)(1 − ξ). E(T23) = 2(1 − ξn)(1 − ξp−1).

E(T25) = (n2 − 1) +
4(n − 2)ξ

θ
− 4ξ2(1 − ξn−2)

θ2
. E(T26) = E(T31) = 2(n − 2) − 2ξ

θ
(1 − ξn−2).

E(T29) = (n − 1)(p − 1) +
2ξ2

θ2
(1 − ξn−1)(1 − ξp−1). E(T32) = (n − 1)

θ

ξ
.

E(T35) =
2ξ

θ
(1 − ξn−1)(1 − ξp−1). E(Ti) = 0, i = 2, 4, . . . , 24, 28, 30, 34, 36.

for m ≥ 1, n ≥ 1 , p ≥ 1.



24 Maiti

Proposition 2.1.

(i) For OS,

Cov (A1, A2) =
σ4

e

θ2

[

(n − 1)(1 + ξ +
4ξ

θ
) +

2

θ2
(ξn − ξm+1 − ξp+1 + ξm+n+p)

]

, m, n, p ≥ 1.

For GS,

Cov (A1, A2) =
2σ4

e

θ2

[

ξn+2(1 − ξm−1)(1 − ξp−1)

θ2

]

, m, n, p ≥ 1.

For NOS,

Cov (A1, A2) =
2σ4

e

θ2

[

ξ2(1 − ξm−1)(1 − ξp−1)

θ2

]

, m, p ≥ 1.

(ii) For A =
∑n−1

1 utut+1,

V (A) =
σ4

e

θ2

[

(n − 1)(1 + ξ +
4ξ

θ
) − 4ξ

θ2
+

4ξn

θ2

]

, for n ≥ 2.

(iii) For B =
∑n−1

1 u2
t ,

V (B) =
2σ4

e

θ2

[

(n − 1)

(

1 +
2ξ

θ

)

− 2ξ

θ2
+

2ξn

θ2

]

, for n ≥ 2.

(iv) For A and B as defined above,

Cov(A, B) =
2ρσ4

e

θ2

[

(2n − 3)

(

1 +
ξ

θ

)

− 2ξ

θ2
+

ξn−1

θ
+

2ξn

θ2

]

, for n ≥ 2.

Proof.

(i) Assembling all the non-vanishing terms of E(Tk), k = 1(1)36, we obtain E(A1A2) from

which subtracting E(A1)E(A2) (vide (2.2)), Cov(A1, A2) may be expressed with some

algebraic effort. For GS(m ≥ 1, n ≥ 1, p ≥ 1) and for NOS (m ≥ 1, n = 0, p ≥ 1),

only E(T5), E(T6), E(T11) and E(T12) would be necessary to obtain Cov(A1, A2).

(ii) Once we choose m = 0 and p = 0 in A1 and A2 , we get A =
∑n

1 utut+1, n ≥ 1 so that

E(A2) requires the sum of only four terms, e.g. E(T25), E(T26), E(T31) and E(T32)

to get at the expression of V (A). It may be remarked that mere substituting m = 0

and p = 0 in the expression of Cov(A1, A2) will not really do.
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(iii)

E(B2) = E

(

n−1
∑

1

u2
t

)2

=
σ4

e

θ2

[

(n2 − 1) + (n − 2)
4ξ

θ
− 4ξ2

θ2
+

4ξn

θ2

]

.

[vide E(T25)] Q.E.D.

(iv)

Cov

(

n−1
∑

1

utet+1, B

)

= E





n−1
∑

j=1

u2
j

n−1
∑

i=1

uiei+1



 =
2σ4

e

θ2
ρ

[

(n − 2) − ξ

θ
+

ξn−1

θ

]

.

[vide E(T31)]

Noting that Cov(A, B) = ρV (B) + Cov(
∑n−1

1 utet+1, B), the proof is now simple.

Q.E.D.

Proposition 2.2. Given A =
∑n−1

1 utut+1 and B =
∑n−1

1 u2
t , define R = A

B
, B(R) = bias

in estimating ρ by R = E(R)−ρ and MSE(R) = Mean square error in R = E(R−ρ)2.Then

(i) B(R) = − 2ρ
n−1

[

1 − 1−ξn−1

(n−1)θ

]

≈ − 2ρ
n−1

[

1 − 1
(n−1)θ

]

(ii) MSE(R) = θ
n−1 − 8ξn+2

θ2(n−1)2 ≈ θ
n−1

(iii) V (R) = θ
n−1 − 8ξn+2

θ2(n−1)2 − 4ξ
(n−1)2

[

1 − 1−ξn−1

(n−1)θ

]2

≈ θ
n−1 − 4ξ

(n−1)2

[

1 − 1
(n−1)θ

]2

Proof. Treating R as a function f(A, B) of A and B, let us expand f(A, B) at the expecta-

tions EA and EB of A and B respectively by Taylor series:

f(A, B) = f(EA, EB) + (A − EA)
∂f

∂A
|E +(B − EB)

∂f

∂B
|E +

1

2
[(A − EA)2

∂2f

∂A2
|E

+ (B − EB)2
∂2f

∂B2
|E +2(A − EA)(B − EB)

∂2f

∂A∂B
|E ] + · · ·

The notation E is meant for replacing A and B by EA and EB in the expressions of the

partial derivatives. EA = ρEB and EB = (n − 1)
σ2

e

θ
.

Now,

∂f

∂A
=

1

B
,

∂f

∂B
= − A

B2
,
∂2f

∂A2
= 0,

∂2f

∂B2
=

2A

B3
,

∂2f

∂A∂B
= − 1

B2
.

Let us assume that the terms involving higher than 2nd order partial derivatives have

negligible contributions to the Taylor series. Then B(R) and MSE(R) would have the

following approximated formulae.
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B(R) = Ef(A, B) − ρ = Ef(A, B) − f(EA, EB) ≈ V (B)
EA

(EB)3
− Cov(A, B)

(EB)2

MSE(R) = E(R − ρ)2 ≈ V (A)

(EB)2
+

V (B)(EA)2

(EB)4
− 2

Cov(A, B)(EA)

(EB)3

Remembering further that

V (R) = MSE(R) − [B(R)]2,

we may apply the Prop.2.1 (ii), (iii) and (iv) to complete the proof. Q.E.D.

Note 2.1 Defining first order sample serial correlation by

r1 =

n−1
∑

1

utut+1 −
1

n − 1

(

n−1
∑

1

ut

)(

n−1
∑

1

ut+1

)

√

√

√

√

n−1
∑

1

u2
t −

1

n − 1

(

n−1
∑

1

ut

)2
√

√

√

√

n−1
∑

1

u2
t+1 −

1

n − 1

(

n−1
∑

1

ut+1

)2
.

Marriott and Pope (1954) derived (up to 1st order bias)

B(r1) = −1 + 3ρ

n − 1

whereas due to Prop.2.2(up to 2nd order bias)

B(R) = − 2ρ

n − 1

[

1 − 1

(n − 1)θ

]

showing that 1st order bias in r1 is more than that in R. �

We now set up the following results based on two OLSE’s, viz. R1 and R2 as defined in

(1.2).

Proposition 2.3.

(i) For OS, the mean product error(MPE) and covariance between R1 and R2 are given

respectively as,

MPE(R1, R2) = E(R1 − ρ)(R2 − ρ) =
n − 1

(n + m − 1)(n + p − 1)
θ,

Cov(R1, R2) =
n − 1

(n + m − 1)(n + p − 1)
θ

− 4ξ

(n + m − 1)(n + p − 1)

[

1 − 1 − ξm+n−1

(m + n − 1)θ

] [

1 − 1 − ξn+p−1

(n + p − 1)θ

]

.



Reduction of Bias and Mean Square Error . . . 27

(ii) For GS and NOS , MPE(R1, R2) = 0,

Cov(R1, R2) = − 4ξ

(m − 1)(p − 1)

[

1 − 1 − ξm−1

(m − 1)θ

] [

1 − 1 − ξp−1

(p − 1)θ

]

.

Proof.

(i) Re-expressing (2.1) as A1 = ρB1 + A′
1 and A2 = ρB2 + A′

2, where

A′
1 =

m+n−1
∑

1

utet+1 and A′
2 =

m+n+p−1
∑

m+1

utet+1;

Ri = ρ +
A′

i

Bi

and B(Ri) = E(Ri − ρ) = E

(

A′
i

Bi

)

; i = 1, 2.

So that

Cov(R1, R2) = E

(

A′
1

B1

A′
2

B2

)

− B(R1)B(R2). (2.3)

Now, E(A′
1A

′
2) is obtained by summing the expectations of only 9 terms, namely T8,

T10, T12, T20, T22, T24, T32, T34 and T36 among which E(T32) is the only non-vanishing

one.

Thus E(A′
1A

′
2) = E(T32) = (n − 1)(σ4

e/θ). Applying Taylor series expansion (as used

in proving Prop.2.2)

MPE(R1, R2) = E(R1 − ρ)(R2 − ρ) = E

(

A′
1

B1

A′
2

B2

)

≈ E(A′
1A

′
2)

(EB1)(EB2)
=

(n − 1)θ

(m + n − 1)(n + p − 1)
. (2.4)

Using (2) in (2.4) and applying Prop.2.2(i) the result is obvious.

(ii) For n = 0, E(A′
1A

′
2) reduces to only E(T12) which is equal to 0. Q.E.D

3 Application to Quenouille’s Estimator

In order to eliminate 1st order bias, Quenouille (1956) split a single series {u1, u2, . . . , u2n}
into two halves, e.g.{u1, u2, . . . , un} and {un+1, un+2, . . . , u2n}. Let R, R1 and R2 be the

OLSE’s of ρ based on the series as a whole and on 1st and 2nd halves respectively. Que-

nouille’s estimator is given by

R′ = 2R − (R1 + R2)

2
. (3.1)

Following proposition concerns with the approximate expressions of the bias, MSE and

variance of R′.
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Proposition 3.1.

(i) B(R′) ≈ 4ρ

(2n − 1)(2n − 2)

[

1 − (2n)2 − 2

(2n − 1)(2n − 2)θ

]

.

(ii) MSE(R′) ≈ θ

2n − 2
.

(iii) V (R′) ≈ θ

2n − 2
− 16ξ

(2n − 1)2(2n − 2)2

[

1 − (2n)2 − 2

(2n − 1)(2n − 2)θ

]2

.

Proof. (i) The proof is based exclusively on Prop.2.2.

(ii) To derive MSE(R′) , we shall make use of the following results based on Prop.2.2 and

Prop.2.3.

Due to Prop.2.2(ii),

MSE(R) =
θ

2n− 1
, MSE(R1) =

θ

n − 1
, MSE(R2) =

θ

n − 1
.

Due to Prop.2.3(ii),

MPE(R1, R2) = 0,

Choosing m = n and p = 0 in Prop.2.3(i),

MPE(R2, R) =
θ

2n − 1
.

However, we shall pay a special attention to the case of deriving MPE(R1, R).

A′
1 =

n−1
∑

1

utet+1, B1 =

n−1
∑

1

u2
t ,

A′
2 =

2n−1
∑

1

utet+1 = A′
1 +

2n−1
∑

n

utet+1,

B2 =

2n−1
∑

1

u2
t = B1 +

2n−1
∑

n

u2
t

so that using E(T32) with m = 0, E(A′
1A

′
2) = E(A′

1)
2 =

σ4
e

θ
(n − 1).

Subsequently,

MPE(R1, R) ≈ E(A′
1A

′
2)

(EB1)(EB2)
=

θ

2n− 1
.
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Combining the above MSE’s and MPE’s, we obtain

MSE(R′) = 4MSE(R) +
1

4
[MSE(R1) + MSE(R2) + 2MPE(R1, R2)]

− 2 [MPE(R1, R) + MPE(R2, R)] ≈ θ

2n − 2
.

(iii) The proof is simple. Q.E.D.

Note 3.1 From Prop.2.2 and Prop.3.1 it is asserted again that the first order bias is

clearly removed in R′. But no appreciable improvement is noticed in MSE(R′) compared

to MSE(R). �

4 Association between R1 and R2

The statistical relationship between R1 and R2 may be studied by installing two kinds of

measure of association, e.g.

ϕR1,R2
=

Cov(R1, R2)
√

V (R1)V (R2)

and

ϕ∗
R1,R2

=
MPE(R1, R2)

√

MSE(R1)MSE(R2)

Clearly, |ϕR1,R2
| < 1 and

∣

∣ϕ∗
R1,R2

∣

∣ < 1. ϕR1,R2
is indeed the “Classical” (correlation coef-

ficient) measure between R1 and R2. Alternatively, in comparison, ϕ∗
R1,R2

may be treated

as a “Conventional” measure. Applying Prop.2.3 the following proposition on ϕ and ϕ∗ is

obvious.

Proposition 4.1. (i) For overlapping series (OS)

ϕR1,R2
=

(n − 1)θ − 4ξ
[

1 − 1
(m+n−1)θ

] [

1 − 1
(n+p−1)θ

]

√

(m + n − 1)θ − 4ξ
[

1 − 1
(m+n−1)θ

]2
√

(n + p − 1)θ − 4ξ
[

1 − 1
(n+p−1)θ

]2

≈
(n − 1) − 4

(

ξ
θ

)

√

(m + n − 1) − 4
(

ξ
θ

)

√

(n + p − 1) − 4
(

ξ
θ

)

, n ≥ 1,

ϕ∗
R1,R2

=
(n − 1)

√

(m + n − 1)(n + p − 1)
.

(ii) For non-overlapping as well as for gapping series (NOS & GS)

ϕR1,R2
=

−4
(

ξ
θ

)

√

(m − 1) − 4
(

ξ
θ

)

√

(p − 1) − 4
(

ξ
θ

)

, ϕ∗
R1,R2

= 0. �
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5 A family of Quenouille-type Estimator

Let us consider an OS splitting of a time series {ut}2n
1 into two parts as {ut}n+q

1 and

{ut}2n
n−q+1 consisting of (n+q) observations each but with 2q observations, namely {ut}n+q

n−q+1

in common. We define a family of Quenouille’s estimators {R′
q}n−1

0 , called Q-family as fol-

lows:

R′
q = 2R − (R1q + R2q)/2 (5.1)

where R, R1q, R2q are the OLSE’s of ρ based on the three series {ut}2n
1 , {ut}n+q

1 and

{ut}2n
n−q+1 respectively. Clearly, the leading member of (5.1), R′

0 (when q = 0) corresponds

to Quenouille’s estimator R′ (vide(3.1)). Of course, R′
0 is trivially based on {ut}n

1 , and

{ut}2n
n+1 comprising an NOS series.

Since every member of (5.1) is aiming at estimating the same parameter ρ, their perfor-

mances may be adjudged under the purview of two well-known criteria, e.g. squared bias

B2
q and mean square error (Mq) where

B2
q =

[

E(R′
q − ρ)

]2
and Mq = E(R′

q − ρ)2.

Applying Prop.2.2 (i) and 2.3 (i), we derive

B2
q =

4ξ

(2n − 1)2

[

2q − 1

n + q − 1
+

2n2 + 2q2 − 4nq + 4q − 1

θ(2n − 1)(n + q − 1)2

]2

, (5.2)

for q = 0, 1, 2, · · · , n − 1.

Recalling Prop.3.1 (ii), for q = 0,

M0 = MSE(R′
0) = MSE(R′) =

θ

2n − 2
. (5.3)

For q > 0,

Mq = MSE(R′
q)

= 4MSE(R) +
1

4
[MSE(R1q) + MSE(R2q) + 2MPE(R1q, R2q)]

− 2 [MPE(R1q, R) + MPE(R2q, R)] .

Along the proof of Prop. 3.1(ii), we note that

MSE(R) =
θ

2n − 1
, MSE(R1q) =

θ

n + q − 1
= MSE(R2q),

MPE(R1q, R2q) =
2q − 1

(n + q − 1)2
θ, MPE(R, R1q) =

θ

2n− 1
= MPE(R, R2q).

Finally,

Mq =
n + 3q − 2

2(n + q − 1)2
θ, for q = 1, 2, · · · , n − 1. (5.4)

So far as MSE criterion is concerned, the following proposition is quite easy to establish

algebraically.
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Proposition 5.1. (i) Mq ↓n uniformly over ξ for ξ ∈ (0, 1).

(ii) Mq ↑ξ uniformly over n for n = 2, 3, 4, · · · .

(iii) Mq ↑q for q = 1, 2, · · · ,
[

n+1
3

]

and

Mq ↓q for q =
[

n+1
3

]

+ 1, · · · , (n − 1) uniformly over any pair (ξ, n).

(iv) Maxq Mq = 9
8(2n−1) at q =

[

n+1
3

]

Minq Mq = 4n−5
8(n−1)2 at q = n − 1

(v) Interlace inequality:

Mn−1 < Mn−2 < M1 < M0 < Mn−3 < Mn−4 < Mn−5 < M2

< Mn−6 < · · · < Mn−9 < M3 < Mn−10 < · · · < M[n+1
3 ]. �

However, while studying squared bias criterion, the expression (5.2) of B2
q is hard to

tackle algebraically. But its monotonicity properties have been revealed through numerical

computations based on some selected triplets (n, ξ, q) and stated below in the form of a

conjecture.

Conjecture 5.1

(i) For any specific value of q , B2
q ↓n uniformly over ξ and B2

q ↓ξ uniformly over n,

(ii) B2
q ↓q uniformly over both ξ and n. �

Note 5.1 Quenouille’s estimator R′(= R′
0) has minimum squared bias but its MSE(= M0)

is not the least. Least MSE is possessed by the last member of the Q-family, namely by

R′
n−1. �

6 Optimum OS Splitting Estimator

6.1 Formulation of a family of OS splitting estimators

Recalling OS series on which R1 and R2 (vide (1.2)) are based, the common part {ut}m+n
m+1

may also provide an OLSE for ρ as

R3 =

{m+n−1
∑

m+1

utut+1

}

/

{m+n−1
∑

m+1

u2
t

}

On the basis of R1, R2 and R3, a family of intuitive estimators for ρ, called M-family may

be suggested as

R∗ = R1 + R2 − R3
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aiming at reducing bias through eliminating the “superimposing” influence of the common

series {ut}m+n
m+1 . Applying Props. 2.2 and 2.3, associated bias and MSE of R∗ would have

the following expressions.

B(R∗) = B(R1) + B(R2) − B(R3)

≈ −2ρ

[(

1

m + b
+

1

p + b
− 1

b

)

− 1

θ

(

1

(m + b)2
+

1

(p + b)2
− 1

b2

)]

MSE(R∗) = MSE(R1) + MSE(R2) + MSE(R3) + 2MPE(R1, R2)

− 2MPE(R1, R3) − 2MPE(R2, R3) ≈
mp + b2

b(m + b)(p + b)
θ (6.1)

where b = n − 1 for brevity.

Clearly, B(R∗) and MSE(R∗) are functions of the triplet (m, n, p) with total number of

observations N = m + n + p. Proposition 6.1 concerns with their minimizations in respect

of m, n and p.

Proposition 6.1. (i) For (m, n, p) = (m, [
√

mp]+1, p), corresponding R∗ possesses no

first order bias. B(R∗) ≈ − 4ρ
θ

. 1√
mp(

√
m+

√
p)2

(ii) For (m, n, p) = (
[

N−1
3

]

, (
[

N−1
3

]

+ 1, (
[

N−1
3

]

), corresponding R∗(say, R∗
0) satisfies

(i) and possesses minimum second order bias. B(R∗
0) ≈ − 9ρ

θ
. 1
(N−1)2 .

(iii) MSE(R∗) ↓n. For (m, n, p) = (1,N - 2, 1), corresponding R∗(say, R∗
a) possesses

minimum MSE. MSE(R∗
a) = 1+(N−3)2

(N−3)(N−2)2 θ.

(The notation [v] stands for the greatest integer contained in v.)

Proof. (i) Setting 1
m+b

+ 1
p+b

− 1
b

= 0, solution of b would be
√

mp.

(ii) Minimization of 1
(m+

√
mp)2 + 1

(p+
√

mp)2 − 1
(
√

mp)2 with respect to m and p under the

restriction m + (
√

mp + 1) + p = N will show the result.

(iii) Simple to prove. Q.E.D.

Note 6.1

(a) In view of Prop. 6.1(i), only integer value of
√

mp will show the 1st order bias com-

pletely eliminated. In case
√

mp ∈ (k, k + 1), k being an integer, 1st order bias will

not be eliminated but reducible to a minimum in which case (m, k, p) and (m, k + 1,

p) are both used for numerical comparison.

(b) As regards Prop. 6.1(ii), when N − 1 is a multiple of 3(say, 3k), (k, k + 1, k) will

provide unique R∗
0. Contrarily, for N − 1 = 3k + 1, (k + 1, k, k + 1) and (k, k + 2, k)

or for N − 1 = 3k + 2, (k + 1, k + 1, k +1) , (k, k +2, k +1) and (k + 1, k + 2, k) may

be tried with.
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6.2 Performance Comparison

(a) Biasedness Criterion

For comparison purpose we consider “minimum biased” estimators R′
0(= R′) and R∗

0

belonging to Q- and M-families respectively. Ratio of their bias is given by

∣

∣

∣

∣

B(R′
0)

B(R∗
0)

∣

∣

∣

∣

=
4

9

[

2N − 3

(N − 1)(N − 2)
+

(

N − 1

N − 2

)

ξ

]

.

whose maximum value would never exceed unity. Indeed bias in Quenouille’s estimator

(R′
0) is quite 50% lower than that in R∗

0. Clearly ,Quenouille’s estimator is superior

to any member of M-family so far as biasedness criterion is concerned.

(b) MSE criterion

Recalling (5.3), (5.4), (6.1) and Prop. 6.1(iii),

MSE(R′) = MSE(R′
0) = M0 ≈ θ

(N − 2)
, MSE(R′

n−1) = Mn−1 ≈ 2N − 5

2(N − 2)2
θ

MSE(R∗
0) ≈

3

2(N − 1)
θ, MSE(R∗

a) ≈
1 + (N − 3)2

(N − 3)(N − 2)2
θ.

from which

MSE(R∗
a) < MSE(R′

n−1) < MSE(R′) < MSE(R∗
0).

Recalling interlace inequality,

MSE(R∗
a) < MSE(R′

n−1) < MSE(R′
1) < MSE(R′

n−2) < MSE(R′
0) < · · ·

· · · < MSE(R′
[n+1

3 ]) < MSE(R∗
0).

Thus R∗
a belonging to M-family has better performance than every member of Q-family

so far as MSE criterion is concerned.

7 Monte Carlo Results

A model sampling experiment is conducted for ρ = ±0.05, ±0.3, ±0.5, ±0.8 over each

of artificially constructed AR(1) series comprising 10, 000 randomly generated observations

being started up with a random u0 from N1(0,
√

1 − ρ2) succeeded by 10, 000 random et’s

from N1(0, 1) (choosing σ2
e = 1).

We deliberately take the sample size N ( = 22, 52, 100) so as to get N
2 and N−1

3 as pure

numbers. The samples of size N each are now collected from the generated series, dropping

5 observations between each sample so as to ensure the samples to be free from seasonal

effects etc. The number (k) of such samples is 370, 175, 95 respectively for N = 22, 52, 100.
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For comparison purpose we confine ourselves to computing simulated bias and MSE of

only five competing estimates, e.g. R, R′, R′
n−1, R∗

0 and R∗
a for each sample. As for example,

simulated bias and MSE of R are computed as the averages of (R− ρ)’s and (R− ρ)2’s over

k samples of size N each. The comparison with corresponding approximated theoretical

values of bias and MSE are shown in the tables A.1,A.2, A.3 and A.4 in the appendix.

Tables A.1 and A.2 relate to computation of bias respectively for +ve and -ve ρ-values.

In respect of every pair (N, ρ) , 1st row show the theoretical biases (as were approximated up

to 2nd order in the derivation)while the 2nd corresponds to simulated estimate of bias related

to each of five estimators. Standard error(s.e.) of every simulated estimate of bias is next

shown in the 3rd row. To study the discrepancy, the entries of 4th row show the ratios being

defined by difference between the simulated and observed bias divided by twice the standard

error(V in Appendix A).As the ratios (V)are less than unity almost everywhere, simulated

and observed biases may be stated to be in a good agreement. But for (N, ρ) = (22,±0.05),

such ratios are quite larger than unity. It may be remarked here that the approximated

theoretical bias up to 2nd order is not enough for the agreement when N is too small and/or

|ρ| is nearing unity. However, these five estimators may be ordered in respect of amount of

bias from the least to the largest as (R, R′, R′
n−1, R∗

0,R
∗
a).

As regards the contents of tables A.3 and A.4,the first row shows the approximated

theoretical values of the MSE’s (vide subsection 6.2(b))while the 2nd row indicates the sim-

ulated MSE’s in respect of every pair (N, ρ). As expected, simulated MSE’s are decreasing

with increasing N and |ρ| both, maintaining a good resemblance with theoretical MSE’s.

The differences between the simulated and theoretical MSE’s are shown in the 3rdrow. In

most of the cases these differences are positive indicating that approximated formula for

MSE is lowering the actual values. Furthermore, the largest differences (as shown in the

last row of each table)for all the estimators occur at N = 22 when ρ = ±0.8 or +0.5. Such

evidence indicates that the term(s) in the approximated formula for MSE( which was indeed

up to first order only)is not sufficient enough for smaller N and larger threshold values of

|ρ|. However, the ordering of the estimators in respect of their MSE’s from the least to the

largest is satisfactorily taken as (R,R∗
a,R′

n−1,R
′,R∗

0).

8 Concluding Remarks

While estimating ρ of Gaussian AR(1) model, first order serial correlation (r1) or least

squares estimator (R) has dominating first order bias (vide Note 2.1). Quenouille (1956)

suggested an estimator (R′) just by splitting the whole series (having even number of ob-

servations) into two equal halves, in which case 1st order bias was completely eliminated.

Present investigation establishes two families,e.g. Q-family and M-family (vide §5 and

§6) whose members are all estimating the same parameter ρ on the basis of two overlapping

subseries chosen from the whole series. Their performances are compared with reference

to both Biasedness and Mean Square Error. Q-family comprises members having no 1st

order bias (unlike M-family). Eventually, Quenouille’s estimator (R′) coincides with the
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leading member (R′
0) of Q-family, having least amount of 2nd order bias with maximum

MSE. Contrarily, in view of M-family there exists a member (R∗
0) having least bias (not

of course less than that of R′). However, its another member (R∗
a) has not only no first

order bias but also the least MSE (up to 1st order only) in the two families. Thus both the

families are worthy of respective superiority due to R′
0 and R∗

a referring to biasedness and

MSE for the same parameter (ρ).

It may be mentioned in this connection that there is a “rough and ready” process of

removing 1st order bias by what is named as jack-knifing (Quenouille, 1949; Tukey, 1958).

Removing some observation(s) each time from the sample, pseudo-estimates are created

and averaged to get a jack-knife estimate. In contrast, members of Q- or M-family are the

creation from the pairs of overlapping subseries with varying number of “superimposed”

observations.

So far as the derivation of covariance between R1 and R2 is concerned, we have been able

to produce the leading terms only. Obviously, the expression are never exact, but correct up

to second order for bias and up to 1st order only for MSE. So further refinement is essential

to distinguish between MSE and variance. However, such refinement requires cumbersome

expression of higher-order moments as well as of partial derivatives as involved in Taylor’s

expansion. Vinod et. al(1996) may be referred to for some allied results on autoregressive

model.
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Appendix A:

Comparison of Theoretical bias and MSE’s with bias and MSE’s from Monte Carlo simula-

tion. The simulation exercise is performed using S-PLUS software.
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Table 1: Bias (for +ve ρ)

N ρ R′ R∗

0 R′

n−1
R∗

a R Remarks

22

0.05 0.0001 -0.001 -0.0023 -0.005 -0.0045 Theoretical

-0.0079 -0.0093 -0.0065 -0.0079 -0.0077 Simulated

0.0122 0.0142 0.0111 0.0109 0.0108 Standard error

0.3279 0.2923 0.1892 0.133 0.1481 V

0.3 0.0007 -0.0067 -0.0136 -0.0301 -0.0271 Theoretical

-0.0098 -0.0217 -0.0248 -0.0276 -0.0275 Simulated

0.012 0.0137 0.0109 0.0106 0.0106 Standard error

0.4375 0.5474 0.5138 0.1179 0.0189 V

0.5 0.0025 -0.0136 -0.0229 -0.0497 -0.0446 Theoretical

-0.0129 -0.0331 -0.0411 -0.0444 -0.0446 Simulated

0.0117 0.0129 0.0104 0.0101 0.0101 Standard error

0.6581 0.7558 0.875 0.2624 0 V

0.8 0.0167 -0.0454 -0.039 -0.0743 -0.0661 Theoretical

-0.0207 -0.0477 -0.0639 -0.0667 -0.0674 Simulated

0.0101 0.0108 0.0085 0.0084 0.0084 Standard error

1.8515 0.1065 1.4647 0.4524 0.0774 V

52

0.05 0 -0.0002 -0.001 -0.002 -0.0019 Theoretical

-0.0003 -0.0094 -0.0023 -0.0014 -0.0014 Simulated

0.0116 0.0128 0.0107 0.0106 0.0106 Standard error

0.0129 0.3594 0.0607 0.0283 0.0236 V

0.3 0.0001 -0.0011 -0.0058 -0.012 -0.0115 Theoretical

-0.0011 -0.0111 -0.0115 -0.0111 -0.0111 Simulated

0.0112 0.0126 0.0104 0.0103 0.0103 Standard error

0.0536 0.3968 0.274 0.0437 0.0194 V

52

0.5 0.0003 -0.0023 -0.0097 -0.0199 -0.0191 Theoretical

-0.0023 -0.0115 -0.0194 -0.0194 -0.0195 Simulated

0.0105 0.0122 0.0098 0.0097 0.0097 Standard error

0.1238 0.377 0.4949 0.0258 0.0206 V

0.8 0.0024 -0.0077 -0.0159 -0.0309 -0.0297 Theoretical

-0.004 -0.0125 -0.0309 -0.0311 -0.0312 Simulated

0.0086 0.0109 0.0076 0.0075 0.0075 Standard error

0.3721 0.2202 0.9868 0.0133 0.1 V

100

0.05 0 0 -0.0005 -0.001 -0.001 Theoretical

-0.0042 -0.0086 -0.0031 -0.0034 -0.0034 Simulated

0.0118 0.0156 0.0114 0.0114 0.0114 Standard error

0.178 0.2756 0.114 0.1053 0.1053 V

0.3 0 -0.0003 -0.003 -0.0061 -0.006 Theoretical

-0.0053 -0.0076 -0.0083 -0.0083 -0.0083 Simulated

0.0111 0.0147 0.0108 0.0108 0.0108 Standard error

0.2387 0.2483 0.2454 0.1019 0.1065 V

0.5 0.0001 -0.0006 -0.005 -0.0102 -0.01 Theoretical

-0.0065 -0.007 -0.0128 -0.0126 -0.0126 Simulated

0.01 0.0131 0.0098 0.0097 0.0097 Standard error

0.33 0.2443 0.398 0.1237 0.134 V

0.8 0.0006 -0.002 -0.0081 -0.016 -0.0157 Theoretical

-0.0065 -0.0083 -0.0182 -0.0182 -0.0182 Simulated

0.0075 0.01 0.007 0.007 0.007 Standard error

0.4733 0.315 0.7214 0.1571 0.1786 V
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Table 2: Bias (for −ve ρ)

N ρ R′ R∗

0 R′

n−1
R∗

a R Remarks

22

-0.05 -0.0001 0.001 0.0023 0.005 0.0045 Theoretical

-0.0072 -0.0043 0.0004 -0.0003 -0.0001 Simulated

0.0122 0.0143 0.0111 0.0108 0.0108 Standard error

0.291 0.1853 0.0856 0.2454 0.213 V

-0.3 -0.0007 0.0067 0.0136 0.0301 0.0271 Theoretical

-0.0046 0.0089 0.0181 0.0187 0.019 Simulated

0.0117 0.0141 0.0106 0.0104 0.0104 Standard error

0.1667 0.078 0.2123 0.5481 0.3894 V

-0.5 -0.0025 0.0136 0.0229 0.0497 0.0446 Theoretical

-0.001 0.0193 0.0335 0.0346 0.0349 Simulated

0.0109 0.0136 0.0098 0.0096 0.0096 Standard error

0.0688 0.2096 0.5408 0.7865 0.5052 V

-0.8 -0.0167 0.0454 0.039 0.0743 0.0661 Theoretical

0.0156 0.0506 0.0604 0.0609 0.0607 Simulated

0.009 0.0114 0.0081 0.0079 0.0079 Standard error

1.7944 0.2281 1.321 0.8481 0.3418 V

52

-0.05 0 0.0002 0.001 0.002 0.0019 Theoretical

-0.0005 -0.0084 0.0011 0.0021 0.0021 Simulated

0.0116 0.0128 0.0106 0.0106 0.0106 Standard error

0.0216 0.3359 0.0047 0.0047 0.0094 V

-0.3 -0.0001 0.0011 0.0058 0.012 0.0115 Theoretical

-0.0019 -0.0059 0.0086 0.0098 0.0098 Simulated

0.0112 0.0123 0.0102 0.0102 0.0102 Standard error

0.0804 0.2846 0.1373 0.1078 0.0833 V

-0.5 -0.0003 0.0023 0.0097 0.0199 0.0191 Theoretical

-0.0022 -0.0041 0.0145 0.0157 0.0158 Simulated

0.0102 0.0115 0.0093 0.0093 0.0093 Standard error

0.0931 0.2783 0.2581 0.2258 0.1774 V

52

-0.8 -0.0024 0.0077 0.0159 0.0309 0.0297 Theoretical

0.0049 -0.0011 0.0265 0.0276 0.0277 Simulated

0.0078 0.0103 0.0069 0.0069 0.0069 Standard error

0.4679 0.4272 0.7681 0.2391 0.1449 V

100

-0.05 0 0 0.0005 0.001 0.001 Theoretical

-0.0042 -0.0089 -0.0014 -0.0018 -0.0019 Simulated

0.0118 0.0156 0.0114 0.0114 0.0114 Standard error

0.178 0.2853 0.0833 0.1228 0.1272 V

-0.3 0 0.0003 0.003 0.0061 0.006 Theoretical

-0.0054 -0.0091 0.0016 0.0011 0.0011 Simulated

0.0111 0.0145 0.0107 0.0107 0.0107 Standard error

0.2432 0.3241 0.0654 0.2336 0.229 V

-0.5 -0.0001 0.0006 0.005 0.0102 0.01 Theoretical

-0.0064 -0.0086 0.0037 0.0032 0.0033 Simulated

0.0099 0.0128 0.0094 0.0095 0.0095 Standard error

0.3182 0.3594 0.0691 0.3684 0.3526 V

-0.8 -0.0006 0.002 0.0081 0.016 0.0157 Theoretical

-0.0039 -0.0024 0.0102 0.0104 0.0104 Simulated

0.0072 0.0087 0.0064 0.0065 0.0065 Standard error

0.2292 0.2529 0.1641 0.4308 0.4077 V
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Table 3: MSE (for +ve ρ)

N ρ R′ R∗

0 R′

n−1
R∗

a R Remarks

22

0.05 0.0475 0.0475 0.0486 0.0499 0.0713 Theoretical

0.0436 0.0436 0.0456 0.0549 0.0752 Simulated

0.0039 0.0039 0.003 0.005 0.0039 Diff

0.3 0.0433 0.0434 0.0444 0.0455 0.065 Theoretical

0.0425 0.0424 0.0442 0.0533 0.0703 Simulated

0.0008 0.001 0.0002 0.0078 0.0053 Diff

22

0.5 0.0357 0.0358 0.0366 0.0375 0.0536 Theoretical

0.04 0.0398 0.0414 0.0503 0.0627 Simulated

0.0043 0.004 0.0048 0.0128 0.0091 Diff

0.8 0.0171 0.0172 0.0176 0.018 0.0257 Theoretical

0.0307 0.0304 0.0307 0.0378 0.0454 Simulated

0.0136 0.0132 0.0131 0.0198 0.0197 Diff

52

0.05 0.0196 0.0196 0.0198 0.02 0.0293 Theoretical

0.0198 0.0198 0.0199 0.0234 0.0289 Simulated

0.0002 0.0002 0.0001 0.0034 0.0004 Diff

0.3 0.0178 0.0178 0.018 0.0182 0.0268 Theoretical

0.0187 0.0187 0.019 0.0218 0.0278 Simulated

0.0009 0.0009 0.001 0.0036 0.001 Diff

0.5 0.0147 0.0147 0.0149 0.015 0.0221 Theoretical

0.0167 0.0167 0.017 0.0191 0.0261 Simulated

0.002 0.002 0.0021 0.0041 0.004 Diff

0.8 0.0071 0.0071 0.0071 0.0072 0.0106 Theoretical

0.0109 0.0109 0.0111 0.0129 0.0211 Simulated

0.0038 0.0038 0.004 0.0057 0.0105 Diff

100

0.05 0.0101 0.0101 0.0101 0.0102 0.0151 Theoretical

0.0124 0.0124 0.0124 0.0132 0.0233 Simulated

0.0023 0.0023 0.0023 0.003 0.0082 Diff

0.3 0.0092 0.0092 0.0092 0.0093 0.0138 Theoretical

0.0112 0.0112 0.0112 0.0118 0.0207 Simulated

0.002 0.002 0.002 0.0025 0.0069 Diff

0.5 0.0076 0.0076 0.0076 0.0077 0.0114 Theoretical

0.0091 0.0091 0.0092 0.0095 0.0162 Simulated

0.0015 0.0015 0.0016 0.0018 0.0048 Diff

0.8 0.0036 0.0036 0.0037 0.0037 0.0055 Theoretical

0.005 0.005 0.005 0.0053 0.0096 Simulated

0.0014 0.0014 0.0013 0.0016 0.0041 Diff
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Table 4: MSE (for −ve ρ)

N ρ R′ R∗

0 R′

n−1
R∗

a R Remarks

22

-0.05 0.0475 0.0475 0.0486 0.0499 0.065 Theoretical

0.0432 0.0433 0.0453 0.0547 0.0738 Simulated

0.0043 0.0042 0.0033 0.0048 0.0088 Diff

-0.3 0.0433 0.0434 0.0444 0.0455 0.0536 Theoretical

0.04 0.0401 0.0419 0.0509 0.0688 Simulated

0.0033 0.0033 0.0025 0.0054 0.0152 Diff

-0.5 0.0357 0.0358 0.0366 0.0375 0.0257 Theoretical

0.0352 0.0353 0.0367 0.0439 0.0509 Simulated

0.0005 0.0005 0.0001 0.0064 0.0252 Diff

-0.8 0.0171 0.0172 0.0176 0.018 0.0014 Theoretical

0.0265 0.027 0.028 0.0301 0.0156 Simulated

0.0094 0.0098 0.0104 0.0121 0.0142 Diff

52

-0.05 0.0196 0.0196 0.0198 0.02 0.0268 Theoretical

0.0198 0.0197 0.0198 0.0235 0.0266 Simulated

0.0002 0.0001 0 0.0035 0.0002 Diff

-0.3 0.0178 0.0178 0.018 0.0182 0.0221 Theoretical

0.0183 0.0182 0.0182 0.0218 0.023 Simulated

0.0005 0.0004 0.0002 0.0036 0.0009 Diff

-0.5 0.0147 0.0147 0.0149 0.015 0.0106 Theoretical

0.0154 0.0153 0.0153 0.0182 0.0185 Simulated

0.0007 0.0006 0.0004 0.0032 0.0079 Diff

-0.8 0.0071 0.0071 0.0071 0.0072 0.0006 Theoretical

0.009 0.009 0.009 0.0106 0.0043 Simulated

0.0019 0.0019 0.0019 0.0034 0.0037 Diff

100

-0.05 0.0101 0.0101 0.0101 0.0102 0.0138 Theoretical

0.0124 0.0124 0.0123 0.0132 0.0201 Simulated

0.0023 0.0023 0.0022 0.003 0.0063 Diff

-0.3 0.0092 0.0092 0.0092 0.0093 0.0114 Theoretical

0.0109 0.0109 0.0108 0.0116 0.0157 Simulated

0.0017 0.0017 0.0016 0.0023 0.0043 Diff

-0.5 0.0076 0.0076 0.0076 0.0077 0.0055 Theoretical

0.0086 0.0086 0.0084 0.0094 0.0073 Simulated

0.001 0.001 0.0008 0.0017 0.0018 Diff

-0.8 0.0036 0.0036 0.0037 0.0037 0.0003 Theoretical

0.0041 0.0041 0.004 0.0049 0.0019 Simulated

0.0005 0.0005 0.0003 0.0012 0.0016 Diff


